CN108927174A - 一种ZnS/rGO/CuS纳米光催化剂及其制备方法 - Google Patents

一种ZnS/rGO/CuS纳米光催化剂及其制备方法 Download PDF

Info

Publication number
CN108927174A
CN108927174A CN201810803077.0A CN201810803077A CN108927174A CN 108927174 A CN108927174 A CN 108927174A CN 201810803077 A CN201810803077 A CN 201810803077A CN 108927174 A CN108927174 A CN 108927174A
Authority
CN
China
Prior art keywords
zns
rgo
zif
cus
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810803077.0A
Other languages
English (en)
Other versions
CN108927174B (zh
Inventor
刘福田
徐美苓
李魁
周媛媛
赵佳慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201810803077.0A priority Critical patent/CN108927174B/zh
Publication of CN108927174A publication Critical patent/CN108927174A/zh
Application granted granted Critical
Publication of CN108927174B publication Critical patent/CN108927174B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于纳米材料制备技术领域,具体为一种ZnS/rGO/CuS纳米光催化剂及其制备方法。ZnS/CuS作为应用比较广泛的光催化剂,其形貌可进一步进行调控以增加活性位点的暴露数量,进而提高光催化剂的光催化活性。沸石咪唑骨架材料ZIF‑8具有高比表面积和丰富的孔结构,为光催化剂的构筑提供了有利条件。该材料的制备方法是,首先制备负载氧化石墨烯(GO)的ZIF‑8,并以之为模板制备负载GO的ZnS多孔纳米材料ZnS/rGO,最后在该多孔ZnS/rGO体系中引入纳米CuS,制得目标产物,即ZnS/rGO/CuS纳米光催化剂。本发明的优点是,以ZIF为模板制备的ZnS具有超大比表面积,为CuS提供了更多的负载位点,从而增大了活跃位点暴露数目,而氧化石墨烯的引入可以显著提高载流子的传导能力,从而显著提高了光催化剂的光催化活性。

Description

一种ZnS/rGO/CuS纳米光催化剂及其制备方法
技术领域
本发明属于纳米材料制备领域,具体为一种ZnS/rGO/CuS纳米光催化剂及其制备方法。
背景技术
为了人类社会发展的延续和稳定,新能源的开发迫在眉睫。待开发的新能源在性质上应是可持续利用的永久性能源,应用时应不给地球环境增加额外的负荷,成本上应不超过现用化石燃料。太阳能、风能、生物能、核能、海洋能、氢能等可持续能源均为极有潜力的开发对象。其中,氢能被称为人类的终极能源,因为氢构成了宇宙质量的四分之三,是宇宙中分布最广的物质。作为能源,氢气具有很多优点:燃烧热值高、燃烧效率高、导热性好、环保无毒、可存储性好、安全性高等。
目前,利用太阳能分解水制氢的方法有很多,主要有太阳能发电电解水制氢、太阳能热分解水制氢、太阳能生物制氢以及太阳能光催化分解水制氢等。其中,光催化分解水制氢技术起始于1972年。半导体光催化分解水产氢能够把低密度的太阳能转化为高密度的、可储存的氢能,是一种环境友好的绿色技术。
宽带隙半导体——如 TiO2、ZnO 等,虽然具有较负的导带电位,却因其带隙较宽,只能吸收紫外光,无法充分利用太阳光能量,因此不能成为理想的光催化制氢材料。
石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料,它是零带隙半导体材料,具有独特的载流子特性,对催化剂的光生电子有极好的传输特性。石墨烯超大的比表面积以及自身的模板效应能有效防止颗粒团聚,因此是良好的催化剂载体。利用石墨烯的模板作用,可以制备颗粒均匀分散、且性能良好稳定的催化剂。
相对于常用的宽禁带半导体,金属硫化物半导体通常拥有较窄的带隙,因此可以吸收可见光,在更大的程度上有效利用太阳光的能量。如在金属硫化物半导体中,硫化镉的导带位置比水的还原电势更负,满足了光解水产氢的基本条件,因此,硫化镉是一种理想的可见光响应半导体光催化产氢材料。但是,硫化镉具有较小的比表面积、导电性小、容易团聚、光生电荷易于发生复合等缺陷,限制了其产氢效率。因此,开发价格廉价、性能稳定、活性更高的光催化剂是目前光催化分解水制氢研究的一个重要方向。
发明内容
本发明的发明目的在于克服以上问题,提供一种ZnS/rGO/CuS纳米光催化剂的制备方法。该方法以纳米ZnS/rGO/CuS为光催化剂,光解水产氢,拓展了无机复合纳米材料在光催化产氢领域的应用。
为了实现以上发明目的,本发明的具体技术方案如下:
1)按比例称取原料锌盐、2-甲基咪唑、氧化石墨烯(GO),将其置于甲醇溶液中进行超声分散,配制成0.01-1 mol/L的GO-ZIF-8溶液,然后进行恒温搅拌,以形成均匀的GO-ZIF-8溶液,其中锌盐与2-甲基咪唑的摩尔比为0-0.2:1,氧化石墨烯与ZIF-8的质量比为0-0.5,将上述溶液进行离心分离,得到GO-ZIF-8纳米颗粒,在GO-ZIF-8纳米颗粒中加入一定质量的硫源,将其置于一定溶剂中进行超声分散,配制成0.01-1 mol/L的GO-ZIF-8和硫源的混合溶液,然后进行恒温搅拌,以形成均匀的混合溶液,其中硫源与GO-ZIF-8的摩尔比为0-0.2:1,将上述溶液装入水热反应釜中,在指定的温度和时间下发生硫化反应;反应完成,自然冷却后,进行离心分离,烘干后得到ZnS/rGO纳米颗粒。
2)按比例称取ZnS/rGO纳米颗粒、铜盐,将其置于乙醇和去离子水溶液中进行超声分散,配制成0.01-1 mol/L的ZnS/rGO和铜盐的混合溶液,然后进行恒温搅拌,以形成均匀的ZnS/rGO和铜盐的混合溶液,其中铜盐与ZnS/rGO的质量比为0-0.5,将上述溶液装入水热反应釜中,在指定的温度和时间下发生阳离子置换反应;反应完成,自然冷却后,进行离心分离,烘干后得到ZnS/rGO/CuS纳米光催化剂。
本发明的积极效果体现在:
(一)以ZIF-8为模板制备的ZnS/rGO/CuS光催化剂,因其具有高比表面积和丰富孔结构,为光催化剂的构筑提供了有利条件,作为光催化剂,它能够为光催化剂提供更多的负载位点,提高光催化活性。
(二)氧化石墨烯引入ZnS/rGO/CuS光催化剂,能够显著提高载流子的传导能力,使光生载流子中的空穴和电子有效的分离,为光催化剂提高光吸收效率和光催化活性。
(三)本申请以纳米ZnS/rGO/CuS作为光催化剂,光解水产氢,拓展了无机复合纳米材料在光催化产氢领域的应用。
附图说明
图1为实施例1制备的石墨烯掺量为0.2%的ZnS/rGO/CuS纳米光催化剂的SEM照片。
图2为实施例2制备的石墨烯掺量为0.5%的ZnS/rGO/CuS纳米光催化剂的SEM照片。
图3为实施例3制备的石墨烯掺量为2%的ZnS/rGO/CuS纳米光催化剂的SEM照片。
图4中的柱状图a为实施例1制备的石墨烯掺量为0.2%的ZnS/rGO/CuS纳米光催化剂的产氢效率;图4中的柱状图b为实施例2制备的石墨烯掺量为0.5%的ZnS/rGO/CuS纳米光催化剂的产氢效率;图4中的柱状图c为实施例3制备的石墨烯掺量为2%的ZnS/rGO/CuS纳米光催化剂的产氢效率。
具体实施方式:
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合具体实施方式对本发明作进一步的详细描述,但不应将此理解为本发明上述主题的范围仅限于下述实施例。
实施例1:
称取1487.5 mg六水硝酸锌、8210 mg 2-甲基咪唑、1.4 mg氧化石墨烯溶于25 ml甲醇溶液中,配制成0.2 mol/L的GO-ZIF-8溶液,然后超声分散5 min,并在搅拌速度为300 r/min常温下搅拌12 h,然后进行离心分离,去掉上清液,所得产品为GO-ZIF-8。然后在GO-ZIF-8中加入225.39 mg硫代乙酰胺溶于20 ml无水乙醇与10 ml去离子水的混合溶液中,配制成0.075 mol/L的GO-ZIF-8和硫源的混合溶液,然后超声分散5 min,并在搅拌速度为300r/min常温下搅拌20 min,将上述混合液装入聚四氟乙烯高温反应釜中,在120 ℃水热反应12 h,待自然冷却后,进行离心分离,并在50 ℃烘箱中干燥6 h,所得产品即为ZnS/rGO纳米颗粒。
称取100 mg ZnS/rGO纳米颗粒、7 mg三水硝酸铜溶于20 ml无水乙醇与10 ml去离子水的混合溶液中,配制成0.015 mol/L的ZnS/rGO和铜盐的混合溶液,然后超声分散5min,并在搅拌速度为300 r/min常温下搅拌20 min,将上述溶液装入聚四氟乙烯高温反应釜中,在120 ℃水热反应18 h,待自然冷却后,进行离心分离,并在50 ℃烘箱中干燥6 h,所得产品即为石墨烯掺量为0.2%的ZnS/rGO/CuS纳米光催化剂。
对水热法制备的石墨烯掺量为0.2%的ZnS/rGO/CuS纳米光催化剂进行SEM分析,其SEM照片见图1。由图1可见,ZnS/rGO/CuS光催化剂分散比较均匀,且具有较多的微孔结构。对其进行可见光照射下的光催化产氢反应,得到该催化剂的产氢效率为1.223 mmol/h/g,其产氢效率见图4中的柱状图a。
实施例2:
称取2974.9 mg六水硝酸锌、8210 mg 2-甲基咪唑、3.5 mg氧化石墨烯溶于25 ml甲醇溶液中,配制成0.4 mol/L的GO-ZIF-8溶液,然后超声分散10 min,并在搅拌速度为600 r/min常温下搅拌24 h,然后进行离心,去掉上清液,用无水乙醇和去离子水洗涤三次,所得产品为GO-ZIF-8。然后在GO-ZIF-8中加入225.39 mg硫代乙酰胺溶于20 ml无水乙醇与10 ml去离子水的混合溶液中,配制成0.15 mol/L的GO-ZIF-8和硫源的混合溶液,然后超声分散10 min,并在搅拌速度为600 r/min常温下搅拌30 min,将上述溶液装入聚四氟乙烯高温反应釜中,在180 ℃水热反应12 h,待自然冷却后,进行离心分离,并在60 ℃烘箱中干燥5 h,所得产品即为ZnS/rGO纳米颗粒。
称取200 mg ZnS/rGO纳米颗粒、14 mg三水硝酸铜溶于20 ml无水乙醇与10 ml去离子水的混合溶液中,配制成0.03 mol/L的ZnS/rGO和铜盐的混合溶液,然后超声分散10min,并在搅拌速度为600 r/min常温下搅拌30 min,将上述溶液装入聚四氟乙烯高温反应釜中,在180 ℃水热反应18 h,待自然冷却后,进行离心分离,并在60 ℃烘箱中干燥5 h,所得产品即为石墨烯掺量为0.5%的ZnS/rGO/CuS纳米光催化剂。
对水热法制备的石墨烯掺量为0.5%的ZnS/rGO/CuS纳米光催化剂进行SEM分析,其SEM照片见图2。由图2可见,ZnS/rGO/CuS光催化剂分散非常均匀,石墨烯片层结构使得该光催化剂材料具有更多的微孔结构。对其进行可见光照射下的光催化产氢反应,得到该催化剂的产氢效率为2.6144 mmol/h/g,其产氢效率见图4中的柱状图b。
实施例3:
称取4462.35 mg六水硝酸锌、8210 mg 2-甲基咪唑、14 mg氧化石墨烯溶于25 ml甲醇溶液中,配制成0.6 mol/L的GO-ZIF-8溶液,然后超声分散20 min,并在搅拌速度为800 r/min常温下搅拌10 h,然后进行离心,去掉上清液,用无水乙醇和去离子水洗涤三次,所得产品为GO-ZIF-8。然后在GO-ZIF-8中加入225.39 mg硫代乙酰胺溶于20 ml无水乙醇与10 ml去离子水的混合溶液中,配制成0.225 mol/L的GO-ZIF-8和硫源的混合溶液,然后超声分散20 min,并在搅拌速度为800 r/min常温下搅拌20 min,将上述溶液装入聚四氟乙烯高温反应釜中,在240 ℃水热反应12 h,待自然冷却后,进行离心分离,并在80 ℃烘箱中干燥4 h,所得产品即为ZnS/rGO纳米颗粒。
称取300 mg ZnS/rGO纳米颗粒、21 mg三水硝酸铜溶于20 ml无水乙醇与10 ml去离子水的混合溶液中,配制成0.045 mol/L的ZnS/rGO和铜盐的混合溶液,然后超声分散10min,并在搅拌速度为800 r/min常温下搅拌20 min,将上述溶液装入聚四氟乙烯高温反应釜中,在240 ℃水热反应18 h,待自然冷却后,进行离心分离,并在80 ℃烘箱中干燥4 h,所得产品即为石墨烯掺量为2%的ZnS/rGO/CuS纳米光催化剂。
对水热法制备的石墨烯掺量为2%的ZnS/GO/CuS纳米光催化剂进行SEM分析,其SEM照片见图3。由图3可见,ZnS/rGO/CuS光催化剂发生较为严重的团聚和叠加现象,材料结构相对比较致密。对其进行可见光照射下的光催化产氢反应,得到该催化剂的产氢效率为1.0024 mmol/h/g,其产氢效率见图4中的柱状图c。

Claims (7)

1.一种ZnS/rGO/CuS纳米光催化剂及其制备方法,其特征在于包括以下步骤:
1)按比例称取原料锌盐、2-甲基咪唑、氧化石墨烯(GO),将其置于甲醇溶液中进行超声分散,配制成0.01-1 mol/L的GO-ZIF-8溶液,然后进行恒温搅拌,以形成均匀的GO-ZIF-8溶液,将上述溶液进行离心分离,得到GO-ZIF-8纳米颗粒,在GO-ZIF-8纳米颗粒中加入一定质量的硫源,将其置于一定溶剂中进行超声分散,配制成0.01-1 mol/L的GO-ZIF-8和硫源的混合溶液,然后进行恒温搅拌,以形成均匀的混合溶液,将上述溶液装入水热反应釜中,在指定的温度和时间下发生硫化反应;反应完成,自然冷却后,进行离心分离,烘干后得到ZnS/rGO纳米颗粒;
2)按比例称取ZnS/rGO纳米颗粒、铜盐,将其置于乙醇和去离子水溶液中进行超声分散,配制成0.01-1 mol/L的ZnS/rGO和铜盐的混合溶液,然后进行恒温搅拌,以形成均匀的ZnS/rGO和铜盐的混合溶液,将上述溶液装入水热反应釜中,在指定的温度和时间下发生阳离子置换反应;反应完成,自然冷却后,进行离心分离,烘干后得到ZnS/rGO/CuS纳米光催化剂。
2.根据权利要求书1所述ZnS/rGO/CuS纳米光催化剂的制备方法,其特征在于:以沸石咪唑骨架材料ZIF-8为模板制备ZnS/rGO/CuS纳米光催化剂。
3.根据权利要求书1所述ZnS/rGO/CuS纳米光催化剂的制备方法,其特征在于:所制备的GO-ZIF-8纳米颗粒中,锌盐与2-甲基咪唑的摩尔比为0~0.2:1,且锌盐为硝酸锌或者氯化锌。
4.根据权利要求书1所述ZnS/rGO/CuS纳米光催化剂的制备方法,其特征在于:所制备的GO-ZIF-8纳米颗粒中,氧化石墨烯与ZIF-8的质量比为0-0.5。
5.根据权利要求书1所述ZnS/rGO/CuS纳米光催化剂的制备方法,其特征在于:制备的ZnS/rGO/CuS纳米光催化剂所用的硫源为硫代乙酰胺、硫脲或者硫粉,硫源与GO-ZIF-8的摩尔比为0-0.2:1。
6.根据权利要求书1所述ZnS/rGO/CuS纳米光催化剂的制备方法,其特征在于:所制备的ZnS/rGO/CuS纳米光催化剂中,铜盐与ZnS/rGO的质量比为0-0.5,且铜盐为硝酸铜或者氯化铜。
7.根据权利要求书1所述ZnS/rGO/CuS纳米光催化剂的制备方法,其特征在于:水热温度100 ℃-300 ℃,反应时间为10-20 h。
CN201810803077.0A 2018-07-20 2018-07-20 一种ZnS/rGO/CuS纳米光催化剂及其制备方法 Active CN108927174B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810803077.0A CN108927174B (zh) 2018-07-20 2018-07-20 一种ZnS/rGO/CuS纳米光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810803077.0A CN108927174B (zh) 2018-07-20 2018-07-20 一种ZnS/rGO/CuS纳米光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN108927174A true CN108927174A (zh) 2018-12-04
CN108927174B CN108927174B (zh) 2021-04-06

Family

ID=64447877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810803077.0A Active CN108927174B (zh) 2018-07-20 2018-07-20 一种ZnS/rGO/CuS纳米光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN108927174B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109746011A (zh) * 2018-12-10 2019-05-14 济南大学 一种mof基衍生的复合光催化剂及其制备方法
CN110090651A (zh) * 2019-05-29 2019-08-06 西安石油大学 一种石墨烯基硫化物异质结光催化剂及其制备方法和用途
CN110112373A (zh) * 2019-03-13 2019-08-09 河源广工大协同创新研究院 一种高比容量锂离子电池负极材料的制备方法及应用
CN110252342A (zh) * 2019-07-26 2019-09-20 西南大学 一种硫化锌-硫化铟异质结材料及其制备方法和应用
CN111468164A (zh) * 2020-05-22 2020-07-31 青岛品泰新材料技术有限责任公司 一种氮掺杂纳米ZnS/石墨烯光催化材料的制备方法及应用
CN113181431A (zh) * 2021-03-16 2021-07-30 浙江大学 形成于基材表面的抗菌及骨整合涂层及在基材表面制备抗菌及骨整合涂层的方法
CN113666333A (zh) * 2021-08-02 2021-11-19 南昌大学 铑诱导生长氧化锌-硫化锌异质结构光催化制氢合成方法
CN115501897A (zh) * 2022-09-15 2022-12-23 齐鲁工业大学 纳米复合材料及制备方法与其在可见光催化产氢中的应用
CN116273176A (zh) * 2023-02-15 2023-06-23 湖北工程学院 一种温敏型ZnS@PNxDy纳米笼催化剂、制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104353469A (zh) * 2014-10-28 2015-02-18 江苏大学 一种纳米复合材料光催化剂的制备方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104353469A (zh) * 2014-10-28 2015-02-18 江苏大学 一种纳米复合材料光催化剂的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIAGUO YU等: "Ion-Exchange Synthesis and Enhanced Visible-Light Photoactivity of CuS/ZnS Nanocomposite Hollow Spheres", 《J. PHYS. CHEM.C》 *
PENG WANG等: "Hollow Co9S8 from metal organic framework supported on rGO as electrode material for highly stable supercapacitors", 《CHINESE CHEMICAL LETTERS》 *
ZHEN JIANG等: "Synthesis of novel ZnS nanocages utilizing ZIF-8 polyhedral template", 《CHEM. COMMUN.》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109746011B (zh) * 2018-12-10 2021-06-04 济南大学 一种mof基衍生的复合光催化剂及其制备方法
CN109746011A (zh) * 2018-12-10 2019-05-14 济南大学 一种mof基衍生的复合光催化剂及其制备方法
CN110112373A (zh) * 2019-03-13 2019-08-09 河源广工大协同创新研究院 一种高比容量锂离子电池负极材料的制备方法及应用
CN110090651A (zh) * 2019-05-29 2019-08-06 西安石油大学 一种石墨烯基硫化物异质结光催化剂及其制备方法和用途
CN110090651B (zh) * 2019-05-29 2022-03-11 西安石油大学 一种石墨烯基硫化物异质结光催化剂及其制备方法和用途
CN110252342A (zh) * 2019-07-26 2019-09-20 西南大学 一种硫化锌-硫化铟异质结材料及其制备方法和应用
CN110252342B (zh) * 2019-07-26 2021-12-07 西南大学 一种硫化锌-硫化铟异质结材料及其制备方法和应用
CN111468164A (zh) * 2020-05-22 2020-07-31 青岛品泰新材料技术有限责任公司 一种氮掺杂纳米ZnS/石墨烯光催化材料的制备方法及应用
CN111468164B (zh) * 2020-05-22 2021-10-15 庄秀萍 一种氮掺杂纳米ZnS/石墨烯光催化材料的制备方法及应用
CN113181431B (zh) * 2021-03-16 2022-06-28 浙江大学 形成于基材表面的抗菌及骨整合涂层及在基材表面制备抗菌及骨整合涂层的方法
CN113181431A (zh) * 2021-03-16 2021-07-30 浙江大学 形成于基材表面的抗菌及骨整合涂层及在基材表面制备抗菌及骨整合涂层的方法
CN113666333A (zh) * 2021-08-02 2021-11-19 南昌大学 铑诱导生长氧化锌-硫化锌异质结构光催化制氢合成方法
CN113666333B (zh) * 2021-08-02 2022-11-08 南昌大学 铑诱导生长氧化锌-硫化锌异质结构光催化制氢合成方法
CN115501897A (zh) * 2022-09-15 2022-12-23 齐鲁工业大学 纳米复合材料及制备方法与其在可见光催化产氢中的应用
CN116273176A (zh) * 2023-02-15 2023-06-23 湖北工程学院 一种温敏型ZnS@PNxDy纳米笼催化剂、制备方法及应用
CN116273176B (zh) * 2023-02-15 2024-09-24 湖北工程学院 一种温敏型ZnS@PNxDy纳米笼催化剂、制备方法及应用

Also Published As

Publication number Publication date
CN108927174B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
CN108927174A (zh) 一种ZnS/rGO/CuS纳米光催化剂及其制备方法
Zhang et al. MOFs-derived Cu3P@ CoP pn heterojunction for enhanced photocatalytic hydrogen evolution
Jin et al. CoAl LDH@ Ni-MOF-74 S-scheme heterojunction for efficient hydrogen evolution
CN111389442B (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
Li et al. ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution
Xiao et al. S-scheme heterojunction constructed by ZnCdS and CoWO4 nano-ions promotes photocatalytic hydrogen production
CN110560105B (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
CN107349937A (zh) 一种石墨烯基双金属硫化物纳米复合光催化剂的制备方法
Ma et al. Fabrication of P-doped Co9S8/g-C3N4 heterojunction for excellent photocatalytic hydrogen evolution
Zhao et al. Fabrication of hierarchical Co9S8@ ZnAgInS heterostructured cages for highly efficient photocatalytic hydrogen generation and pollutants degradation
CN103715436A (zh) 一种二氧化碳电化学还原催化剂及其制备和应用
Jin et al. Graphdiyne based GDY/CuI/NiO parallel double S-scheme heterojunction for efficient photocatalytic hydrogen evolution
CN110227500A (zh) 一种Cd1-xZnxS-Ni/MoS2复合光催化剂及其制备方法、应用
CN106268902B (zh) 一种g-C3N4量子点、Ag量子点敏化BiVO4光催化剂的制备方法
CN112844412B (zh) 一种硫铟锌-MXene量子点复合光催化剂及其制备方法和应用
Hu et al. Red/black phosphorus Z-scheme heterogeneous junction modulated by co-MOF for enhanced photocatalytic hydrogen evolution
Jin et al. Graphdiyne (CnH2n-2) based NiS S-scheme heterojunction for efficient photocatalytic hydrogen production
CN103506142A (zh) 一种二硫化钼/磷酸银复合可见光光催化材料及其制备方法
Ma et al. Mn0. 2Cd0. 8S modified with 3D flower‐shaped Co3 (PO4) 2 for efficient photocatalytic hydrogen production
CN102836730A (zh) 一种多孔ZnIn2S4光催化剂的制备方法
Zhu et al. Cu-MOF modified Cd0. 5Zn0. 5S nanoparticles to form S-scheme heterojunction for efficient photocatalytic H2 evolution
Wang et al. Hollow rod-shaped Cu-In-Zn-S@ ZnCo2O4@ In2O3 tandem heterojunction for efficient visible light-induced photocatalytic hydrogen production
CN115007174A (zh) 一种二维CdIn2S4纳米片及其制备方法、用途
CN111871436A (zh) 一种硫化铋-氮化碳异质结光触媒材料及其制备方法
Wu et al. Partial phosphating of Ni-MOFs and Cu2S snowflakes form 2D/2D structure for efficiently improved photocatalytic hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Kui

Inventor after: Xu Meilian

Inventor after: Liu Futian

Inventor after: Zhou Yuanyuan

Inventor after: Zhao Jiahui

Inventor before: Liu Futian

Inventor before: Xu Meilian

Inventor before: Li Kui

Inventor before: Zhou Yuanyuan

Inventor before: Zhao Jiahui

GR01 Patent grant
GR01 Patent grant