CN110252342B - 一种硫化锌-硫化铟异质结材料及其制备方法和应用 - Google Patents

一种硫化锌-硫化铟异质结材料及其制备方法和应用 Download PDF

Info

Publication number
CN110252342B
CN110252342B CN201910683929.1A CN201910683929A CN110252342B CN 110252342 B CN110252342 B CN 110252342B CN 201910683929 A CN201910683929 A CN 201910683929A CN 110252342 B CN110252342 B CN 110252342B
Authority
CN
China
Prior art keywords
indium
sulfide
heterojunction material
zinc sulfide
ethanol solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910683929.1A
Other languages
English (en)
Other versions
CN110252342A (zh
Inventor
包淑娟
张龙祯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN201910683929.1A priority Critical patent/CN110252342B/zh
Publication of CN110252342A publication Critical patent/CN110252342A/zh
Application granted granted Critical
Publication of CN110252342B publication Critical patent/CN110252342B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种硫化锌‑硫化铟异质结材料及其制备方法和应用,属于无机材料技术领域,该材料按如下方法制备:将硝酸铟和ZIF‑8分别加入乙醇溶液中,然后将含硝酸铟的乙醇溶液加入含ZIF‑8的乙醇溶液中,混匀后通过溶剂热法在100‑180℃下反应1‑6h,经抽滤、洗涤、干燥后获得中间产物,最后将所述中间产物与硫粉混匀后置于管式炉中,以1‑10℃/min的速率升温至400‑600℃后保温1‑6h,即可。该材料为具有丰富界面的纳米异质结,呈纳米棒状,其尺寸仅为数十纳米,能够高效降解有机污染物。其制备工艺简单,易操作,适合扩大化生产。

Description

一种硫化锌-硫化铟异质结材料及其制备方法和应用
技术领域
本发明属于无机材料技术领域,具体涉及一种硫化锌-硫化铟异质结材料及其制备方法和应用。
背景技术
近年来,通过光催化技术降解有机污染物是目前环境领域的一项重要课题,而光催化剂的空穴(h+)和光生电子(e-)复合率较高导致催化剂量子效率低。目前,科研界用于改善光催化剂光生载流子复合率高这一问题,最常用的一种方法是形成异质结结构。然而,在实际应用的过程中发现异质结的两相总是易于脱结,从而导致异质结的稳定性、光催化活性和重复利用性不乐观。因此,构建优异的异质结在提高催化剂催化活性方面发挥着至关重要的作用。目前光催化异质结材料具有很好的应用前景,但制备具有纳米尺寸且具有稳定异质结结构的光催化异质结材料还存在困难。
发明内容
有鉴于此,本发明的目的之一在于提供一种硫化锌-硫化铟异质结材料的制备方法;目的之二在于提供一种硫化锌-硫化铟异质结材料;目的之三在于提供该硫化锌-硫化铟异质结材料在光催化降解有机污染物中的应用。
为达到上述目的,本发明提供如下技术方案:
1、一种硫化锌-硫化铟异质结材料的制备方法,所述方法如下:
将硝酸铟和ZIF-8分别加入乙醇溶液中,然后将含硝酸铟的乙醇溶液加入含ZIF-8的乙醇溶液中,混匀后通过溶剂热法在100-180℃下反应1-6h,经抽滤、洗涤、干燥后获得中间产物,最后将所述中间产物与硫粉混匀后置于管式炉中,以1-10℃/min的速率升温至400-600℃后保温1-6h,即可。
优选的,所述硝酸铟与ZIF-8的质量比为5-18:1。
优选的,所述乙醇溶液的体积分数为90%以上。
优选的,所述洗涤具体为以乙醇溶液洗涤。
优选的,所述干燥具体为在50-100℃下真空干燥6h以上。
优选的,所述中间产物与硫粉的质量比小于等于1:3。
2、由所述的方法制备的硫化锌-硫化铟异质结材料。
3、所述的硫化锌-硫化铟异质结材料在光催化降解有机污染物中的应用。
优选的,所述有机污染物为甲基橙、乙基紫、盐酸四环素或双酚A中的至少一种。
本发明的有益效果在于:本发明提供了一种硫化锌-硫化铟异质结材料及其制备方法和应用,通过本发明中的方法制备的硫化锌-硫化铟异质结材料为具有丰富界面的纳米异质结,该材料呈纳米棒状,其尺寸仅为数十纳米,能够高效降解有机污染物。该材料具有一维纳米异质结构,克服了现有技术中在合成异质结材料过程中通过聚合连接不同的材料,或由一种组分包覆另一种组分,而导致载体向光催化剂表面迁移距离长,电荷-载体分离效率低的缺陷,能够保证快速和长距离的电子输运,提高电荷分离效率,从而能够高效降解有机污染物。该材料制备工艺简单,易操作,适合扩大化生产。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为实施例1中制备的硫化锌-硫化铟异质结材料的XRD图;
图2为实施例1中制备的硫化锌-硫化铟异质结材料的FESEM图;
图3为实施例1中制备的硫化锌-硫化铟异质结材料的TEM图;
图4为实施例2中制备的硫化锌-硫化铟异质结材料的XRD图;
图5为实施例2中制备的硫化锌-硫化铟异质结材料的FESEM图;
图6为实施例2中制备的硫化锌-硫化铟异质结材料的TEM图;
图7为实施例3中制备的硫化锌-硫化铟异质结材料的XRD图;
图8为实施例3中制备的硫化锌-硫化铟异质结材料的FESEM图;
图9为实施例3中制备的硫化锌-硫化铟异质结材料的TEM图;
图10为实施例1中制备的硫化锌-硫化铟异质结材料对甲基橙的光催化降解能力测试结果图;
图11为实施例1中制备的硫化锌-硫化铟异质结材料对乙基紫的光催化降解能力测试结果图;
图12为实施例1中制备的硫化锌-硫化铟异质结材料对盐酸四环素的光催化降解能力测试结果图;
图13为实施例1中制备的硫化锌-硫化铟异质结材料对双酚A的光催化降解能力测试结果图;
图14为实施例1中制备的硫化锌-硫化铟异质结材料的光电流测试结果图;
图15为实施例2中制备的硫化锌-硫化铟异质结材料的光电流测试结果图;
图16为实施例3中制备的硫化锌-硫化铟异质结材料的光电流测试结果图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1
制备硫化锌-硫化铟异质结材料
将1200mg硝酸铟和100mg ZIF-8分别加入20mL体积分数为99.5%的乙醇溶液中,然后将含有硝酸铟的乙醇溶液加入含有ZIF-8的乙醇溶液中,混匀后通过溶剂热法在120℃下反应6h,经抽滤后以体积分数为99.5%的乙醇溶液进行洗涤,接着在60℃下真空干燥12h后获得中间产物,最后按中间产物与硫粉的质量比为1:3,将中间产物与硫粉混匀后置于管式炉中,以2℃/min的速率升温至500℃后保温2h,制得硫化锌-硫化铟异质结材料。
图1为实施例1中制备的硫化锌-硫化铟异质结材料的XRD图,由图1可知,该硫化锌-硫化铟异质结材料的晶体结构结构有序,与标准卡片相对应。
图2实施例1中制备的硫化锌-硫化铟异质结材料的FESEM图,由图2可知,该硫化锌-硫化铟异质结材料呈纳米棒状,尺寸为数十纳米,且分散均匀。
图3实施例1中制备的硫化锌-硫化铟异质结材料的TEM图,由图3可知,该硫化锌-硫化铟异质结材料为具有丰富界面的纳米异质结。
实施例2
制备硫化锌-硫化铟异质结材料
将500mg硝酸铟和100mg ZIF-8分别加入20mL体积分数为95%的乙醇溶液中,然后将含有硝酸铟的乙醇溶液加入含有ZIF-8的乙醇溶液中,混匀后通过溶剂热法在180℃下反应1h,经抽滤后以体积分数为95%的乙醇溶液进行洗涤,接着在100℃下真空干燥6h后获得中间产物,最后按中间产物与硫粉的质量比为1:5,将中间产物与硫粉混匀后置于管式炉中,以10℃/min的速率升温至600℃后保温1h,制得硫化锌-硫化铟异质结材料。
图4为实施例2中制备的硫化锌-硫化铟异质结材料的XRD图,由图4可知,该硫化锌-硫化铟异质结材料的晶体结构结构有序,与合成的单独硫化铟和硫化锌的晶体结构相对应。
图5实施例2中制备的硫化锌-硫化铟异质结材料的FESEM图,由图5可知,该硫化锌-硫化铟异质结材料呈纳米棒状,尺寸为数十纳米,且分散均匀。
图6实施例2中制备的硫化锌-硫化铟异质结材料的TEM图,由图6可知,该硫化锌-硫化铟异质结材料为具有丰富界面的纳米异质结。
实施例3
制备硫化锌-硫化铟异质结材料
将1800mg硝酸铟和100mg ZIF-8分别加入20mL体积分数为98%的乙醇溶液中,然后将含有硝酸铟的乙醇溶液加入含有ZIF-8的乙醇溶液中,混匀后通过溶剂热法在100℃下反应3h,经抽滤后以体积分数为98%的乙醇溶液进行洗涤,接着在50℃下真空干燥15h后获得中间产物,最后按中间产物与硫粉的质量比为1:10,将中间产物与硫粉混匀后置于管式炉中,以5℃/min的速率升温至400℃后保温6h,制得硫化锌-硫化铟异质结材料。
图7为实施例3中制备的硫化锌-硫化铟异质结材料的XRD图,由图7可知,该硫化锌-硫化铟异质结材料的晶体结构结构有序,与合成的单独硫化铟和硫化锌的晶体结构相对应。
图8实施例3中制备的硫化锌-硫化铟异质结材料的FESEM图,由图8可知,该硫化锌-硫化铟异质结材料呈纳米棒状,尺寸为数十纳米,且分散均匀。
图9实施例3中制备的硫化锌-硫化铟异质结材料的TEM图,由图9可知,该硫化锌-硫化铟异质结材料为具有丰富界面的纳米异质结。
实施例4
测试实施例1中制备的硫化锌-硫化铟异质结材料对甲基橙的光催化降解能力
取50mg实施例1中制备的硫化锌-硫化铟异质结材料、50mg ZnS和50mg In2S3分别分散于50mL浓度为10ppm的甲基橙溶液中,黑暗吸附平衡30min后在可见光下进行降解测试,测试如图10所示,由图10可知,与单纯ZnS和In2S3相比,实施例1中制备的硫化锌-硫化铟异质结材料在15min内吸附和降解了更多的甲基橙。
实施例5
测试实施例1中制备的硫化锌-硫化铟异质结材料对乙基紫的光催化降解能力
取50mg实施例1中制备的硫化锌-硫化铟异质结材料、50mg ZnS和50mg In2S3分别分散于100mL浓度为10ppm的乙基紫溶液中,黑暗吸附平衡30min后在可见光下进行降解测试,测试如图11所示,由图11可知,与单纯ZnS和In2S3相比,实施例1中制备的硫化锌-硫化铟异质结材料在30min内吸附和降解了更多的乙基紫。
实施例6
测试实施例1中制备的硫化锌-硫化铟异质结材料对盐酸四环素的光催化降解能力
取50mg实施例1中制备的硫化锌-硫化铟异质结材料分散于50mL浓度为20ppm的盐酸四环素溶液中,黑暗吸附平衡30min后在可见光下进行降解测试,测试如图12所示,由图12可知,实施例1中制备的硫化锌-硫化铟异质结材料在20min内降解了74%的盐酸四环素。
实施例7
测试实施例1中制备的硫化锌-硫化铟异质结材料对双酚A的光催化降解能力
取50mg实施例1中制备的硫化锌-硫化铟异质结材料分散于50mL浓度为18ppm的双酚A溶液中,黑暗吸附平衡30min后在可见光下进行降解测试,测试如图13所示,由图13可知,实施例1中制备的硫化锌-硫化铟异质结材料在20min内降解了73%的双酚A。
实施例8
测试实施例1中制备的硫化锌-硫化铟异质结材料的光电流
按V乙醇溶液:VNafion溶液=20:1将质量分数为5%的Nafion溶液加入乙醇溶液(V:V乙醇=1:1)中,获得混合液,将2mg实施例1中制备的硫化锌-硫化铟异质结材料、2mg ZnS和2mgIn2S3分别分散与1mL上述混合液中超声,各取5μL滴加到直径为3mm的环盘电极上,干燥后,在0.1M的Na2SO4溶液中,使用电化学工作站测试光电流,测试结果如图14所示,由图14可知,与单纯ZnS和In2S3相比,实施例1中制备的硫化锌-硫化铟异质结材料的光电流明显增大,证明其具有更好的光催化能力。
实施例9
测试实施例2中制备的硫化锌-硫化铟异质结材料的光电流
测试方法参照实施例8,测试结果如图15所示,由图15可知,与单纯ZnS和In2S3相比,实施例2中制备的硫化锌-硫化铟异质结材料的光电流明显增大,证明其具有更好的光催化能力。
实施例10
测试实施例3中制备的硫化锌-硫化铟异质结材料的光电流
测试方法参照实施例8,测试结果如图16所示,由图16可知,与单纯ZnS和In2S3相比,实施例3中制备的硫化锌-硫化铟异质结材料的光电流明显增大,证明其具有更好的光催化能力。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (7)

1.一种硫化锌-硫化铟异质结材料的制备方法,其特征在于,所述方法如下:
将硝酸铟和ZIF-8分别加入乙醇溶液中,然后将含硝酸铟的乙醇溶液加入含ZIF-8的乙醇溶液中,混匀后通过溶剂热法在100-180℃下反应1-6h,经抽滤、洗涤、干燥后获得中间产物,最后将所述中间产物与硫粉混匀后置于管式炉中,以1-10℃/min的速率升温至400-600℃后保温1-6h,即可;
所述硝酸铟与ZIF-8的质量比为5-18:1,所述中间产物与硫粉的质量比小于等于1:3。
2.如权利要求1所述的方法,其特征在于,所述乙醇溶液的体积分数为90%以上。
3.如权利要求1所述的方法,其特征在于,所述洗涤具体为以乙醇溶液洗涤。
4.如权利要求1所述的方法,其特征在于,所述干燥具体为在50-100℃下真空干燥6h以上。
5.由权利要求1-4任一项所述的方法制备的硫化锌-硫化铟异质结材料。
6.权利要求5所述的硫化锌-硫化铟异质结材料在光催化降解有机污染物中的应用。
7.如权利要求6所述的应用,其特征在于,所述有机污染物为甲基橙、乙基紫、盐酸四环素或双酚A中的至少一种。
CN201910683929.1A 2019-07-26 2019-07-26 一种硫化锌-硫化铟异质结材料及其制备方法和应用 Active CN110252342B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910683929.1A CN110252342B (zh) 2019-07-26 2019-07-26 一种硫化锌-硫化铟异质结材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910683929.1A CN110252342B (zh) 2019-07-26 2019-07-26 一种硫化锌-硫化铟异质结材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110252342A CN110252342A (zh) 2019-09-20
CN110252342B true CN110252342B (zh) 2021-12-07

Family

ID=67912084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910683929.1A Active CN110252342B (zh) 2019-07-26 2019-07-26 一种硫化锌-硫化铟异质结材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110252342B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861620A (zh) * 2014-03-07 2014-06-18 武汉理工大学 一种碳量子点、贵金属和硫化铟锌复合光催化剂及其制备方法
CN108484415A (zh) * 2018-03-29 2018-09-04 西南大学 一种镉金属有机配合物的制备方法及其产品和衍生物
CN108927174A (zh) * 2018-07-20 2018-12-04 济南大学 一种ZnS/rGO/CuS纳米光催化剂及其制备方法
CN109244427A (zh) * 2018-10-31 2019-01-18 北京科技大学 碳包覆硫化锌负载石墨烯作为钾离子电池负极的制备方法
CN109256476A (zh) * 2018-09-19 2019-01-22 京东方科技集团股份有限公司 量子点发光层、量子点发光器件及制备方法
WO2019021189A1 (en) * 2017-07-27 2019-01-31 Sabic Global Technologies B.V. METHODS FOR PRODUCING A NANOCOMPOSITE HETEROGLASTING PHOYOCATALYST

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026966B1 (fr) * 2014-10-14 2019-09-27 IFP Energies Nouvelles Composition photocatalytique comprenant des particules metalliques et deux semi-conducteurs dont un en oxyde d'indium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861620A (zh) * 2014-03-07 2014-06-18 武汉理工大学 一种碳量子点、贵金属和硫化铟锌复合光催化剂及其制备方法
WO2019021189A1 (en) * 2017-07-27 2019-01-31 Sabic Global Technologies B.V. METHODS FOR PRODUCING A NANOCOMPOSITE HETEROGLASTING PHOYOCATALYST
CN108484415A (zh) * 2018-03-29 2018-09-04 西南大学 一种镉金属有机配合物的制备方法及其产品和衍生物
CN108927174A (zh) * 2018-07-20 2018-12-04 济南大学 一种ZnS/rGO/CuS纳米光催化剂及其制备方法
CN109256476A (zh) * 2018-09-19 2019-01-22 京东方科技集团股份有限公司 量子点发光层、量子点发光器件及制备方法
CN109244427A (zh) * 2018-10-31 2019-01-18 北京科技大学 碳包覆硫化锌负载石墨烯作为钾离子电池负极的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Synthesis of novel ZnS nanocages utilizing ZIF-8 polyhedral template;Zhen Jiang等;《Chem. Commun.》;20120221;第48卷;第3620-3622页 *
The construction of ZnS–In2S3 nanonests and their heterojunction boosted visible-light photocatalytic/photoelectrocatalytic performance;Long-Zhen Zhang等;《New J. Chem.》;20190816;第43卷;第14402-14408页 *
ZnO nanoplate-induced phase transformation synthesis of the composite ZnS/InIJOH)3/In2S3 with enhanced visible-light photodegradation activity of pollutants;Yun Gu等;《CrystEngComm》;20141006;第16卷;第10997-11006页 *
合成反应时间对ZnIn_2S_4光催化制氢性能的影响;袁文辉等;《华南理工大学学报(自然科学版)》;20130315(第03期);第129-134页 *
量子点@金属有机骨架材料的制备及在光催化降解领域的应用;李春雪等;《化学进展》;20180924(第09期);第1308-1316页 *

Also Published As

Publication number Publication date
CN110252342A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
Jin et al. Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution
Gong et al. Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction
Li et al. Synergetic surface modulation of ZnO/Pt@ ZIF-8 hybrid nanorods for enhanced photocatalytic CO2 valorization
Wang et al. Tracking charge transfer pathways in SrTiO3/CoP/Mo2C nanofibers for enhanced photocatalytic solar fuel production
Luo et al. CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants
Zhen et al. The role of a metallic copper interlayer during visible photocatalytic hydrogen generation over a Cu/Cu 2 O/Cu/TiO 2 catalyst
Chen et al. Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity
Zhao et al. NiCo2S4@ Zn0. 5Cd0. 5S with direct Z-scheme heterojunction constructed by band structure adjustment of ZnxCd1-xS for efficient photocatalytic H2 evolution
Zhou et al. Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst
Fu et al. Radiation synthesis of CdS/reduced graphene oxide nanocomposites for visible-light-driven photocatalytic degradation of organic contaminant
Li et al. Surface defect-rich ceria quantum dots anchored on sulfur-doped carbon nitride nanotubes with enhanced charge separation for solar hydrogen production
CN109908959B (zh) 一种核壳型ZnO/贵金属@ZIF-8光催化材料及其制备方法和应用
Jin et al. Visible-light-driven two dimensional metal-organic framework modified manganese cadmium sulfide for efficient photocatalytic hydrogen evolution
CN111389442A (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
CN109967110B (zh) Z型光催化剂及其制备方法和应用
Zhang et al. MOF templated to construct hierarchical ZnIn2S4-In2S3 hollow nanotube for enhancing photocatalytic performance
CN111266127A (zh) 一种氧化亚铜纳米线阵列复合氮化碳负载铜网复合材料及其制备方法和应用
Liang et al. ZIF-L-derived C-doped ZnO via a two-step calcination for enhanced photocatalytic hydrogen evolution
CN108339544B (zh) 富勒烯羧基衍生物修饰的光催化剂/超疏水膜复合材料
Jin et al. Fabrication of a novel Ni 3 N/Ni 4 N heterojunction as a non-noble metal co-catalyst to boost the H 2 evolution efficiency of Zn 0.5 Cd 0.5 S
Sun et al. Fabrication of Bi4O5Br2-decorated rod-like MOF-derived MoS2 hierarchical heterostructures for boosting photocatalytic CO2 reduction
Quan et al. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO 3 decorated with Zn x Cd 1− x S
Li et al. Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications
Yin et al. Enhanced charge transfer and photocatalytic carbon dioxide reduction of copper sulphide@ cerium dioxide pn heterojunction hollow cubes
CN113600221A (zh) 一种Au/g-C3N4单原子光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant