CN108793992A - 一种多相复合尖晶石柔性材料制造方法 - Google Patents

一种多相复合尖晶石柔性材料制造方法 Download PDF

Info

Publication number
CN108793992A
CN108793992A CN201810610811.1A CN201810610811A CN108793992A CN 108793992 A CN108793992 A CN 108793992A CN 201810610811 A CN201810610811 A CN 201810610811A CN 108793992 A CN108793992 A CN 108793992A
Authority
CN
China
Prior art keywords
flexible material
multiphase composite
composite spinelle
flexible
multiphase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810610811.1A
Other languages
English (en)
Inventor
邢冰冰
李小龙
邵峰
张良生
陈诚海
缪思敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDG Holding Co Ltd
Original Assignee
TDG Holding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDG Holding Co Ltd filed Critical TDG Holding Co Ltd
Priority to CN201810610811.1A priority Critical patent/CN108793992A/zh
Publication of CN108793992A publication Critical patent/CN108793992A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

科技产品对人类社会行为和生活方式的改变无处不在,智能手机、汽车电子等领域的无线充电技术让人们的舒适感和便捷性得到前所未有的提高。本发明的多相复合尖晶石柔性材料制造方法,通过单相颗粒制作、第二相复合、成型烧结等工序,最终得到一种柔性材料,具有高的复数磁导率实部,低的复数磁导率虚部,高的饱和磁通密度。材料柔韧性好,可弯折,适用于制作柔性磁片、柔性变压器等产品。

Description

一种多相复合尖晶石柔性材料制造方法
技术领域
本发明属于柔性材料技术领域,具体涉及到可用于制作柔性变压器、柔性磁片的软磁材料,适合于工作在10kHz至50MHz范围的,具有宽工作频率范围、高磁导率、低损耗的多相复合尖晶石柔性材料及其制备方法。
背景技术
当前社会生活节奏不断加快,消费类电子、汽车电子技术不断发展进步,人们对电子产品、汽车产品体验的要求越来越高。新的设计层出不穷,基础材料需要变革和创新才能满足产品和设备的要求。
无线充电技术起源于1890年,物理学家兼电气工程师尼古拉•特斯拉就已经做了无线输电试验,实现了交流发电。2007年,麻省理工学院等研究团队发表了磁共振传输能量的研究成果。2014年,无线充电联盟宣布,A4WP技术标准支持等充电功率增加到50W。
目前无线充电的基本模式有电磁感应式、磁场共振和无线电波式几种原理。其中以电磁感应式应用最为广泛。在发射端和接收端,模组都是磁片加线圈组合的方式。电子设备不断向着轻、薄、小和高效率的方向发展,LED显示屏、手机,都开始出现可折叠、可弯折的产品,磁性材料成为其中最薄弱环节。
2010年以后,柔性PCB板问世,柔性电源的制作成为可能。作为电源PCB上体积最大的磁性材料变压器磁芯、电感器磁芯,改变不可弯折变形的状态变得更有意义。
发明内容
针对无线充电技术和柔性电源对软磁材料的新要求,本发明的目的是提供一种可供无线充电设备、柔性电源等应用领域使用的多相复合尖晶石柔性材料。
所述的多相复合尖晶石柔性材料,其成分以氧化物计算分别为Fe2O3:40mol%~65mol%,NiO:1mol%~10.0mol%,ZnO:2mol%~15mol%,MnO:2mol%~40mol%,CuO:1mol%~10mol%。最终材料可以含有其中的几种或者全部。
本发明的多相复合尖晶石柔性材料,具有高的复数磁导率实部和低的复数磁导率虚部,高的饱和磁通密度,宽的使用频率范围,从10kHz到50MHz。
本发明的多相复合尖晶石柔性材料,主体具有多相结构,几种单相尖晶石结构并存,产品具有单相尖晶石结构无法兼顾的优异性能。这种材料,即可以是由2种单相尖晶石结构的复合,也可以是1种单相尖晶石结构和1种多相尖晶石结构的复合,或者2中多相尖晶石结构的复合。
本发明的多相复合尖晶石柔性材料,制作工艺包括单相颗粒制作、第二相复合、成型烧结等几个步骤。
具体实施方式
下面以2相都为单相尖晶石材料的多相复合尖晶石柔性材料为例,对本发明的制造方法进行详细说明。
第一步,单相颗粒制作。
按一定比例称取Fe2O3、MnO,加入球磨机,配合一定数量的水,通过球磨机充分混合后,烘干,进入振磨机振磨20min。振磨后的粉料装入承烧体进行烧结。烧结曲线采用分段设计,烧结温度1100°C~1200°C,烧结后材料形成需要的单相尖晶石结构。烧结粉体取得后,再进行微粉碎,形成小于5微米或者纳米级的颗粒,颗粒的大小可以根据特性需求确定,每个颗粒具有单相尖晶石结构。
第二步,第二相复合。
按要求比例把Ni(NO3)2、Fe(NO3)3溶液混合,并进行化学处理,使其能够在颗粒表面均匀排列。
使用处理后的混合溶液对单相颗粒进行包覆。再把包覆后的单相颗粒放入准备好的有机铵盐溶液,用NaOH滴定到要求的PH值,加热进行反应,在单相颗粒表面生第二相结构。反应完成后,用离心机分离出沉淀物,再次清洗,去除杂质和有机物等,得到第二相复合完成的颗粒。
第三步,成型烧结。
把第二相复合完成后的颗粒放入制浆容器内,按一定配比加入水,以及酒精、甲苯等有机溶剂,再和增塑剂混合,并加入一定量的消泡剂以利于后续工序生产。把制作好的浆料使用流延成型工艺制作成要求的生带,切割成需要大小,放入炉内进行烧结。烧结温度900°C~1300°C之间,配合合适的升温速度、降温速度和气氛条件。
烧结后的产品进行覆膜等后加工工艺,就得到了多相复合尖晶石柔性材料产品。按照该方法制造的柔性材料,具有高磁导率、低损耗的特点,而且具有宽的应用频率范围。产品具有柔韧性,可弯折,厚度小,可嵌入设备内部而不占用空间,满足当前产品轻量化、薄型化、小型化的发展趋势。
实施例
按照42mol%:22mol%:8mol%的比例称取Fe2O3、MnO、ZnO原料。称量好的原料加入球磨机进行混合,料:球:水为1:5:1。混合好的粉料烘干后,通过振磨机振磨20min。振磨后的粉料装入烧钵,使用钟罩炉烧结,烧结时长25hr,保温温度1150°C,保温气氛氧含量体积比为2.5vol%。烧结后的粉体使用球磨机粉碎,粉碎粒径1.5微米。粉碎粉末烘干供后续过程使用。
按照8mol%:1.5mol%的比例混合Fe(NO3)3、 Ni(NO3)2溶液。混合好的溶液与烘干后的粉碎粉末进行混合包覆。再将包覆颗粒放入有机铵盐溶液,用NaOH滴定到PH=10.5,放入反应釜加热至150°C反应8hr,反应过程中连续搅拌。反应完成后,用离心机分离沉淀物,清洗去除杂质和有机物,得到复合颗粒。
取10kg复合颗粒放入制浆容器内,加入一定量的增塑剂、酒精、水、分散剂和消泡剂,进行混合制浆。浆料完成后,使用流延成型机进行成型,流延速度800转/分,得到生带。生带切割后放入烧结炉烧结,烧结温度1200°C,保温时间2.5hr。
烧结后的产品再次进行后加工切割、覆膜等等,得到要求的柔性材料磁片。磁片具有良好的柔韧性,可弯折。磁片做成T18*6*0.1磁环测试性能,复数磁导率实部1507,复数磁导率虚部6.2。25°C饱和磁通密度506mT,截止频率3.5MHz。

Claims (4)

1.一种多相复合尖晶石柔性材料,其特征在于,主体具有多相尖晶石结构,柔韧性好,可弯折,弯折后特性不变。
2.如权利要求1所述的多相复合尖晶石柔性材料,制作工艺包括单相颗粒制作、第二相复合、成型烧结等步骤。
3. 如权利要求1所述的多相复合尖晶石柔性材料,作为主成分含有Fe2O3:40mol% ~65mol%,NiO:1mol%~10.0mol%,ZnO:2mol%~15mol%,MnO:2mol%~40mol%,CuO:1mol%~10mol%。
4.如权利要求1所述的多相复合尖晶石柔性材料,具有大于1000的复数磁导率实部,小于10的复数磁导率虚部,25°C饱和磁通密度大于500mT。
CN201810610811.1A 2018-06-14 2018-06-14 一种多相复合尖晶石柔性材料制造方法 Pending CN108793992A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810610811.1A CN108793992A (zh) 2018-06-14 2018-06-14 一种多相复合尖晶石柔性材料制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810610811.1A CN108793992A (zh) 2018-06-14 2018-06-14 一种多相复合尖晶石柔性材料制造方法

Publications (1)

Publication Number Publication Date
CN108793992A true CN108793992A (zh) 2018-11-13

Family

ID=64086039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810610811.1A Pending CN108793992A (zh) 2018-06-14 2018-06-14 一种多相复合尖晶石柔性材料制造方法

Country Status (1)

Country Link
CN (1) CN108793992A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587193A (zh) * 2004-08-19 2005-03-02 浙江大学 低温度系数、低损耗和高饱和磁通密度铁氧体材料及制备方法
CN1858020A (zh) * 2005-07-07 2006-11-08 横店集团东磁有限公司 宽温、低温度系数、高磁导率NiZn铁氧体材料及其制备方法
CN101182224A (zh) * 2007-11-07 2008-05-21 郑州华威耐火材料股份有限公司 镁铬砖
CN101973771A (zh) * 2010-09-29 2011-02-16 淄博市鲁中耐火材料有限公司 一种亚铁铝镁系耐火原料及其制备方法
CN102020479A (zh) * 2010-12-10 2011-04-20 河南瑞泰耐火材料科技有限公司 镁铁-镁铝复合尖晶石砖及其制备方法
CN102976739A (zh) * 2012-12-21 2013-03-20 南京工业大学 超低高频损耗功率MnZn铁氧体及其制备方法
CN104446410A (zh) * 2014-11-04 2015-03-25 横店集团东磁股份有限公司 一种锰锌系铁氧体及其制备方法
CN107352991A (zh) * 2017-07-04 2017-11-17 浙江大学 一种核壳结构锰锌/镍锌复合铁氧体及其制备方法
CN107954706A (zh) * 2017-12-08 2018-04-24 广东风华高新科技股份有限公司 一种高磁导率软磁铁氧体材料及其制备方法
CN108987062A (zh) * 2018-07-05 2018-12-11 浙江大学 一种铁氧体-软磁合金复合磁芯及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587193A (zh) * 2004-08-19 2005-03-02 浙江大学 低温度系数、低损耗和高饱和磁通密度铁氧体材料及制备方法
CN1255355C (zh) * 2004-08-19 2006-05-10 浙江大学 低温度系数、低损耗和高饱和磁通密度铁氧体材料制备方法
CN1858020A (zh) * 2005-07-07 2006-11-08 横店集团东磁有限公司 宽温、低温度系数、高磁导率NiZn铁氧体材料及其制备方法
CN100558674C (zh) * 2005-07-07 2009-11-11 横店集团东磁有限公司 宽温、低温度系数、高磁导率NiZn铁氧体材料及其制备方法
CN101182224A (zh) * 2007-11-07 2008-05-21 郑州华威耐火材料股份有限公司 镁铬砖
CN101973771A (zh) * 2010-09-29 2011-02-16 淄博市鲁中耐火材料有限公司 一种亚铁铝镁系耐火原料及其制备方法
CN102020479A (zh) * 2010-12-10 2011-04-20 河南瑞泰耐火材料科技有限公司 镁铁-镁铝复合尖晶石砖及其制备方法
CN102976739A (zh) * 2012-12-21 2013-03-20 南京工业大学 超低高频损耗功率MnZn铁氧体及其制备方法
CN104446410A (zh) * 2014-11-04 2015-03-25 横店集团东磁股份有限公司 一种锰锌系铁氧体及其制备方法
CN107352991A (zh) * 2017-07-04 2017-11-17 浙江大学 一种核壳结构锰锌/镍锌复合铁氧体及其制备方法
CN107954706A (zh) * 2017-12-08 2018-04-24 广东风华高新科技股份有限公司 一种高磁导率软磁铁氧体材料及其制备方法
CN108987062A (zh) * 2018-07-05 2018-12-11 浙江大学 一种铁氧体-软磁合金复合磁芯及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
姜久春主编: "非接触式充电机的技术实现方式", 《电动汽车充电技术及系统》 *
毕见强等: "流延成型", 《特种陶瓷工艺与性能》 *
王运正等: "锰锌铁氧体磁性材料", 《现代锰冶金》 *
陈鸣主编: "电子陶瓷", 《电子材料》 *

Similar Documents

Publication Publication Date Title
CN107129291B (zh) 具有高频低温度系数低损耗MnZn软磁铁氧体材料及其制备方法
KR101016501B1 (ko) 일종의 니켈 동 아연 페라이트 및 그 제조방법
CN107311637B (zh) 一种基于核壳结构晶粒制备低功率损耗锰锌铁氧体的方法
CN101807463B (zh) 一种兼有高起始磁导率和低损耗的MnZn铁氧体材料及其制备方法
KR100439782B1 (ko) 1MHz와100MHz사이에서작동하는저상실페라이트및그제조방법
CN107555984A (zh) 一种高频宽温低损耗MnZn铁氧体的烧结过程气氛控制方法
CN107352992A (zh) 一种宽频宽温低损耗锰锌铁氧体的粉末粒度控制方法
CN106830912A (zh) 一种镍锌软磁铁氧体磁片及其制备方法
CN103951411A (zh) 宽温低功耗高居里温度锰锌铁氧体材料及制备方法
CN102795850B (zh) 一种宽温超低损耗锰锌功率铁氧体磁芯
CN108424136B (zh) MHz级开关电源用MnZn功率铁氧体及其制备方法
CN102161585A (zh) 高频宽温低功耗软磁锰锌铁氧体及其制备方法
CN104098326A (zh) 低温度系数高阻抗高磁导率锰锌铁氧体材料及制备方法
CN104150894B (zh) 一种耐热冲击镍锌铁氧体及其制备方法
CN108164260A (zh) 一种无线充电用镍锌软磁铁氧体及其制备方法、应用
CN107352993A (zh) 一种高频锰锌软磁铁氧体材料及其制备方法
CN104761250A (zh) 一种低温烧结镍铜锌软磁铁氧体材料及其制备方法
CN107352991A (zh) 一种核壳结构锰锌/镍锌复合铁氧体及其制备方法
CN110668806A (zh) 一种高频率用软磁铁氧体的制备方法
CN107417268A (zh) 废磁芯制备无线充电器铁氧体磁片方法
CN104817317A (zh) 一种柔性好不易损坏软磁铁氧体材料及其制备方法
JP2009295613A (ja) 圧粉磁心の製造方法
CN108793992A (zh) 一种多相复合尖晶石柔性材料制造方法
CN110467450A (zh) 一种高频锰锌软磁铁氧体材料及其制备方法和应用
CN113284731B (zh) 一种高频大磁场软磁铁氧体材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181113