CN108807166A - 形成钨膜的方法 - Google Patents

形成钨膜的方法 Download PDF

Info

Publication number
CN108807166A
CN108807166A CN201810384783.6A CN201810384783A CN108807166A CN 108807166 A CN108807166 A CN 108807166A CN 201810384783 A CN201810384783 A CN 201810384783A CN 108807166 A CN108807166 A CN 108807166A
Authority
CN
China
Prior art keywords
gas
tungsten film
carrier gas
tungsten
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810384783.6A
Other languages
English (en)
Other versions
CN108807166B (zh
Inventor
前川浩治
鲛岛崇
青山真太郎
铃木幹夫
有马进
松本淳志
柴田直树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN108807166A publication Critical patent/CN108807166A/zh
Application granted granted Critical
Publication of CN108807166B publication Critical patent/CN108807166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

提供一种形成钨膜的方法,该钨膜具有低的电阻。形成钨膜的方法包括以下工序:在基板上形成第一钨膜的工序;以及在第一钨膜上形成第二钨膜的工序。在形成第一钨膜的工序中,将含有钨的原料气体和乙硼烷气体交替地同第一载气一起供给到基板。在形成第二钨膜的工序中,将含有钨的原料气体和氢气交替地同第二载气一起供给到具有第一钨膜的基板。第一载气为氮气。第二载气由至少一种非活性气体构成,以第二载气的全部流量的70%以上的流量的比例含有稀有气体。

Description

形成钨膜的方法
技术领域
本公开的实施方式涉及一种形成钨膜的方法。
背景技术
在半导体器件之类的电子器件的制造中,在基板上进行金属膜的形成。金属膜例如被用作布线层。作为这种金属膜,周知的是钨膜。
在下述的专利文献1~3中记载有形成钨膜的方法。在这些文献所记载的方法中形成的钨膜包含第一钨膜和第二钨膜。在这些文献所记载的方法中,将含有钨的原料气体和还原气体交替地同载气一起供给到基板。由此,形成第一钨膜。原料气体含有六氟化钨,还原气体是乙硼烷之类的含有氢的气体。接着,将含有钨的原料气体和还原气体交替地同载气一起供给到基板。由此,在第一钨膜上形成第二钨膜。在第二钨膜的形成中,原料气体含有六氟化钨,还原气体为氢气。第一钨膜和第二钨膜的形成中使用的载气为氮气或稀有气体之类的非活性气体。
专利文献1:日本特表2005-518088号公报
专利文献2:日本特表2005-533181号公报
专利文献3:日本特开2007-46134号公报
发明内容
发明要解决的问题
如上述那样,钨膜例如被用作布线层。因而,要求钨膜的电阻低。
用于解决问题的方案
在一个方式中,提供一种形成钨膜的方法。该方法包括以下工序:在基板上形成第一钨膜的工序;以及在第一钨膜上形成第二钨膜的工序。在形成第一钨膜的工序中,将含有钨的原料气体和乙硼烷气体交替地同第一载气一起供给到基板。在形成第二钨膜的工序中,将含有钨的原料气体和氢气交替地同第二载气一起供给到具有第一钨膜的基板。第一载气为氮气。第二载气由至少一种非活性气体构成,以第二载气的全部流量的70%以上的流量的比例含有稀有气体。
第一载气中含有的氮被取入到第一钨膜,因此第一钨膜中的钨的晶粒的尺寸变小。因而,第一钨膜具有比较高的电阻。然而,在原料气体的供给和乙硼烷气体的供给的每个循环中形成的第一钨膜的厚度变小。因此,根据该方法,能够缩小第一钨膜的膜厚。另外,在第二钨膜的形成中,作为载气,使用主要含有稀有气体的第二载气,因此第二钨膜中的钨的晶粒的尺寸变大。因而,第二钨膜的电阻变小。在该方法中,形成包含上述的第一钨膜和第二钨膜的钨膜,因此能够提供具有低的电阻的钨膜。
在一个实施方式中,在第二载气中,以该第二载气的全部流量的95%以上的流量的比例含有稀有气体。在一个实施方式中,第二载气只含有稀有气体。在一个实施方式中,稀有气体为氩气。
在一个实施方式中,在形成第一钨膜的工序中使用的原料气体以及在形成第二钨膜的工序中使用的原料气体含有六氟化钨。
发明的效果
如以上所说明的那样,能够形成具有低的电阻的钨膜。
附图说明
图1是示出一个实施方式所涉及的形成钨膜的方法的流程图。
图2是将能够应用图1所示的方法的例示的基板的一部分放大地示出的截面图。
图3的(a)是将执行图1所示的方法的工序ST1之后的例示的基板的一部分放大地示出的截面图,图3的(b)是将执行图1所示的方法的工序ST2之后的例示的基板的一部分放大地示出的截面图。
图4是示出在执行图1所示的方法时能够使用的例示的成膜装置的图。
图5是示出第一实验的结果的曲线图。
图6是示出第二实验的结果的曲线图。
附图标记说明
10:成膜装置;12:腔室主体;12c:腔室;16b:气体喷出孔;24:载置台;24h:加热器;40:气体供给系统;50:压力调整阀;52:排气装置;100:基板;106;第一钨膜;108:第二钨膜;MT:方法。
具体实施方式
下面,参照附图来详细地说明各种实施方式。此外,在各附图中,对相同或相当的部分标注相同的标记。
图1是示出一个实施方式所涉及的形成钨膜的方法的流程图。图1所示的方法MT是为了在基板上形成钨膜而执行的方法。通过方法MT形成的钨膜例如被用作布线层。
图2是将能够应用图1所示的方法的例示的基板的一部分放大地示出的截面图。图2所示的基板100具有基底层102和绝缘层104。绝缘层104设置在基底层102上。绝缘层104由氧化硅之类的绝缘材料形成。在绝缘层104形成有开口。开口能够为孔或槽。
下面,取针对基板100应用方法MT的情况为例来对该方法MT进行说明。此外,方法MT能够应用于需要在上面形成钨膜的任意的基板。在以下的说明中,除了参照图1以外,还参照图3的(a)和图3的(b)。图3的(a)是将执行图1所示的方法的工序ST1之后的例示的基板的一部分放大地示出的截面图,图3的(b)是将执行图1所示的方法的工序ST2之后的例示的基板的一部分放大地示出的截面图。
如图1所示,方法MT包括工序ST1和工序ST2。在工序ST1中,在基板100上形成第一钨膜106。在工序ST1中,通过对收纳在腔室内的基板100进行的成膜处理来形成第一钨膜106。第一钨膜106为成核(Nucleation)膜。第一钨膜106能够具有比后述的第二钨膜108的电阻值高的电阻值。因而,第一钨膜106形成为其膜厚小于第二钨膜108的膜厚。第一钨膜106的膜厚例如为1nm以上且5nm以下。
工序ST1包括工序ST11和工序ST13。在工序ST1中,将含有钨的原料气体和乙硼烷(B2H6)气体交替地同第一载气一起供给到基板100。工序ST1也可以还包括在工序ST11与工序ST13之间执行的工序ST12以及在工序ST13与工序ST11之间执行的工序ST14。在工序ST1中,包括工序ST11~工序ST14的序列被执行规定次数(规定循环数)。
在基板100被收纳于腔室内的状态下执行工序ST1。在工序ST11中,向基板100供给含有钨的原料气体和第一载气。该原料气体例如能够为六氟化钨(WF6)气体或六氯化钨(WCl6)气体。第一载气为氮气(N2)。通过该工序ST11,原料气体中的含有钨的第一原料在基板100的表面上堆积。
下面,例示工序ST11中的处理条件的范围。
工序ST11中的原料气体的流量:50sccm~450sccm
工序ST11中的第一载气的流量:500sccm~4500sccm
工序ST11中的基板的温度:200℃~350℃
工序ST11中的腔室的压力:100Pa~1250Pa
各循环中的工序ST11的处理时间:0.5秒~5秒
在接下来的工序ST12中,执行腔室的吹扫。即,将腔室内的气体从原料气体置换为吹扫气体。工序ST12中使用的吹扫气体为非活性气体。工序ST12中使用的吹扫气体能够为与工序ST11中使用的第一载气相同的气体。即,在工序ST11和工序ST12中,能够连续地向腔室供给第一载气。此外,也可以在工序ST1的执行中、即从工序ST11至工序ST14向腔室供给第一载气。
在接下来的工序ST13中,向基板100供给乙硼烷气体和第一载气。通过该工序ST13,去除基板100上存在的第一原料中的钨以外的元素,来在基板100a上形成第一钨膜(在各循环中是第一钨膜的一部分)。
下面,例示工序ST13中的处理条件的范围。
工序ST13中的乙硼烷气体的流量:50sccm~4500sccm
工序ST13中的第一载气的流量:50sccm~4500sccm
工序ST13中的基板的温度:200℃~350℃
工序ST13中的腔室的压力:100Pa~1250Pa
各循环中的工序ST13的处理时间:0.5秒~5秒
在接下来的工序ST14中,执行腔室的吹扫。即,将腔室内的气体从氮化气体置换为吹扫气体。工序ST14中使用的吹扫气体为非活性气体。工序ST14中使用的吹扫气体能够为第一载气。
在接下来的工序ST15中,判定是否满足停止条件。在包括工序ST11~工序ST14的序列的执行次数达到了规定次数(规定循环数)的情况下,满足停止条件。规定次数例如能够为1次以上且50次以下。在不满足停止条件的情况下,再次执行工序ST11。在满足停止条件的情况下,工序ST1的执行结束。通过执行该工序ST1,如图3的(a)所示那样在基板100上形成第一钨膜106。以下,将在上面形成了第一钨膜106的基板100称为基板100a。
在方法MT中,接下来执行工序ST2。在工序ST2中,在第一钨膜106上形成第二钨膜108。在工序ST2中,在腔室内对基板100a执行成膜处理。由此,形成第二钨膜108。工序ST2中利用的腔室既可以与工序ST1中利用的腔室相同,也可以与工序ST1中利用的腔室不同。
工序ST2包括工序ST21和工序ST23。在工序ST2中,将含有钨的原料气体和氢气(H2)交替地同第二载气一起供给到基板100a。工序ST2也可以还包括在工序ST21与工序ST23之间执行的工序ST22以及在工序ST23与工序ST21之间执行的工序ST24。在工序ST2中,包括工序ST21~工序ST24的序列被执行规定次数(规定循环数)。
在基板100a被收纳于腔室内的状态下执行工序ST2。在工序ST21中,向基板100a供给含有钨的原料气体和第二载气。该原料气体例如能够为六氟化钨(WF6)气体或六氯化钨(WCl6)气体。第二载气由至少一种非活性气体构成,以该第二载气的全部流量的70%以上的流量的比例含有稀有气体。在第二载气中,也可以以该第二载气的全部流量的95%以上的流量的比例含有稀有气体。第二载气也可以只含有稀有气体。稀有气体例如是氩气,但也可以是任意的稀有气体。通过该工序ST21,原料气体中的含有钨的第二原料在第一钨膜106上堆积。
下面,例示工序ST21中的处理条件的范围。
工序ST21中的原料气体的流量:50sccm~4500sccm
工序ST21中的第二载气的流量:500sccm~4500sccm
工序ST21中的基板的温度:300℃~530℃
工序ST21中的腔室的压力:100Pa~1250Pa
各循环中的工序ST21的处理时间:0.05秒~5秒
在接下来的工序ST22中,执行腔室的吹扫。即,将腔室内的气体从原料气体置换为吹扫气体。工序ST22中使用的吹扫气体为非活性气体。工序ST22中使用的吹扫气体能够为与工序ST21中使用的第二载气相同的气体。即,在工序ST21和工序ST22中,能够连续地向腔室供给第二载气。此外,也可以在工序ST2的执行中、即从工序ST21至工序ST24向腔室供给第二载气。
在接下来的工序ST23中,向基板100a供给氢气和第二载气。通过该工序ST23,去除第二原料中的钨以外的元素,来在基板100a的第一钨膜106上形成第二钨膜(在各循环中是第二钨膜的一部分)。
下面,例示工序ST23中的处理条件的范围。
工序ST23中的氢气的流量:500sccm~9000sccm
工序ST23中的第二载气的流量:500sccm~4500sccm
工序ST23中的基板的温度:300℃~530℃
工序ST23中的腔室的压力:100Pa~1250Pa
各循环中的工序ST23的处理时间:0.05秒~5秒
在接下来的工序ST24中,执行腔室的吹扫。即,将腔室内的气体从氢气置换为吹扫气体。工序ST24中使用的吹扫气体为非活性气体。工序ST24中使用的吹扫气体能够为第二载气。
在接下来的工序ST25中,判定是否满足停止条件。在包括工序ST21~工序ST24的序列的执行次数达到了规定次数(规定循环数)的情况下,满足停止条件。规定次数依赖于所形成的第二钨膜108的膜厚,但例如能够为30次以上且3000次以下。在不满足停止条件的情况下,再次执行工序ST21。在满足停止条件的情况下,工序ST2的执行结束。通过执行该工序ST2,在第一钨膜106上形成第二钨膜108,能够得到图3的(b)所示的基板100b。即,在基板100上形成包含第一钨膜106和第二钨膜108的钨膜110。
第一载气中含有的氮被取入到第一钨膜106,因此第一钨膜106中的钨的晶粒的尺寸变小。因而,第一钨膜106具有比较高的电阻。然而,在原料气体的供给和乙硼烷气体的供给的每个循环中形成的第一钨膜的厚度变小。因此,根据方法MT,能够减小第一钨膜106的膜厚。另外,在第二钨膜108的形成中使用主要含有稀有气体的第二载气,因此第二钨膜108中的钨的晶粒的尺寸变大。因而,第二钨膜108的电阻变小。在方法MT中,形成包含上述的第一钨膜106和第二钨膜108的钨膜110,因此能够提供具有低的电阻的钨膜110。
下面,对在执行方法MT时能够使用的成膜装置进行说明。图4是示出在执行图1所示的方法时能够使用的例示的成膜装置的图。能够使用图4所示的成膜装置10来执行方法MT的工序ST1和工序ST2。
成膜装置10具备腔室主体12。腔室主体12提供其内部空间来作为腔室12c。腔室主体12具有主部14和顶部16。主部14构成腔室主体12的侧壁。主部14具有大致圆筒形状,沿铅垂方向延伸。主部14例如由铝之类的金属形成。在该主部14的内壁面形成有耐腐蚀性的皮膜。
在主部14、即腔室主体12的侧壁形成有用于向腔室12c搬入基板100以及从腔室12c搬出基板100的开口14p。该开口14p能够通过闸阀18来进行开闭。主部14的下端部开口,该下端部与波纹管20的一端(上端)结合。波纹管20的另一端(下端)与盖体22结合。盖体22为大致板状的构件。波纹管20和盖体22将主部14的下端部的开口密封,以确保腔室12c的气密性。另外,主部14的上端部开口,该上端部与顶部16结合。顶部16将主部14的上端部的开口密封,以确保腔室12c的气密性。顶部16例如由铝之类的金属形成。在顶部16的内壁面形成有耐腐蚀性的皮膜。
在腔室12c内设置有载置台24。载置台24具有大致圆盘形状。在载置台24的上表面载置基板100。在载置台24的内部设置有加热器24h。加热器24h与加热器电源26电连接。加热器电源26被设置于腔室主体12的外侧。
载置台24与轴体28的一端(上端)结合。轴体28向载置台24的下方延伸。轴体28的另一端(下端)与盖体22结合。盖体22与设置于腔室主体12的外侧的驱动装置30结合。驱动装置30构成为经由盖体22和轴体28来使载置台24上下移动。驱动装置30例如能够具有电动机及与该电动机结合的驱动轴,以使载置台24上下移动。
在载置台24安装有环构件32。在环构件32的上侧部分界定出圆形的开口。环构件32被设置为用其上侧部分将载置在载置台24上的基板100包围。在主部14、即腔室主体12的侧壁安装有筒体34。筒体34具有大致圆筒形状,该筒体34被设置于腔室12c内且环构件32的外侧。筒体34以在该筒体34与环构件32之间存在微小的间隙的方式与该环构件32同轴地设置。
顶部16包含从腔室12c的上方界定该腔室12c的壁面16f。壁面16f在载置台24的上方延伸,且与载置台24的上表面相向。该成膜装置10构成为能够通过上述的载置台24的上下移动来变更载置台24的上表面与壁面16f之间的空隙长度。
在顶部16内形成有气体扩散室16a。另外,在顶部16形成有多个气体喷出孔16b。多个气体喷出孔16b是用于将供给到气体扩散室16a中的气体向腔室12c喷出的孔,多个气体喷出孔16b从气体扩散室16a延伸到壁面16f。并且,在顶部16形成有气体管线16c。气体管线16c与气体扩散室16a连接。该气体管线16c与气体供给系统40连接。
气体供给系统40包含流量控制器41f、42f、43f、44f、45f以及阀41v、42v、43v、44v、45v。各个流量控制器41f、42f、43f、44f、45f为质量流量控制器或压力控制式的流量控制器。
流量控制器41f的输入与气体源41s连接。气体源41s是上述的原料气体的来源。流量控制器41f的输出经由阀41v而与气体管线16c连接。流量控制器42f的输入与气体源42s连接。气体源42s是上述的乙硼烷气体的来源。流量控制器42f的输出经由阀42v而与气体管线16c连接。流量控制器43f的输入与气体源43s连接。气体源43s是上述的氢气的来源。流量控制器43f的输出经由阀43v而与气体管线16c连接。
流量控制器44f的输入与气体源44s连接。气体源44s是上述的氮气的来源。流量控制器44f的输出经由阀44v而与气体管线16c连接。从气体源44s供给的氮气被用作上述的第一载气。流量控制器45f的输入与气体源45s连接。气体源45s是稀有气体的来源,例如是氩气的来源。流量控制器45f的输出经由阀45v而与气体管线16c连接。从气体源45s供给的稀有气体被用作构成上述的第二载气的气体。此外,第二载气也可以包含从气体源44s供给的氮气来作为该第二载气的一部分。
气体供给系统40能够对来自从气体源41s、42s、43s、44s、45s中选择的一个以上的气体源的气体的流量进行控制,并且向气体扩散室16a供给流量得到了控制的气体。被供给到气体扩散室16a中的气体从多个气体喷出孔16b朝向基板100喷出。
在主部14、即腔室主体12的侧壁界定出相对于该主部14的中心轴线沿周向延伸的槽14g。在主部14的一部分且界定槽14g的该一部分形成有排气口14e。排气口14e经由压力调整阀50而与排气装置52连接。排气装置52能够为涡轮分子泵或干燥泵之类的真空泵。
在腔室12c内设置有一个以上的隔开构件。在图4所示的例子中,在腔室12c内设置有三个隔开构件54、56、58。三个隔开构件54、56、58具有沿铅垂方向延伸的大致圆筒形状。三个隔开构件54、56、58以同轴的方式设置在相对于排气口14e而言靠腔室12c的中心侧的位置。隔开构件54的上端与顶部16结合。隔开构件54的下端以在该隔开构件54的下端与环构件32之间提供间隙的方式与环构件32相向。隔开构件56和隔开构件58被配置在槽14g内。隔开构件56被设置在隔开构件54的外侧,隔开构件58被设置在隔开构件56的外侧。在隔开构件56和隔开构件58分别形成有多个贯通孔。在隔开构件56和隔开构件58分别形成的多个贯通孔相对于主部14的中心轴线沿周向排列。
在成膜装置10中,从多个气体喷出孔16b喷出的气体被供给到基板100,并经由隔开构件54与环构件32之间的间隙、隔开构件56的多个贯通孔以及隔开构件58的多个贯通孔从排气口14e排出。
下面,说明为了调查在形成钨膜时使用的载气的种类与该钨膜的膜厚之间的关系而进行的第一实验。在第一实验中,使用成膜装置10来在具有平坦的表面的多个基板上形成了钨膜。第一实验中的形成钨膜所需的处理为执行包含第一工序~第四工序的序列的处理。第一工序是向基板供给WF6气体和载气的工序,继第一工序之后的第二工序是使用载气来执行吹扫的工序,继第二工序之后的第三工序是向基板供给乙硼烷气体和载气的工序,继第三工序之后的第四工序是使用载气来执行吹扫的工序。在对多个基板中的几个基板上形成钨膜时,将氮气(N2气体)用作载气,并执行了互不相同的执行次数(循环数)的序列。另外,在对多个基板中的其它几个基板上形成钨膜时,将氩气(Ar气体)用作载气,并执行了互不相同的执行次数(循环数)的序列。下面,示出第一工序和第三工序的条件。
<第一工序的条件>
WF6气体的流量:300sccm
使用了N2气体的情况下的N2气体的流量:6000sccm
使用了Ar气体的情况下的Ar气体的流量:6000sccm
基板的温度:450℃
腔室的压力:500Pa
各循环中的第一工序的处理时间:1秒
<第三工序的条件>
乙硼烷气体的流量:400sccm
使用了N2气体的情况下的N2气体的流量:6000sccm
使用了Ar气体的情况下的Ar气体的流量:6000sccm
基板的温度:450℃
腔室的压力:500Pa
各循环中的第三工序的处理时间:1秒
在第一实验中,对在多个基板上分别形成的钨膜的膜厚进行了测定。图5是示出第一实验的结果的曲线图。在图5的曲线图中,横轴表示序列的执行次数(循环数),纵轴表示所形成的钨膜的膜厚。如图5所示,相比于将Ar气体用作载气的情况而言,在将N2气体用作载气的情况下,在每个循环中形成的钨膜的膜厚小。因此,能够确认出:通过在工序ST1中将氮气用作载气,能够高精度地控制第一钨膜的膜厚,从而能够易于形成具有小的膜厚的第一钨膜。
下面,说明为了调查在形成钨膜时使用的稀有气体的流量在载气的全部流量中所占的比例与钨膜的电阻之间的关系而进行的第二实验。在第二实验中,使用成膜装置10来在具有平坦的表面的多个基板上形成了钨膜。第二实验中的形成钨膜所需的处理为执行包含第一工序~第四工序的序列的处理。在第二实验中,第一工序是向基板供给WF6气体和载气的工序,继第一工序之后的第二工序是使用载气来执行吹扫的工序,继第二工序之后的第三工序是向基板供给H2气体和载气的工序,继第三工序之后的第四工序是使用载气来执行吹扫的工序。在多个基板上形成钨膜时,作为载气中的N2气体的流量在该载气的全部流量中所占的比例,使用了互不相同的比例。在N2气体的流量的比例不为100%的情况下,作为载气的其余部分,使用了氩气。下面,示出第二实验中的第一工序和第三工序的条件。
<第一工序的条件>
WF6气体的流量:180sccm
载气的流量:6000sccm
基板的温度:450℃
腔室的压力:500Pa
各循环中的第一工序的处理时间:0.15秒
<第三工序的条件>
H2气体的流量:4500sccm
载气的流量:6000sccm
基板的温度:450℃
腔室的压力:500Pa
各循环中的第三工序的处理时间:0.3秒
在第二实验中,对在多个基板上分别形成的钨膜的电阻率Rv进行了测定。图6是示出第二实验的结果的曲线图。在图6的曲线图中,横轴表示N2气体的流量在载气的全部流量中所占的比例(%),纵轴表示电阻率Rv。如图6所示,能够确认出:在N2气体的流量的比例为30%以下的情况、即载气中的氩气的流量在该载气的全部流量中所占的比例为70%以上的情况下,所形成的钨膜的电阻率Rv变低。另外,能够确认出:在N2气体的流量的比例为5%以下的情况、即载气中的氩气的流量在该载气的全部流量中所占的比例为95%以上的情况下,所形成的钨膜的电阻率Rv进一步变低。并且,能够确认出:在载气只含有氩气的情况下,所形成的钨膜的电阻率Rv更进一步变低。根据该第二实验的结果能够确认出:通过将工序ST2中使用的载气中的稀有气体的流量在该载气的全部流量中所占的比例设定为70%以上的高的比例,能够减小所形成的钨膜的电阻。

Claims (5)

1.一种形成钨膜的方法,包括以下工序:
在基板上形成第一钨膜的工序;以及
在所述第一钨膜上形成第二钨膜的工序,
其中,在所述形成第一钨膜的工序中,将含有钨的原料气体和乙硼烷气体交替地同第一载气一起供给到所述基板,
在所述形成第二钨膜的工序中,将含有钨的原料气体和氢气交替地同第二载气一起供给到具有所述第一钨膜的所述基板,
所述第一载气为氮气,
所述第二载气由至少一种非活性气体构成,以该第二载气的全部流量的70%以上的流量的比例含有稀有气体。
2.根据权利要求1所述的方法,其特征在于,
在所述第二载气中,以该第二载气的全部流量的95%以上的流量的比例含有所述稀有气体。
3.根据权利要求1所述的方法,其特征在于,
所述第二载气只含有所述稀有气体。
4.根据权利要求1~3中的任一项所述的方法,其特征在于,
所述稀有气体为氩气。
5.根据权利要求1~4中的任一项所述的方法,其特征在于,
在所述形成第一钨膜的工序中使用的所述原料气体以及在所述形成第二钨膜的工序中使用的所述原料气体含有六氟化钨。
CN201810384783.6A 2017-04-26 2018-04-26 形成钨膜的方法 Active CN108807166B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017087173A JP6788545B2 (ja) 2017-04-26 2017-04-26 タングステン膜を形成する方法
JP2017-087173 2017-04-26

Publications (2)

Publication Number Publication Date
CN108807166A true CN108807166A (zh) 2018-11-13
CN108807166B CN108807166B (zh) 2022-10-28

Family

ID=63916016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810384783.6A Active CN108807166B (zh) 2017-04-26 2018-04-26 形成钨膜的方法

Country Status (4)

Country Link
US (1) US10612139B2 (zh)
JP (1) JP6788545B2 (zh)
KR (1) KR102065841B1 (zh)
CN (1) CN108807166B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115831867A (zh) * 2023-02-24 2023-03-21 广州粤芯半导体技术有限公司 半导体器件中的钨填充方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6710089B2 (ja) * 2016-04-04 2020-06-17 東京エレクトロン株式会社 タングステン膜の成膜方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW423053B (en) * 1997-12-02 2001-02-21 Applied Materials Inc Low resistivity w using b2h6 nucleation step
US20100167527A1 (en) * 2008-12-31 2010-07-01 Applied Materials, Inc. Method of depositing tungsten film with reduced resistivity and improved surface morphology
US20130137262A1 (en) * 2011-11-25 2013-05-30 Tokyo Electron Limited Tungsten film forming method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156382A (en) * 1997-05-16 2000-12-05 Applied Materials, Inc. Chemical vapor deposition process for depositing tungsten
US7101795B1 (en) * 2000-06-28 2006-09-05 Applied Materials, Inc. Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US7262125B2 (en) * 2001-05-22 2007-08-28 Novellus Systems, Inc. Method of forming low-resistivity tungsten interconnects
US7211144B2 (en) 2001-07-13 2007-05-01 Applied Materials, Inc. Pulsed nucleation deposition of tungsten layers
TW581822B (en) 2001-07-16 2004-04-01 Applied Materials Inc Formation of composite tungsten films
JP4945937B2 (ja) * 2005-07-01 2012-06-06 東京エレクトロン株式会社 タングステン膜の形成方法、成膜装置及び記憶媒体
JP2007046134A (ja) * 2005-08-11 2007-02-22 Tokyo Electron Ltd 金属系膜形成方法及びプログラムを記録した記録媒体
US7985605B2 (en) * 2008-04-17 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US8551885B2 (en) * 2008-08-29 2013-10-08 Novellus Systems, Inc. Method for reducing tungsten roughness and improving reflectivity
US8623733B2 (en) * 2009-04-16 2014-01-07 Novellus Systems, Inc. Methods for depositing ultra thin low resistivity tungsten film for small critical dimension contacts and interconnects
US9159571B2 (en) * 2009-04-16 2015-10-13 Lam Research Corporation Tungsten deposition process using germanium-containing reducing agent
JP2011119433A (ja) * 2009-12-03 2011-06-16 Renesas Electronics Corp 半導体装置の製造方法
JP2014032986A (ja) * 2012-08-01 2014-02-20 Ps4 Luxco S A R L 半導体装置の製造方法
KR102397797B1 (ko) * 2015-05-27 2022-05-12 램 리써치 코포레이션 순차적인 cvd 프로세스에 의한 저 불소 텅스텐의 증착

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW423053B (en) * 1997-12-02 2001-02-21 Applied Materials Inc Low resistivity w using b2h6 nucleation step
US20100167527A1 (en) * 2008-12-31 2010-07-01 Applied Materials, Inc. Method of depositing tungsten film with reduced resistivity and improved surface morphology
CN102265383A (zh) * 2008-12-31 2011-11-30 应用材料股份有限公司 用于沉积具有降低电阻率及改良表面形态的钨膜的方法
US20130137262A1 (en) * 2011-11-25 2013-05-30 Tokyo Electron Limited Tungsten film forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115831867A (zh) * 2023-02-24 2023-03-21 广州粤芯半导体技术有限公司 半导体器件中的钨填充方法

Also Published As

Publication number Publication date
KR102065841B1 (ko) 2020-01-13
CN108807166B (zh) 2022-10-28
US10612139B2 (en) 2020-04-07
US20180312972A1 (en) 2018-11-01
KR20180120089A (ko) 2018-11-05
JP6788545B2 (ja) 2020-11-25
JP2018184636A (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
CN100370585C (zh) 隔离膜的形成方法及电极膜的形成方法
JP6437324B2 (ja) タングステン膜の成膜方法および半導体装置の製造方法
JP6706903B2 (ja) タングステン膜の成膜方法
US9536745B2 (en) Tungsten film forming method
CN108796471B (zh) 成膜方法和成膜装置
US8273409B2 (en) Method for film formation, apparatus for film formation, and computer-readable recording medium
KR100803803B1 (ko) 반도체 장치 및 그 제조방법
KR101210456B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법 및 기판 처리 장치
US7674710B2 (en) Method of integrating metal-containing films into semiconductor devices
JP2017527117A (ja) 改良型貫通シリコンビア
CN108531888A (zh) 气体供给装置、气体供给方法和成膜方法
CN108807166A (zh) 形成钨膜的方法
US20100227459A1 (en) Method for forming w-based film, method for forming gate electrode, and method for manufacturing semiconductor device
US7524766B2 (en) Method for manufacturing semiconductor device and substrate processing apparatus
CN110578130B (zh) 成膜方法及成膜装置
US20060121307A1 (en) Film deposition method
WO2021210419A1 (ja) 金属窒化膜を成膜する方法、及び装置
CN108796470B (zh) 形成钨膜的方法
KR20100121418A (ko) 성막 방법 및 플라즈마 성막 장치
TW201907046A (zh) 成膜方法及成膜裝置
JP7169931B2 (ja) 成膜方法、半導体装置の製造方法、成膜装置、および半導体装置を製造するシステム
WO2021210441A1 (ja) タングステン膜を形成する方法及び装置、並びにタングステン膜を形成する前の中間膜の形成を行う装置
JP2009081431A (ja) 半導体装置の製造方法
KR20090022810A (ko) 원자층증착법을 이용한 반도체 소자의 박막 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant