CN109053127A - 一种快速制备高表面积多孔FeOx/SiO2复合材料的方法及所得多孔材料与应用 - Google Patents

一种快速制备高表面积多孔FeOx/SiO2复合材料的方法及所得多孔材料与应用 Download PDF

Info

Publication number
CN109053127A
CN109053127A CN201810802415.9A CN201810802415A CN109053127A CN 109053127 A CN109053127 A CN 109053127A CN 201810802415 A CN201810802415 A CN 201810802415A CN 109053127 A CN109053127 A CN 109053127A
Authority
CN
China
Prior art keywords
sio
composite material
gel
porous
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810802415.9A
Other languages
English (en)
Other versions
CN109053127B (zh
Inventor
刘世权
刘璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201810802415.9A priority Critical patent/CN109053127B/zh
Publication of CN109053127A publication Critical patent/CN109053127A/zh
Application granted granted Critical
Publication of CN109053127B publication Critical patent/CN109053127B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供一种快速制备高表面积多孔FeOx/SiO2复合材料的方法及所得多孔材料与应用。以正硅酸乙酯、无水乙醇、蒸馏水、正丁胺为原料,采用溶胶‑凝胶法制备SiO2溶胶,干燥得到SiO2干凝胶。称取干燥后的SiO2凝胶和乙酰丙酮铁按照不同比例混合,放入玛瑙球磨罐中,进行球磨得到复合粉体,将其进行模压成型后煅烧得到块体复合材料。在球磨条件下使乙酰丙酮铁和SiO2凝胶化学键断裂,两种物质重新结合形成新的稳定状态,达到复合的目的。含铁块体复合材料与较纯的SiO2凝胶压成的块体材料相比,表面积均增大。所得复合材料在染料废水中具有良好的吸附废水中染料分子的能力,加入过氧化氢溶液后还具有降解染料的作用。

Description

一种快速制备高表面积多孔FeOx/SiO2复合材料的方法及所得 多孔材料与应用
技术领域
本发明涉及一种快速制备高表面积多孔FeOx/SiO2复合材料的方法及所得多孔材料与应用,具体涉及采用SiO2干凝胶与乙酰丙酮铁经球磨复合,再经模压、煅烧制备多孔FeOx/SiO2复合材料的方法及所得高比表面积多孔FeOx/SiO2复合材料在吸附和降解染料废水中的应用,属于环境材料技术领域。
背景技术
纯的多孔二氧化硅表面积大,可用做废水处理的吸附剂,但仅靠吸附作用,其处理废水的效果有限,且与待处理废水的种类、pH值等有关。通过与其它材料复合,引入离子交换、催化降解等功能,可提高多孔二氧化硅材料在废水处理中的使用范围和效率。多孔FeOx/SiO2复合材料结合二氧化硅的吸附特性和亲水性以及铁基材料的催化特性,成为一种新型的、性能优异的处理含有机污染物废水的材料。
多孔FeOx/SiO2复合材料的制备方法有很多,主要分为直接合成法和合成后负载法。直接合成法包括水热法、溶液蒸发诱导自组装法、调节酸度法和溶胶-凝胶法等。直接合成法实验条件要求高,生产效率低,难以大批量生产。合成后负载法是合成多孔FeOx/SiO2复合材料常用的方法,该法在合成多孔二氧化硅凝胶材料后通过浸渍、嫁接、化学气相沉积等方法将组份铁负载到SiO2凝胶材料上。合成后负载方法虽然可以向多孔二氧化硅中引入活性组份,但步骤繁琐且当负载量高时容易堵塞孔道,破坏孔结构,也难以实现高效批量化生产。以上两类方法在制备含铁量高的铁硅复合材料时存在一定困难,且产生废液污染环境。
此外,传统多孔复合材料、铁质降解材料多为粉末状,使用不方便,难以回收,重复利用率较低。
发明内容
针对以上不足,本发明的目的是提供一种快速制备高表面积多孔FeOx/SiO2复合材料的方法,该方法在制得SiO2干凝胶的基础上,通过利用球磨机的转动使研磨球对SiO2凝胶和乙酰丙酮铁粉末进行强烈的撞击、研磨和搅拌,使粉末原子原始表面键断裂,再重新键合,从而得到乙酰丙酮铁/SiO2复合粉体;该复合粉体经模压成型,制得块体;再经过煅烧,乙酰丙酮铁分解,SiO2干凝胶中有机物及水分同时脱除,获得含不同价态铁的多孔FeOx/SiO2复合材料。
本发明技术方案如下:
一种快速制备高表面积多孔FeOx/SiO2复合材料的方法,步骤如下:
(1)SiO2凝胶的制备:以正硅酸乙酯、正丁胺、无水乙醇、水为原料,采用溶胶-凝胶的方法,制备出SiO2湿凝胶。将湿凝胶干燥,得到SiO2干凝胶;
(2)将SiO2干凝胶和乙酰丙酮铁混合,放入玛瑙球磨罐中,在球磨机上进行球磨复合,得到复合粉体;
(3)将复合粉体进行模压成型,制得片状块体;
(4)将片状块体经过煅烧得到多孔FeOx/SiO2复合材料。
进一步地,所述步骤(1)中,具体步骤为:先将30.6摩尔水和12.4摩尔无水乙醇搅拌混合10分钟,加入1.68摩尔正丁胺,搅拌30分钟,再加入1摩尔正硅酸乙酯,搅拌4分钟后静置6分钟,待凝胶后,老化1小时,得湿凝胶。湿凝胶放入烘箱中,在80oC烘干4小时,得到SiO2干凝胶。
进一步地,所述步骤(2)中,按Fe/SiO2摩尔比为0.01~0.1计算、称取乙酰丙酮铁和SiO2凝胶。
所述步骤(2)中球磨机转速为150转/分钟,料球质量比为1:25,球磨30分钟~1小时制得复合粉体,优选30分钟。
进一步地,所述步骤(3)中,将复合粉体进行模压成型,成型压力为34兆帕。块体的形状和尺寸和普通陶瓷成型时一样,主要受模具形状和尺寸、粉料加入量、成型工艺条件影响。
进一步地,所述步骤(4)中,煅烧条件:升温速率为5oC/分钟, 煅烧温度为350~750oC,煅烧时间为6小时。
本发明还提供按上述方法制得的多孔FeOx/SiO2复合材料,其特征是:比表面积的范围为310~581m2/g,孔容的范围为0.643mL/g~1.140mL/g,孔径均为17.4nm。铁含量为0.99%~9.09 mol %。红外分析证明,球磨后的复合粉体中,铁已与SiO2凝胶中的Si-OH形成键合。XPS测试结果显示,所得多孔FeOx/SiO2复合材料中2价铁占15.9mol%~39.1mol%,3价铁占比范围为84.1mol%~60.9mol%。其中,含铁块体复合材料与较纯的SiO2凝胶压成的块体材料相比,表面积均增大。Fe/SiO2摩尔比从0.01增加到0.1时,比表面积、孔容以及2价铁含量先增加后降低,但孔径不变,均为17.4nm。先增大的原因主要是生成的铁物质粒子分布在凝胶中初级颗粒表面,且复合粉体较纯干凝胶粉体耐压所致;随着铁含量进一步增加,表面积、孔容的计量基准中包含铁物质较多,每克样品中多孔SiO2在减少,所以表面积、孔容开始下降。在Fe/SiO2摩尔比为0.05时,煅烧温度为550oC时,复合材料的比表面积以及孔容最大,分别为581m2/g,1.140mL/g。同时检测到此时的2价铁、3价铁含量分别为39.1mol%、60.9mol%。此外,表面积、孔容还受步骤(4)中煅烧温度的高低影响。煅烧温度从350至450度,表面积、孔容呈增大趋势,再提高温度,二者呈减少趋势。
本发明还提供了多孔FeOx/SiO2复合材料在处理染料废水中的应用。具体包括吸附和降解染料废水两种应用。
应用一:多孔FeOx/SiO2复合材料吸附染料废水的步骤如下:
1)配制一定浓度的亚甲基蓝溶液;
2)将制得的多孔FeOx/SiO2复合材料与亚甲基蓝溶液置于水浴恒温振荡器中进行吸附实验;
3)吸附一定时间后,用镊子取出块体吸附剂。
进一步的,所述步骤1中,亚甲基蓝溶液的浓度范围为20mg/L~200 mg/L。
进一步的,所述步骤2中,水浴恒温振荡器的温度设定为25oC~65oC。
进一步的,所述步骤2中,复合材料投加量为0.002g/mL~0.02g/mL。
进一步的,所述步骤2中,吸附反应中,控制吸附时间为1~24小时。
实验表明,未加双氧水时,复合材料对水溶液中亚甲基蓝只有吸附作用。除去率随着铁硅比含量、复合材料的投加量、反应温度、反应时间的增加而增加,随着染料初始浓度的增加而降低。在上述条件范围内,复合材料吸附亚甲基蓝溶液的效率为33.99%~98.71%。最佳的吸附条件为初始染料浓度为20mL,复合材料投加量为0.01g/mL,在25oC吸附5小时,吸附效率达到97.98%。
应用二:多孔FeOx/SiO2复合材料降解染料废水的步骤如下:
1)配制一定浓度的亚甲基蓝溶液;
2)在亚甲基蓝溶液中加入浓度为30%的过氧化氢溶液;
3)将制得的多孔FeOx/SiO2复合材料置于步骤(2)的混合溶液,在水浴恒温振荡器中振荡反应;
4)反应完成后,用镊子取出块体吸附剂。
进一步的,所述步骤1中,亚甲基蓝溶液的浓度范围为20mg/L~200 mg/L。
进一步的,所述步骤2中,过氧化氢溶液的加入量为亚甲基蓝溶液的2%~10%。
进一步的,所述步骤3中,水浴恒温振荡器的温度设定为25oC。
进一步的,所述步骤3中,复合材料投加量为0.01g/mL。
进一步的,所述步骤3中,反应时间为5小时。
上述催化降解废水中染料反应是借助过氧化氢与二价铁进行类Fenton反应实现的。结果显示随着过氧化氢加入量的增加,染料的除去率均超过97%,使用后的样品的颜色从蓝色逐渐转为灰褐色,与未使用的复合材料颜色相同,说明样品对吸附的染料进行了明显的催化降解。
本发明的优点是:
球磨法能够使SiO2凝胶中的Si-OH断裂与乙酰丙酮铁键合形成Si-O-Fe键,该法工艺步骤简单,可将铁源与SiO2凝胶很好的复合。加入的铁盐不但没有降低材料的比表面积,还因为生成的铁物质粒子分布在凝胶中初级颗粒表面,而使材料复合后比表面积增大;同时通过引入活性中心铁,促进多孔FeOx/SiO2复合材料的吸附及催化活性。本发明的多孔FeOx/SiO2复合材料可用于染料废水的处理,不仅存在吸附作用,还存在降解的作用,对废水染料除去效率较高,并且吸附后复合材料与废水易分离。
具体实施方式如下。
下面结合具体实施例对本发明作进一步详细说明,以下实施例仅用于更加清楚地说明本专利的技术方案,而不能以此来限制本发明的保护范围。
采用氮气等温吸附仪 (Autosorb iQ-C) 测定样品N2等温吸附曲线,根据BET模型计算比表面积,根据BJH模型计算孔径分布曲线,曲线峰值取为孔径。
采用分光光度计法检测吸附后溶液中亚甲基蓝的浓度。通过公式:除去率=(C0-Ce)/C0*100 ,计算多孔FeOx/SiO2复合材料对亚甲基蓝溶液的吸附效率, C0,Ce分别为初始染料浓度和吸附平衡时的染料浓度。
多孔FeOx/SiO2复合材料中铁含量按铁的占比=复合材料中铁物质的量/(铁的物质的量+二氧化硅的物质的量)%。
通过XPS测试,确定材料中2价和3价铁的相对含量。
以下进一步提供本发明的实施例。
实施例1
(1)在烧杯中加入12.4摩尔水和30.6摩尔无水乙醇,在磁力搅拌器下,搅拌10分钟,加入1.68摩尔正丁胺,搅拌30分钟,加入1摩尔正硅酸乙酯搅拌4分钟后静置6分钟,待凝胶后,老化1小时。老化后的凝胶样品放入烘箱中,在80oC烘干4小时;
(2)采用Fe/SiO2摩尔比为0.01,称取乙酰丙酮铁和SiO2凝胶混合放入玛瑙球磨罐中,料球质量比为1:25,以150转/分钟的转速球磨30分钟得到复合粉体;
(3)将复合粉体在成型压力为34兆帕时进行模压成型制备块体复合材料。将得到的块体复合材料以升温速率5oC/分钟升至550oC煅烧6小时;
(4)将制得的多孔FeOx/SiO2复合材料按0.01g/mL的比例加入50mg/L的亚甲基蓝溶液中,置于水浴恒温振荡器中进行吸附5小时。
通过氮气吸附脱附分析得到复合材料的比表面积为443.2 m2/g,孔径为17.4 nm,孔容为0.912mL/g;材料中2价、3价铁分别占15.9mol %、84.1mol%。吸附亚甲基蓝的效率为71.62%。
实施例2
(1)同实施例1;
(2)采用Fe/SiO2摩尔比为0.05,称取乙酰丙酮铁和SiO2凝胶混合放入玛瑙球磨罐中,料球质量比为1:25,以150转/分钟的转速球磨30分钟得到复合粉体;
(3)将复合粉体在成型压力为34兆帕时进行模压成型制备块体复合材料。将得到的块体复合材料以升温速率5oC/分钟升至750oC煅烧6小时;
(4)将制得的多孔FeOx/SiO2复合材料按0.01g/mL的比例加入20mg/L的亚甲基蓝溶液中,置于水浴恒温振荡器中进行吸附5小时。
通过氮气吸附脱附分析得到复合材料的比表面积为310m2/g,孔径为17.4 nm,孔容为0.827mL/g;材料中2价、3价铁分别占39.1mol %、60.9mol %;吸附亚甲基蓝的效率为96.63%。
实施例3
(1)在烧杯中加入12.4摩尔水和30.6摩尔无水乙醇,在磁力搅拌器下,搅拌10分钟,加入1.68摩尔正丁胺,搅拌30分钟,加入1摩尔正硅酸乙酯搅拌4分钟后静置6分钟,待凝胶后,老化1小时。老化后的凝胶样品放入烘箱中,在80oC烘干4小时;
(2)采用Fe/SiO2摩尔比为0.1,称取乙酰丙酮铁和SiO2凝胶混合放入玛瑙球磨罐中,料球质量比为1:25,以150转/分钟的转速球磨30分钟得到复合粉体;
(3)将复合粉体在成型压力为34兆帕时进行模压成型制备块状复合材料。将得到的块体复合材料以升温速率5oC/分钟升至550oC煅烧6小时;
(4)将制得的多孔FeOx/SiO2复合材料按0.01g/mL的比例加入50mg/L的亚甲基蓝溶液中,置于水浴恒温振荡器中进行吸附24小时。
通过氮气吸附脱附分析得到复合材料的比表面积为398 m2/g,孔径为17.4 nm,孔容为0.643mL/g;材料中2价、3价铁分别占32.3mol %、67.7mol %;吸附亚甲基蓝的效率为98.22%。
实施例4
(1)在烧杯中加入12.4摩尔水和30.6摩尔无水乙醇,在磁力搅拌器下,搅拌10分钟,加入1.68摩尔正丁胺,搅拌30分钟,加入1摩尔正硅酸乙酯搅拌4分钟后静置6分钟,待凝胶后,老化1小时。凝胶后的样品放入烘箱中,在80oC烘干4小时;
(2)采用Fe/SiO2摩尔比为0.05,称取乙酰丙酮铁和SiO2凝胶混合放入玛瑙球磨罐中,料球质量比为1:25,以150转/分钟的转速球磨30分钟得到复合粉体;
(3)将复合粉体在成型压力为34兆帕时进行模压成型制备块体复合材料。将得到的块体复合材料以升温速率5oC/分钟升至550oC煅烧6小时;
(4)将制得的多孔FeOx/SiO2复合材料按0.01g/mL的比例加入20mg/L的亚甲基蓝溶液中,置于水浴恒温振荡器中进行吸附5小时。
通过氮气吸附脱附分析得到复合材料的比表面积为580.4m2/g,孔径为17.4 nm,孔容为1.140mL/g。吸附亚甲基蓝的效率为97.98%。吸附后材料呈蓝色。
实施例5
(1)~(3)同实施例4;
(4)在20mg/L的亚甲基蓝溶液中加入10%的浓度为30%过氧化氢溶液,复合材料投加量为0.01g/mL,在水浴恒温振荡器中进行催化反应5小时后,对亚甲基溶液的除去率为98.13%。使用后材料呈灰褐色,与未使用时颜色一致,表明染料被催化降解。
对比例
(1)同实施例4;
(2)将(1)中所得SiO2凝胶放入玛瑙球磨罐中,料球质量比为1:25,以150转/分钟的转速球磨30分钟得到SiO2凝胶粉体;
(3)将SiO2凝胶粉体在成型压力为34兆帕时进行模压成型制备块状SiO2凝胶材料。将得到的块体SiO2凝胶材料以升温速率5oC/分钟升至550oC煅烧6小时;
(4)将制得的块体SiO2凝胶材料按0.01g/mL的比例加入20mg/L的亚甲基蓝溶液中,置于水浴恒温振荡器中进行吸附5小时。
通过氮气吸附脱附分析得到块体SiO2凝胶材料的比表面积为340.2m2/g,孔径为17.4 nm,孔容为0.72mL/g;吸附亚甲基蓝的效率为65.75%,比实施例4的吸附率低32.23%。使用后块体SiO2凝胶材料呈蓝色,吸附染料未被降解。

Claims (8)

1.一种快速制备高表面积多孔FeOx/SiO2复合材料的方法,其特征是依次包括如下步骤:
SiO2凝胶的制备:以正硅酸乙酯、正丁胺、无水乙醇、水为原料,采用溶胶-凝胶的方法,制备出SiO2湿凝胶;将湿凝胶干燥,得到SiO2干凝胶;将SiO2干凝胶和乙酰丙酮铁混合,放入玛瑙球磨罐中,在球磨机上进行球磨复合,得到复合粉体;将复合粉体进行模压成型,制得块体;将块体经过煅烧得到多孔FeOx/SiO2复合材料。
2.根据权利要求1所述的制备方法,其特征是步骤(1)中:先将30.6摩尔水和12.4摩尔无水乙醇搅拌混合10分钟,加入1.68摩尔正丁胺,搅拌30分钟,再加入1摩尔正硅酸乙酯,搅拌4分钟后静置6分钟,待凝胶后,老化1小时,得到湿凝胶;湿凝胶放入烘箱中,在80oC烘干4小时,得到SiO2干凝胶。
3.根据权利要求1所述的方法,其特征是步骤(2)中,按照Fe/SiO2摩尔比为0.01~0.1称取乙酰丙酮铁和SiO2凝胶。
4.根据权利要求1所述的方法,其特征是步骤(2)中,球磨机转速为150转/分钟,料球质量比为1:25,球磨30分钟~1小时制得复合粉体,优选30分钟。
5.根据权利要求4所述的方法,其特征是将复合粉体进行模压成型,成型压力为34兆帕。
6.根据权利要求1所述的方法,其特征是步骤(4)中,煅烧条件:升温速率为5oC/分钟,煅烧温度为350~750oC,煅烧时间为6小时。
7.一种按权利要求所述方法制备的多孔FeOx/SiO2复合材料,其特征是:比表面积的范围为310~581 m2/g,孔径均为17.4nm,孔容的范围为0.643mL/g~1.140mL/g;铁含量为0.99%~9.09mol%,2价铁占比范围为15.9mol%~39.1mol%,3价铁占比范围为84.1%~60.9mol%。
8.一种权利要求7所述的多孔FeOx/SiO2复合材料吸附和降解染料废水的应用。
CN201810802415.9A 2018-07-20 2018-07-20 一种快速制备高表面积多孔FeOx/SiO2复合材料的方法及所得多孔材料与应用 Active CN109053127B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810802415.9A CN109053127B (zh) 2018-07-20 2018-07-20 一种快速制备高表面积多孔FeOx/SiO2复合材料的方法及所得多孔材料与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810802415.9A CN109053127B (zh) 2018-07-20 2018-07-20 一种快速制备高表面积多孔FeOx/SiO2复合材料的方法及所得多孔材料与应用

Publications (2)

Publication Number Publication Date
CN109053127A true CN109053127A (zh) 2018-12-21
CN109053127B CN109053127B (zh) 2021-03-02

Family

ID=64817668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810802415.9A Active CN109053127B (zh) 2018-07-20 2018-07-20 一种快速制备高表面积多孔FeOx/SiO2复合材料的方法及所得多孔材料与应用

Country Status (1)

Country Link
CN (1) CN109053127B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026194A (zh) * 2019-04-30 2019-07-19 济南大学 一种制备块体复合类芬顿催化剂材料的方法及所得材料与应用
CN116786092A (zh) * 2023-07-13 2023-09-22 北京师范大学 一种有机聚合物负载La@Fe-SiO2气凝胶微球及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594450A (zh) * 2004-06-30 2005-03-16 南京大学 具有核/壳结构的高稳定性Fe/SiO2复合纳米颗粒及其制备方法
KR100702065B1 (ko) * 2006-03-28 2007-04-02 주식회사한국지씨엠 부유물질, 질소 및 인의 동시제거를 위한 수처리분말
CN101708853A (zh) * 2009-07-08 2010-05-19 济南大学 不同表面形态的中空二氧化硅微球及其制备方法
CN101817530A (zh) * 2010-02-09 2010-09-01 济南大学 一种中空二氧化硅微球的制备方法
CN102602883A (zh) * 2012-03-13 2012-07-25 中国科学院山西煤炭化学研究所 一种二氧化硅包覆铁氧化物纳米核壳结构材料的制备方法
CN105457590A (zh) * 2015-11-27 2016-04-06 江苏华夏制漆科技有限公司 一种FexOy/SiO2气凝胶纳米复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594450A (zh) * 2004-06-30 2005-03-16 南京大学 具有核/壳结构的高稳定性Fe/SiO2复合纳米颗粒及其制备方法
KR100702065B1 (ko) * 2006-03-28 2007-04-02 주식회사한국지씨엠 부유물질, 질소 및 인의 동시제거를 위한 수처리분말
CN101708853A (zh) * 2009-07-08 2010-05-19 济南大学 不同表面形态的中空二氧化硅微球及其制备方法
CN101817530A (zh) * 2010-02-09 2010-09-01 济南大学 一种中空二氧化硅微球的制备方法
CN102602883A (zh) * 2012-03-13 2012-07-25 中国科学院山西煤炭化学研究所 一种二氧化硅包覆铁氧化物纳米核壳结构材料的制备方法
CN105457590A (zh) * 2015-11-27 2016-04-06 江苏华夏制漆科技有限公司 一种FexOy/SiO2气凝胶纳米复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G.POZO LÓPEZ AND SO ON: ""Synthesis of Fe/SiO2 and iron oxides/SiO2 nanocomposites by lone-term ball milling"", 《MATERIALS RESEARCH BULLETIN》 *
P.N.R.KISHORE AND SO ON: ""A novel thermal decomposition approach for the synthesis of silica-iron oxide core-shell nanoparticles"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026194A (zh) * 2019-04-30 2019-07-19 济南大学 一种制备块体复合类芬顿催化剂材料的方法及所得材料与应用
CN116786092A (zh) * 2023-07-13 2023-09-22 北京师范大学 一种有机聚合物负载La@Fe-SiO2气凝胶微球及其制备方法和应用

Also Published As

Publication number Publication date
CN109053127B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
Baltes et al. MCM-48-supported vanadium oxide catalysts, prepared by the molecular designed dispersion of VO (acac) 2: a detailed study of the highly reactive MCM-48 surface and the structure and activity of the deposited VOx
US20220355284A1 (en) Perylene imide and composite photocatalytic material thereof, preparation method therefor and application thereof in removing organic pollutants from water
CN107686120B (zh) 一种聚集太阳能催化合成氨的方法及其催化剂
Xue et al. A novel support of MCM-48 molecular sieve for immobilization of penicillin G acylase
CN107321351B (zh) 一种甲烷/二氧化碳重整反应的高效催化剂制备方法
CN109453766B (zh) 一种原子级分散的Ag负载TiO2介孔纳米带光催化剂的制备方法
CN100369666C (zh) 含硅纳米氧化钙高温二氧化碳吸附剂和该吸附剂的制备方法以及在制氢工艺中的应用
CN109053127A (zh) 一种快速制备高表面积多孔FeOx/SiO2复合材料的方法及所得多孔材料与应用
Hou et al. Preparation of Cu 2 O@ TiOF 2/TiO 2 and its photocatalytic degradation of tetracycline hydrochloride wastewater
CN108745274B (zh) 一种累托石介孔材料及其制备方法和应用
CN102276158B (zh) 一种偏钒酸盐纳米晶/聚合物复合荧光膜的制备方法
US20210113992A1 (en) Biological morph-genetic wo3 photocatalyst and preparation method and application thereof
CN108671905A (zh) 一种用于污水处理的光催化剂的制备方法
Lei et al. A study on the catalytic performance of the ZrO 2@ γ-Al 2 O 3 hollow sphere catalyst for COS hydrolysis
CN109809428A (zh) 一种无机载体表面负载碳层的复合材料及其制备方法
CN110026194A (zh) 一种制备块体复合类芬顿催化剂材料的方法及所得材料与应用
CN108855056A (zh) 一种双层核壳结构钯催化剂及其制备方法和应用
CN113275002A (zh) 一种C/MoO2多孔光催化剂及其制备方法、应用
CN101781123B (zh) 一种无机多孔陶瓷材料及其制备方法
CN111589384A (zh) 一种CsxWO3-SiO2复合气凝胶的原位合成方法
CN116371433A (zh) 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用
CN108745405A (zh) 氮化碳/氮掺中空介孔碳/三氧化二铋三元z型光催化剂及其制备方法
Lihui et al. Dispersion of active Au nanoparticles on mesoporous SBA-15 materials
Li et al. Pt nanoparticles entrapped in Al2O3@ SBA-15 composites: Effective and recyclable catalysts for enantioselective hydrogenation of ethyl 2-oxo-4-phenylbutyrate
Zhang et al. Effect of water on the performance of Pd-ZSM-5 catalysts for the combustion of methane

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant