CN108790368A - 一种高速列车igbt封装用石墨烯/金属复合材料的制备方法 - Google Patents

一种高速列车igbt封装用石墨烯/金属复合材料的制备方法 Download PDF

Info

Publication number
CN108790368A
CN108790368A CN201811004365.6A CN201811004365A CN108790368A CN 108790368 A CN108790368 A CN 108790368A CN 201811004365 A CN201811004365 A CN 201811004365A CN 108790368 A CN108790368 A CN 108790368A
Authority
CN
China
Prior art keywords
graphene
film
graphene oxide
sintering
test specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811004365.6A
Other languages
English (en)
Other versions
CN108790368B (zh
Inventor
褚克
王钒
黄大建
李玉彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Jiaotong University
Original Assignee
Lanzhou Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Jiaotong University filed Critical Lanzhou Jiaotong University
Priority to CN201811004365.6A priority Critical patent/CN108790368B/zh
Publication of CN108790368A publication Critical patent/CN108790368A/zh
Application granted granted Critical
Publication of CN108790368B publication Critical patent/CN108790368B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/003Cutting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Fluid Mechanics (AREA)
  • Ceramic Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于电子封装材料领域,涉及一种高速列车IGBT封装用高导热石墨烯/金属叠层复合材料的制备方法。包括以下步骤:配置一定浓度的氧化石墨烯分散液,缓慢将分散液中的水分蒸发后在器皿底部得到氧化石墨烯薄膜,随后将氧化石墨烯薄膜转移到管式炉中,高温热还原得到石墨烯薄膜。使用磁控溅射在石墨烯薄膜表面镀覆一层金属硼、钛、铬或者其相关碳化物的镀层。将镀覆后的石墨烯薄膜与金属箔紧密叠放后在卷筒上均匀缠绕一定圈数,然后将缠绕后的试样进行冷压成型后冲裁成圆片试样,之后对圆片试样进行热压烧结,得到块体石墨烯/金属叠层复合材料。本发明工艺简单,所制复合材料界面结合好,平面热导率为600~810W/mK,可满足高速列车IGBT用封装材料的使用要求。

Description

一种高速列车IGBT封装用石墨烯/金属复合材料的制备方法
技术领域
本发明属于电子封装材料领域,涉及一种制备具有高导热性能的石墨烯/金属层状复合材料的方法。
背景技术
现阶段,由于高铁技术的快速发展,列车高速化成为铁路行业的主流,大功率电力牵引系统成为高速列车的原动力。在牵引传动系统中,功率元件IGBT会产生严重热疲劳,甚至可能由于过热而烧坏,从而危及整个列车运行的安全稳定性。因此,怎样使牵引变流器中功率元件IGBT 的工作热量更有效、更及时地散发出来成为关键问题所在。近年来,随着电子元器件的冷却技术迅速发展,相变冷却在机车变流器中已得到应用,但是相变冷却模式的散热效率比较低,而且维护操作非常不便。在这种情况下,使用导热性能优异的IGBT封装材料成为解决散热问题的最好办法。
石墨烯具有极高的强度、载流子迁移率、热导率、比表面积,负的热膨胀系数,以及良好的柔韧性和热稳定性[5]。这些优异的性能使得石墨烯成为当下最热门新材料之一,在许多领域有着广阔的应用前景。在石墨烯/金属复合材料导热性能的研究方面,Goli等(Nano Lett., 14 (2014) 1497-1503.)通过在铜箔上下表面各CVD生成一层石墨烯可使铜箔的平面热导率提升24%。Jagannadham(Metall. Mater. Trans. B, 43 (2012) 316-324)在铜箔表面通过电化学沉积一层石墨烯/铜复合薄膜使得铜箔的热导率提升了21%。这些研究说明构建具有石墨烯/金属双连续相特征的层状排布结构可有效发挥石墨烯优异的平面热导率,提升金属薄膜材料的导热性能。但是,基于Goli和Jagannadham的研究结果,设想将石墨烯/铜复合薄膜通过层层组装(Layer-by-Layer)的方法制备成块体石墨烯/铜叠层复合材料,不仅工艺繁琐,而且具有复合材料厚度受限,石墨烯体积分数难以精确控制,石墨烯与铜箔非沉积面界面结合差等一系列不足。因此,有必要发展工艺简单,复合材料尺寸、成分、界面易于控制的新型层状复合技术制备石墨烯/金属叠层复合材料。
另一方面,以氧化石墨烯为前驱体,将纳米级的石墨烯通过自组装的方法形成宏观薄膜材料,同时保持石墨烯的优异性能是拓展石墨烯应用范围的重要途径之一。由于组成石墨烯薄膜的基本结构单元—石墨烯纳米片在石墨烯薄膜内呈现水平堆积,片与片搭桥相连,取向高度一致,因此石墨烯薄膜具有优异的平面电导率(118-1570 S/cm)和热导率(890~1800 W/mK),同时兼具良好的柔性以及一定的机械强度。这些优异的特性使得石墨烯薄膜当前被大量应用于透明导电薄膜,太阳能电池,热界面材料以及各种可穿戴电子材料。因此将石墨烯薄膜与金属复合有望最大程度发挥石墨烯优异的导热性能,制备出满足要求的高导热石墨烯/金属复合材料。
发明内容
本发明综合了石墨烯薄膜的优异特性以及高导热石墨烯/金属复合构型的优化设计理念,提出通过“表面镀层石墨烯薄膜与金属箔叠放缠绕后致密化”的新型层状复合技术制备石墨烯/金属叠层复合材料,其具体步骤为:
(1)配置一定浓度的氧化石墨烯分散液,缓慢将分散液中的水分蒸发后在器皿底部得到氧化石墨烯薄膜。随后将氧化石墨烯薄膜转移到管式炉中,高温热还原后得到石墨烯薄膜。
(2)使用磁控溅射在石墨烯薄膜表面镀覆一层金属硼、钛、铬或者其相关碳化物的镀层。
(3)将镀覆后的石墨烯薄膜与金属箔紧密叠放后在卷筒上均匀缠绕一定圈数,然后将缠绕后的试样进行冷压成型后冲裁成圆片试样,然后对圆片试样进行热压烧结,得到块体复合材料。
2. 优选地,步骤(1)中的氧化石墨烯片径:20~80 μm,厚度:2~10 nm,氧含量:40~60 at.%,分散液浓度:2~5 g/L。
3. 优选地,步骤(1)中的蒸发温度:60~90℃, 器皿材质为聚四氟乙烯或聚偏四氟乙烯中的一种。热还原温度:2000~2800℃,还原时间:30~60 min,保护气氛为氩气或氮气中的一种。所得石墨烯薄膜的厚度:10~30 μm。
4. 优选地,步骤(2)中的靶材为硼、钛、铬、碳化硼碳、化钛、碳化铬中的一种,磁控溅射参数为:保护气氛:氩气,基底偏压:-30~-150 V,靶材电流为:1~3 A,沉积时间:10~30min,所得镀层厚度:0.05~0.5 μm。
5. 优选地,步骤(3)中的金属箔为铜、铝、银箔中的一种,厚度:20~100 μm,卷筒材质为玻璃管或石英管中一种,卷筒直径:2-5 cm,缠绕圈数为50~300圈。
6. 优选地,步骤(3)中冷压压力:200-500 MPa。热压烧结参数为:真空条件,烧结温度:1100-1200℃,烧结压力:30-50 MPa,烧结时间:30-60 min。
本发明方法相比现有石墨烯/金属复合材料的制备方法具有以下优势:(1)可实现复合材料内部石墨烯和铜的双相连续导热通道,极大程度地规避了界面热阻的不利影响;(2)叠层的厚度可通过缠绕圈数进行控制,石墨烯体积分数可通过铜箔的厚度进行调节,操作简便,复合材料的尺寸成分可设计性强,适宜于规模化制备;(3)适应于石墨烯薄膜与不同种类金属薄膜(铜箔,铝箔,银箔等)的层状复合,有望成为制备石墨烯/金属叠层复合材料的普适工艺。
具体实施方式:
实施例1
制备平面热导率为680 W/mK的石墨烯/铜叠层复合材料。
选取平均片径为50 μm,平均厚度为5 nm的氧化石墨烯。将氧化石墨烯在去离子水中超声分散30 min,配置成 5 g/L的分散液。随后将分散液转移到聚四氟乙烯器皿中,并在80℃的温度下中将水分完全蒸发干净。将得到的氧化石墨烯薄膜转移到管式炉中,在氩气保护气氛下,设定还原温度为2800℃,还原时间为60min,热还原后得到厚度为20 μm的石墨烯薄膜。使用磁控溅射在石墨烯薄膜表面镀覆一层硼镀层,选用纯度为99.9%的硼靶,磁控溅射参数为:保护气氛:氩气,基底偏压:-100 V,靶材电流为:2A,沉积时间:20 min,所得到的镀层厚度:0.1 μm。将镀覆后的石墨烯薄膜与50 μm厚的铜箔紧密叠放后在石英卷筒上缠绕100圈。将缠绕后的试样从卷筒上脱离出来后在压力机上进行冷压成型(500 MPa)后冲裁成直径为30 mm的圆片试样。最后将圆片试样热压烧结成致密的复合材料,热压烧结参数为:真空条件,烧结温度:1100℃,烧结压力:50 MPa,烧结时间:60 min。
实施例2
制备平面热导率为810W/mK的石墨烯/铜叠层复合材料。
选取平均片径为50 μm,平均厚度为5 nm的氧化石墨烯。将氧化石墨烯在去离子水中超声分散30 min,配置成 5 g/L的分散液。随后将分散液转移到聚四氟乙烯器皿中,并在80℃的温度下中将水分完全蒸发干净。将得到的氧化石墨烯薄膜转移到管式炉中,在氩气保护气氛下,设定还原温度为2800℃,还原时间为60min,热还原后得到厚度为20 μm的石墨烯薄膜。使用磁控溅射在石墨烯薄膜表面镀覆一层铬镀层,选用纯度为99.9%的铬靶,磁控溅射参数为:保护气氛:氩气,基底偏压:-70V,靶材电流为:1.5A,沉积时间:20 min,所得到的镀层厚度:0.1 μm。将镀覆后的石墨烯薄膜与20 μm厚的铜箔紧密叠放后在石英卷筒上缠绕100圈。将缠绕后的试样从卷筒上脱离出来后在压力机上进行冷压成型(500 MPa)后冲裁成直径为30 mm的圆片试样。最后将圆片试样热压烧结成致密的复合材料,热压烧结参数为:真空条件,烧结温度:1100℃,烧结压力:50 MPa,烧结时间:60 min。
实施例3
制备平面热导率为600 W/mK的石墨烯/铝叠层复合材料。
选取平均片径为50 μm,平均厚度为5 nm的氧化石墨烯。将氧化石墨烯在去离子水中超声分散30 min,配置成 5 g/L的分散液。随后将分散液转移到聚四氟乙烯器皿中,并在80℃的温度下中将水分完全蒸发干净。将得到的氧化石墨烯薄膜转移到管式炉中,在氩气保护气氛下,设定还原温度为2800℃,还原时间为60min,热还原后得到厚度为20 μm的石墨烯薄膜。使用磁控溅射在石墨烯薄膜表面镀覆一层硼镀层,选用纯度为99.9%的硼靶,磁控溅射参数为:保护气氛:氩气,基底偏压:-100 V,靶材电流为:2A,沉积时间:20 min,所得到的镀层厚度:0.1 μm。将镀覆后的石墨烯薄膜与50 μm厚的铝箔紧密叠放后在石英卷筒上缠绕100圈。将缠绕后的试样从卷筒上脱离出来后在压力机上进行冷压成型(500 MPa)后冲裁成直径为30 mm的圆片试样。最后将圆片试样热压烧结成致密的复合材料,热压烧结参数为:真空条件,烧结温度:650℃,烧结压力:50 MPa,烧结时间:40 min。
以上实例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。

Claims (6)

1.一种高速列车IGBT封装用石墨烯/金属复合材料的制备方法 ,其特征包括以下过程:
(1)配置一定浓度的氧化石墨烯分散液,缓慢将分散液中的水分蒸发后在器皿底部得到氧化石墨烯薄膜,随后将氧化石墨烯薄膜转移到管式炉中,高温热还原得到石墨烯薄膜;
(2)使用磁控溅射在石墨烯薄膜表面镀覆一层金属硼、钛、铬或者其相关碳化物的镀层;
(3)将镀覆后的石墨烯薄膜与金属箔紧密叠放后在卷筒上均匀缠绕一定圈数,然后将缠绕后的试样进行冷压成型后冲裁成圆片试样,之后对圆片试样进行热压烧结,得到块体复合材料。
2.如权利要求1所述的方法,其特征是步骤(1)中的氧化石墨烯片径:20~80 μm,厚度:2~10 nm,氧含量:40~60 at.%,分散液浓度:2~5 g/L。
3.如权利要求1所述的方法,其特征是步骤(1)中的蒸发温度:60~90℃, 器皿材质为聚四氟乙烯或聚偏四氟乙烯中的一种;热还原温度:2000~2800℃,还原时间:30~60 min,保护气氛为氩气或氮气中的一种;所得石墨烯薄膜的厚度:10~30 μm。
4.如权利要求1所述的方法,其特征是步骤(2)中的靶材为硼、钛、铬、碳化硼、碳化钛、碳化铬中的一种,磁控溅射参数为:保护气氛:氩气,基底偏压:-30~-150 V,靶材电流为:1~3 A,沉积时间:10~30 min;所得镀层厚度:0.05~0.5 μm。
5.如权利要求1所述的方法,其特征是步骤(3)中的金属箔为铜、铝、银箔中的一种,厚度:20~100 μm;卷筒材质为玻璃管或石英管中一种,卷筒直径:2-5 cm,缠绕圈数:50~300圈。
6.如权利要求1所述的方法,其特征是步骤(3)中冷压压力:200-500 Mpa,热压烧结参数为:真空条件,烧结温度:1100-1200℃,烧结压力:30-50 MPa,烧结时间:30-60 min。
CN201811004365.6A 2018-08-30 2018-08-30 一种高速列车igbt封装用石墨烯/金属复合材料的制备方法 Active CN108790368B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811004365.6A CN108790368B (zh) 2018-08-30 2018-08-30 一种高速列车igbt封装用石墨烯/金属复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811004365.6A CN108790368B (zh) 2018-08-30 2018-08-30 一种高速列车igbt封装用石墨烯/金属复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN108790368A true CN108790368A (zh) 2018-11-13
CN108790368B CN108790368B (zh) 2020-10-02

Family

ID=64081143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811004365.6A Active CN108790368B (zh) 2018-08-30 2018-08-30 一种高速列车igbt封装用石墨烯/金属复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108790368B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195211A (zh) * 2019-05-09 2019-09-03 西安交通大学 一种可控多类型碳化铬改性石墨的制备方法
CN110193600A (zh) * 2019-05-09 2019-09-03 西安交通大学 一种碳化钛增强钛包覆石墨粉末的制备方法
CN110421918A (zh) * 2019-08-06 2019-11-08 西安航空学院 一种热管理用石墨膜-Ti层状块体复合材料及其制备方法
CN112063967A (zh) * 2020-09-03 2020-12-11 中国电子科技集团公司第三十三研究所 一种镀银石墨烯薄膜的制备方法
CN112376027A (zh) * 2020-11-13 2021-02-19 无锡华鑫检测技术有限公司 一种氧化石墨烯金属纳米片复合材料的制备方法
CN113012859A (zh) * 2021-02-22 2021-06-22 中国科学院电工研究所 一种卷绕法制备金属/碳复合导线的方法
CN113012860A (zh) * 2021-02-22 2021-06-22 中国科学院电工研究所 一种超高导电铜/纳米碳复合导线的制备方法
CN115534494A (zh) * 2022-10-13 2022-12-30 合肥工业大学 一种Cu/石墨烯薄膜层状复合材料及其制备方法
WO2024060362A1 (zh) * 2022-09-20 2024-03-28 中国科学院光电技术研究所 超分辨光刻结构、制备方法及图形传递的方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043654A (zh) * 2011-10-12 2013-04-17 国家纳米科学中心 一种含有石墨烯和/或氧化石墨烯的薄膜及其制备方法
KR20140003218A (ko) * 2012-06-29 2014-01-09 세종대학교산학협력단 그래핀의 적층 방법, 그래핀 적층체, 및 이를 포함하는 소자
CN105695916A (zh) * 2016-02-19 2016-06-22 镇江博昊科技有限公司 一种柔性多层石墨烯复合材料的制备方法
CN105882068A (zh) * 2016-04-12 2016-08-24 东莞市驰明电子科技有限公司 一种石墨烯复合金属片及其制备方法与应用
CN105984179A (zh) * 2015-03-06 2016-10-05 兰州空间技术物理研究所 一种热沉材料及其制备方法
CN106515134A (zh) * 2016-12-28 2017-03-22 镇江博昊科技有限公司 一种铜基石墨烯复合膜及其制备方法
CN106584976A (zh) * 2016-08-10 2017-04-26 上海交通大学 一种高导电石墨烯/铜基层状复合材料及其制备方法
WO2017146513A1 (ko) * 2016-02-25 2017-08-31 한국기계연구원 적층형 슈퍼커패시터의 제조방법
CN107314353A (zh) * 2017-07-03 2017-11-03 鄂尔多斯市紫荆创新研究院 一种高导热性能石墨烯金属复合多层散热器及其制备方法
CN207172907U (zh) * 2017-08-23 2018-04-03 江西中荣信合石墨烯科技股份有限公司 一种石墨烯导热散热膜
CN107911992A (zh) * 2017-11-06 2018-04-13 天诺光电材料股份有限公司 一种纤维增强铜石墨散热膜及制备方法
CN108165808A (zh) * 2018-01-11 2018-06-15 湖南科技大学 一种石墨-铝双相连通复合材料及其制备方法
CN108165809A (zh) * 2018-01-11 2018-06-15 湖南科技大学 一种具有网络互穿结构的石墨-铜基复合材料及其制备方法
CN108193065A (zh) * 2017-12-29 2018-06-22 中南大学 一种石墨烯增强铜基复合材料的制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043654A (zh) * 2011-10-12 2013-04-17 国家纳米科学中心 一种含有石墨烯和/或氧化石墨烯的薄膜及其制备方法
KR20140003218A (ko) * 2012-06-29 2014-01-09 세종대학교산학협력단 그래핀의 적층 방법, 그래핀 적층체, 및 이를 포함하는 소자
CN105984179A (zh) * 2015-03-06 2016-10-05 兰州空间技术物理研究所 一种热沉材料及其制备方法
CN105695916A (zh) * 2016-02-19 2016-06-22 镇江博昊科技有限公司 一种柔性多层石墨烯复合材料的制备方法
WO2017146513A1 (ko) * 2016-02-25 2017-08-31 한국기계연구원 적층형 슈퍼커패시터의 제조방법
CN105882068A (zh) * 2016-04-12 2016-08-24 东莞市驰明电子科技有限公司 一种石墨烯复合金属片及其制备方法与应用
CN106584976A (zh) * 2016-08-10 2017-04-26 上海交通大学 一种高导电石墨烯/铜基层状复合材料及其制备方法
CN106515134A (zh) * 2016-12-28 2017-03-22 镇江博昊科技有限公司 一种铜基石墨烯复合膜及其制备方法
CN107314353A (zh) * 2017-07-03 2017-11-03 鄂尔多斯市紫荆创新研究院 一种高导热性能石墨烯金属复合多层散热器及其制备方法
CN207172907U (zh) * 2017-08-23 2018-04-03 江西中荣信合石墨烯科技股份有限公司 一种石墨烯导热散热膜
CN107911992A (zh) * 2017-11-06 2018-04-13 天诺光电材料股份有限公司 一种纤维增强铜石墨散热膜及制备方法
CN108193065A (zh) * 2017-12-29 2018-06-22 中南大学 一种石墨烯增强铜基复合材料的制备方法
CN108165808A (zh) * 2018-01-11 2018-06-15 湖南科技大学 一种石墨-铝双相连通复合材料及其制备方法
CN108165809A (zh) * 2018-01-11 2018-06-15 湖南科技大学 一种具有网络互穿结构的石墨-铜基复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHU, K等: "Anisotropic mechanical properties of graphene/copper composites with aligned graphene", 《MATERIALS SCIENCE AND ENGINEERING: A》 *
CHU, K等: "Interface and mechanical_thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene", 《COMPOSITES PART A》 *
CHU, K等: "Interface design of graphene/copper composites by matrix alloying with titanium", 《MATERIALS & DESIGN》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195211A (zh) * 2019-05-09 2019-09-03 西安交通大学 一种可控多类型碳化铬改性石墨的制备方法
CN110193600A (zh) * 2019-05-09 2019-09-03 西安交通大学 一种碳化钛增强钛包覆石墨粉末的制备方法
CN110195211B (zh) * 2019-05-09 2022-02-22 西安交通大学 一种可控多类型碳化铬改性石墨的制备方法
CN110421918A (zh) * 2019-08-06 2019-11-08 西安航空学院 一种热管理用石墨膜-Ti层状块体复合材料及其制备方法
CN112063967A (zh) * 2020-09-03 2020-12-11 中国电子科技集团公司第三十三研究所 一种镀银石墨烯薄膜的制备方法
CN112376027A (zh) * 2020-11-13 2021-02-19 无锡华鑫检测技术有限公司 一种氧化石墨烯金属纳米片复合材料的制备方法
CN113012859A (zh) * 2021-02-22 2021-06-22 中国科学院电工研究所 一种卷绕法制备金属/碳复合导线的方法
CN113012860A (zh) * 2021-02-22 2021-06-22 中国科学院电工研究所 一种超高导电铜/纳米碳复合导线的制备方法
WO2024060362A1 (zh) * 2022-09-20 2024-03-28 中国科学院光电技术研究所 超分辨光刻结构、制备方法及图形传递的方法
CN115534494A (zh) * 2022-10-13 2022-12-30 合肥工业大学 一种Cu/石墨烯薄膜层状复合材料及其制备方法

Also Published As

Publication number Publication date
CN108790368B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
CN108790368A (zh) 一种高速列车igbt封装用石墨烯/金属复合材料的制备方法
CN104263267B (zh) 多用途导电导热复合胶带
CN108193065B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN104775154B (zh) 一种同质外延生长单晶金刚石时控制表面温度的方法
CN102407335B (zh) 一种高导热led封装材料及其制备方法
CN106584976A (zh) 一种高导电石墨烯/铜基层状复合材料及其制备方法
CN106835260B (zh) 超大尺寸多层单晶石墨烯和大尺寸单晶铜镍合金的制备方法
CN104894516A (zh) 一种低温高效制备三元层状max相陶瓷涂层的方法
CN105364068A (zh) 一种三维石墨烯原位包覆铜复合材料的制备方法
CN102826856B (zh) 一种高纯低密度ito靶材及其制备方法
CN109824382A (zh) 一种热管理用SiC/石墨膜层状复合材料及其制备方法
Liu et al. High performance Ag 2 Se films by a one-pot method for a flexible thermoelectric generator
CN107267901A (zh) 一种高强度无铁磁性织构Ni‑W合金基带的制备方法
CN110421918A (zh) 一种热管理用石墨膜-Ti层状块体复合材料及其制备方法
CN101914753A (zh) 一种利用磁控溅射法制备NbTi薄膜的方法
CN108486568B (zh) 一种用于导热的大鳞片石墨烯/金属异质结复合薄膜及其制备方法
CN106495158B (zh) 一种超薄碳化钼材料的制备方法及其产品
CN107267900A (zh) 一种高强度无铁磁性织构铜基合金基带的制备方法
CN110002427A (zh) 一种高导热碳膜及其制备方法
CN115504787A (zh) 一种石墨烯/人工石墨复合导热膜的制备方法
CN110712419A (zh) 一种铜钼铜合金材料的制备方法
CN1188236C (zh) 一种表面多孔管的低温烧结方法
CN110504076A (zh) 一种高耐蚀性稀土磁制冷材料以及在制冷机中的使用方法
CN106270425B (zh) 一种磁制冷材料量产化制备方法
Du et al. Effect of cooling mode on anodic bonding properties of solid polymer electrolytes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant