CN108778499A - 稳定的按照设计的金属氧化物纳米纤维,以及使用纤维及其纳米纤维膜的制造工艺形成的挠性且稳定的纳米纤维膜 - Google Patents

稳定的按照设计的金属氧化物纳米纤维,以及使用纤维及其纳米纤维膜的制造工艺形成的挠性且稳定的纳米纤维膜 Download PDF

Info

Publication number
CN108778499A
CN108778499A CN201680077366.6A CN201680077366A CN108778499A CN 108778499 A CN108778499 A CN 108778499A CN 201680077366 A CN201680077366 A CN 201680077366A CN 108778499 A CN108778499 A CN 108778499A
Authority
CN
China
Prior art keywords
nanofiber
fibrous membrane
metal oxide
nano fibrous
design
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680077366.6A
Other languages
English (en)
Other versions
CN108778499B (zh
Inventor
V·因塔桑塔
N·苏比杰雷尼迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Science and Technology Development Agency
Original Assignee
National Science and Technology Development Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TH1501007936A external-priority patent/TH176227A/th
Application filed by National Science and Technology Development Agency filed Critical National Science and Technology Development Agency
Publication of CN108778499A publication Critical patent/CN108778499A/zh
Application granted granted Critical
Publication of CN108778499B publication Critical patent/CN108778499B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62259Fibres based on titanium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62855Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62876Coating fibres with metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2086Activating the catalyst by light, photo-catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明涉及可以由纳米纤维制造工艺制造的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜。根据本发明的金属氧化物光催化剂纳米纤维具有二氧化钛和锌钨氧化物作为主要组成。纳米纤维的表面由贵金属纳米颗粒构成,并且能够在可见光、UV或太阳光下工作,所述的纳米颗粒以单层形式在锌钨氧化物纳米棒上修饰而成。所述的纳米级材料具有精细的孔隙率和高的表面积。本发明还可以克服WO3纳米纤维的脆性和不稳定性的问题。

Description

稳定的按照设计的金属氧化物纳米纤维,以及使用纤维及其 纳米纤维膜的制造工艺形成的挠性且稳定的纳米纤维膜
技术领域
本发明的化学涉及金属氧化物纳米纤维,和具有挠性、稳定性和制造能力的纳米纤维膜催化剂。
发明概述
本发明为贵金属修饰的二氧化钛和锌钨氧化物纳米纤维和纳米纤维膜的研发,其中所述的纳米纤维膜是挠性的、稳定的,能够容易地制造,并且在可见光、UV和太阳光下是活性的。所述的纳米纤维和纳米纤维膜在光催化剂组成、多功能性质、高强度和挠性方面不同于其他的纳米纤维和纳米纤维膜。所述的高表面积和孔隙率的纳米纤维可以通过溶液基处理由针基静电纺丝、纳米蜘蛛静电纺丝和增强/离心纺丝而制造。
背景技术
环境中由挥发性有机化合物(VOC)产生的空气传播的污染物主要是车辆中的发动机燃烧产生,因此,研发用于消除VOC的新技术在目前情况下是重要的主题。受到关注的VOC消除技术之一是光催化作用,其使用光作为活化能量源。通常,光催化反应需要光用于有机分子(适用于未指明的有机分解)的氧化还原反应。
光催化的反应可以在液相和气相中发生,因此该技术是极其多样的,并且具有广泛的应用。此外,该技术的需要优点支持工业规模生产的高潜力,例如自我清洁性质、廉价的材料和低的维护成本。然而,大部分的光催化材料需要高的活化能,其主要在UV光中可以发现,这是因为所述的催化剂具有可见光不能控制的大的带隙。因此,这种缺点可以限制上述技术的工业规模的应用。此外,催化剂的形状和尺寸在有机分解效率中起重要的作用,这是因为光催化反应主要在催化剂的表面上发生。鉴于此,纳米光催化剂由于它们的高表面积,可以是最合适的材料。但是,它们经受结块和再循环效率的挑战。另一方面,薄膜光催化剂可以容易地再循环,但是其具有有限的表面积,这会导致低的有机分解效率。纳米纤维以其高的表面积、再循环能力和无结块材料,可以克服纳米颗粒和膜材料固有的缺点。
除了有机污染物分解以外,光催化剂必须获得抗细菌性质,以便扩宽应用范围。对于水污染物分解而言,在液相中使用光催化剂的一个重要缺点是回收工艺。一种回收工艺是离心方法。该方法在试验室规模的应用中极为有效,但是工业生产和应用是昂贵的。综上,纳米材料的应用遭受过滤工艺的挑战,同时薄膜材料具有低表面积的缺点。另一方面,得自纳米纤维的光催化剂材料可以克服在再循环能力和高表面积方面的问题。
通常,纳米颗粒合成方法需要高的成本和环境不友好的处理,例如高温或真空系统。这可以使得生产成本和时间消耗增加。
废水处理需要通过使用催化剂作为主要组成的合适的方法。由于光催化作用的催化剂化学组成是低成本的并且能够使用自然太阳光催化所述的反应,所以光催化剂作用是最有前途的工艺之一。但是,光催化剂具有两个主要的缺点,其为有限的催化光区域和高的脆性。
本发明涉及贵金属修饰的二氧化钛和锌钨氧化物纳米纤维和纳米纤维膜的制造。所述的纳米纤维和纳米纤维膜是稳定的,挠性的,容易制造的并且能够在可见光、UV和自然太阳光下工作。本发明由特定的组成形成,所述的组成在金属氧化物纳米纤维膜的化学组成和稳定性方面不同于其他的制造方法。
由文献和专利审查来看,没有发现类似于本发明的记录,如下文所示:
International Journalof Hydrogen Energy Volume:40Pages:4558-4566Enhanced photocatalytic activity of palladium decorated TiO2nanofiberscontaining anatase-rutile mixed phase。该文献关于通过高压釜和煅烧合成钯修饰的二氧化钛纳米纳米纤维。产物为用于氢化作用和有机染料降解反应的催化剂。其在金属氧化物材料的组成方面不同于本发明。此外,所述的文献未提及金属氧化物纳米纤维膜稳定性的研发。
Journal of Alloys and Compounds Volume:432Pages:269-276ZnWO4photocatalyst with high activity for degradation of organiccontaminants。该文献关于通过水热工艺和退火处理的锌钨氧化物合成方法。产物为用于气相中甲醛降解的催化剂,其不同于本发明专利的处理方法和金属氧化物组成。此外,所述的文献未提及进行氧化物纳米纤维膜稳定性的研发。
Materials Letters Volume:61Pages:1793-1797ZnWO4-TiO2compositenanofilms:Preparation,morphology,structure and photoluminescent enhancement。该文献关于在玻璃基底上通过浸涂方法合成二氧化钛和锌钨氧化物,其不同于本发明专利的合成工艺。此外,该文献未提及金属氧化物纳米纤维膜稳定性的研发。
标题为“Nanoparticles containing titanium oxide”的专利号US20070202334A1。该专利关于在直径小于200nm的锐钛矿晶体结构中合成二氧化钛纳米颗粒。此外,该专利还关于通过高压釜技术在纳米球形式的纳米纤维表面上掺杂金属,其不同于本发明专利的合成方法和组成。此外,该文献未提及金属氧化物纳米纤维膜稳定性的研发。
标题为“Nanoparticles containing titanium oxide”的专利号US20070202334A1。该专利关于在直径小于200nm的锐钛矿晶体结构中合成二氧化钛纳米颗粒。此外,该专利还关于通过高压釜技术在纳米球形式的纳米纤维表面上掺杂金属,其不同于本发明专利的合成方法和组成。此外,该文献未提及金属氧化物纳米纤维膜稳定性的研发。
标题为“Metal or metal oxide deposited fibrous materials”的专利号US20110192789A1。该专利关于通过电子喷雾技术嵌入在多孔基底上的金属氧化物和金属纳米颗粒上,其不同于本发明专利的合成方法和组成。此外,该文献未提及金属氧化物纳米纤维膜稳定性的研发。
标题为“Nanofiber and preparation method thereof”的专利号US20110151255A1。该专利关于通过静电纺丝的纳米纤维制造方法。静电纺丝溶液为聚合物和金属复合氧化物的混合物。产物是耐热的且稳定的纳米纤维,其在稳定的金属氧化物纳米纤维膜制造和化学组成方法不同于本发明专利。
综上,没有文献或专利提出相同的材料处理或化学组成。本发明关于贵金属修饰的二氧化钛和锌钨氧化物纳米纤维和纳米纤维膜的制造。所述的纳米纤维和纳米纤维膜是挠性的、稳定的、容易制造并且能够在可见光、UV和太阳光下工作。本发明由特定的组成形成,所述的组成在金属氧化物纳米纤维膜的化学组成和稳定性方面不同于其他的制造方法。
附图简述
图1.在煅烧前和煅烧后纳米纤维的化学和物理特征的图,其中:
(a)由偏钨酸铵水合物和醋酸锌水合物在水和乙醇溶液中制造后形成的纳米纤维的物理特征。
(b)由偏钨酸铵水合物、醋酸锌水合物和二氧化钛纳米颗粒(P-25)在水和乙醇溶液中制造后形成的纳米纤维的物理特征。
(c)由(b)在煅烧后形成的纳米纤维的物理特征得到不均匀的纳米纤维。
(d)由纳米纤维(c)的区域显示颗粒结块。
(e)由偏钨酸铵水合物、醋酸锌水合物和异丙醇钛在水和乙醇溶液中制造后形成的纳米纤维的物理特征。
(f)由(e)在500℃下煅烧后形成的纳米纤维的物理特征。
图2.纳米纤维的图片,其中所述的纳米纤维由偏钨酸铵水合物,醋酸锌和异丙醇钛在二甲基甲酰胺中在煅烧前和在500℃下煅烧后构成,其中:
(a)由偏钨酸铵水合物、醋酸锌水合物和异丙醇钛在DMF溶液中制造后形成的纳米纤维的物理特征。
(b)由(a)在500℃下煅烧后形成的纳米纤维的物理特征。
(c)EDX光谱显示钨、锌和钛在纳米纤维中的组成。
(d)XRD光谱显示钨、锌和钛在纳米纤维中的结晶度。
图3.纳米纤维的图片,其中所述的纳米纤维由偏钨酸铵水合物,醋酸锌和异丙醇钛在二甲基甲酰胺中在煅烧前和在600℃和700℃下煅烧后构成,其中:
(a)由偏钨酸铵水合物、醋酸锌水合物和异丙醇钛在DMF溶液中和在600℃下煅烧制造后形成的纳米纤维的物理特征。
(b)由偏钨酸铵水合物、醋酸锌水合物和异丙醇钛在DMF溶液中和在700℃下煅烧制造后形成的纳米纤维的物理特征。
(c)锌钨氧化物纳米棒的尺寸。
(d)由(c)得到的锌钨氧化物纳米棒的层间距离。
(e)EDX光谱显示钨、锌和钛在纳米纤维中的组成。
(f)XRD光谱显示钨、锌和钛在纳米纤维中的结晶度,同时锌和钨复合物为锌钨氧化物(ZnWO4)形式。
图4.纳米纤维膜在煅烧后的种类的图片,其中:
(a)通过在实施例4b中的溶液中制造后的纳米纤维(在煅烧前)。
(b)通过在实施例4b中的溶液中制造后的纳米纤维(在煅烧后)。
(c)通过在实施例4b中的溶液中制造后的纳米纤维(在煅烧前)。
(d)通过在实施例4b中的溶液中制造后的纳米纤维(在100℃下退火并且在600℃下煅烧后)。
(e)通过在实施例4b中的溶液中制造后的纳米纤维(在煅烧前)。
(f)通过在实施例4b中的溶液中制造后的纳米纤维(在200℃下退火并且在600℃下煅烧后)。
(g)通过在实施例4b中的溶液中制造后的纳米纤维(在煅烧前)。
(h)通过在实施例4b中的溶液中制造后的纳米纤维(以玻璃纤维夹层结构在100℃下退火并且在600℃下煅烧后)。
(i)通过在实施例4b中的溶液中制造后的纳米纤维(在煅烧前)。
(j)通过在实施例4b中的溶液中制造后的纳米纤维(以玻璃纤维夹层结构在200℃下退火并且在600℃下煅烧后)。
(k)通过在实施例4b中的溶液中制造后的纳米纤维(在烧杯内以玻璃纤维约束下煅烧前)。
(l)通过在实施例4b中的溶液中制造后的纳米纤维(在烧杯内以玻璃纤维约束下在200℃下退火并且在600℃下煅烧后)。
(m)通过在实施例4b中的溶液中制造后的纳米纤维(在褶皱形状的玻璃纤维约束下煅烧前)。
(n)通过在实施例4b中的溶液中制造后的纳米纤维(在褶皱形状的玻
璃纤维约束下在200℃下退火并且在600℃下煅烧后)。
图5.纳米纤维膜在通过SEM和TEM煅烧后的图片,其中:
(a)通过玻璃纤维约束工艺煅烧后的纳米纤维膜,其显示自由波动的纳米纤维。
(b)通过载玻片约束工艺煅烧后的纳米纤维膜(图4l),其显示波动的纳米纤维。
(c)高度放大的图5a显示自由波动的纳米纤维,其得到稳定的且挠性的纳米纤维。
(d)高度放大的图5b显示约束的纳米纤维,其得到高度脆性的纳米纤维膜。
图6.金属氧化物纳米纤维在金属沉积工艺后的图片,其中:
(a)纳米纤维在UV光下光致还原后的物理特征。
(b)纳米纤维在可见光下光致还原后的物理特征。
(c)纳米纤维在自然太阳光下光致还原后的物理特征。
(d)EDX光谱显示钯和铂在UV光下光致还原后的纳米纤维上的含量。
(e)附着在ZnWO4纳米棒上的纳米颗粒的TEM图像。
(f)附着在ZnWO4纳米棒上的钯纳米颗粒的TEM图像。
(g)附着在ZnWO4纳米棒上的纳米颗粒的TEM图像。
(h)附着在ZnWO4纳米棒上的铂纳米颗粒的TEM图像。
图7.在自然太阳光下纳米纤维的光催化活性针对亚甲蓝浓度的图,其中:
为金属沉积后的纳米纤维膜。
为金属沉积前的纳米纤维膜。
为WO3纳米纤维(参照)。
图8.苯/甲醇分解反应的图片,其中:
(a)在可见光下苯/甲醇的分解反应(由左至右)。
第一瓶为500ppm苯(对照)。
第二瓶为具有WO3纳米纤维的500ppm苯。
第三瓶为具有TiO2-ZnWO4纳米纤维的500ppm苯。
第四瓶为具有Pd/Pt-TiO2-ZnWO4的500ppm苯。
(b)通过TiO2-ZnWO4纳米纤维的苯分解效率的HPLC光谱。
(c)贵金属修饰的TiO2-ZnWO4纳米纤维的苯分解效率的HPLC光谱,显示在6.442下乙醇氧化峰的证据。
发明详述
稳定的按照设计的金属氧化物纳米纤维,以及使用纤维及其纳米纤维膜的制造工艺形成的挠性且稳定的纳米纤维膜
本发明涉及稳定的按照设计的金属氧化物光致催化的纳米纤维的研发,其中所述的纳米纤维由作为纳米纤维的主要组成的二氧化钛和锌钨氧化物构成,并且锌钨氧化物纳米棒位于纳米纤维的表面上。此外,纳米纤维和锌钨氧化物纳米棒的表面被贵金属纳米颗粒以单层沉积形式修饰。
光致催化的纳米纤维由两种主要的金属氧化物组成(二氧化钛和锌钨氧化物)构成,平均直径为100-200纳米。二氧化钛结晶度由锐钛矿和金红石形式的两种混合相组成。在煅烧工艺中,相对于金红石形式,有利地创建锐钛矿形式相对于金红石形式的比例。文献中报告,锐钛矿晶体在UV光下比金红石晶体发挥更好的光致催化活性。另一方面,锌钨氧化物为sanmatinite。除了主要的金属氧化物成分以外,在纳米纤维的表面上发现锌钨氧化物纳米棒(30-50纳米)。
使用贵金属颗粒在UV、可见光或自然太阳光活化下通过光沉积工艺修饰根据本发明的纳米纤维,其是简便的、成本有效的且高效率的。在光沉积工艺后,观察到纳米纤维表面上的贵金属纳米颗粒的直径为1-15纳米。用于本发明的贵金属纳米颗粒可以选自钯,铂,银,金,铑,铱,钌,锇,钽,钛或这些金属的混合物。
由于获得高耐热性的根据本发明的纳米纤维能够容易地制造成挠性且稳定的纳米纤维膜,所以所述的纳米纤维可以用于多种应用中。与其挠性有关的膜的特征是能够形成弯曲的形状。除了这种挠性,所述的膜能够耐受500-900℃的高温。由所述的进行氧化物纳米纤维和纳米纤维膜的性质来看,这种膜的有前途的应用是车辆内的催化转化器,用于纯化燃烧副产物气体,例如苯、甲苯或一氧化二氮。除了空气纯化应用,纳米纤维和纳米纤维膜还可以用于废水纯化中。
当将本发明的金属氧化物纳米纤维与传统的金属氧化物纳米纤维比较时,WO3纳米纤维获得了在纳米纤维内的高孔隙率,其不可避免地构成了高脆性的主要原因。然而,与其他的金属氧化物相比,由本发明得到的TiO2-ZnWO4纳米纤维获得了高的挠性和稳定的物理特征。因此,TiO2-ZnWO4纳米纤维可以克服金属氧化物纳米纤维的固有缺点,并且可以制造成稳定的金属氧化物膜。
根据本发明的贵金属修饰的纳米纤维和纳米纤维膜(包含二氧化钛,锌钨氧化物和锌钨氧化物纳米棒)的制造工艺由以下构成:
(a)通过在室温下将功能聚合物以0.1-40:0.1-40的比例在乙醇中溶解30分钟,首先配制功能聚合物溶液。功能聚合物可以选自沿着烃主链具有官能团的聚合物,例如羟基基团,胺基基团或羧酸基团,代表如下聚丙烯腈,聚乙烯吡咯烷酮,聚乙烯醇,聚羟丙基甲基丙烯酸酯,聚羟乙基甲基丙烯酸酯,聚丙三醇甲基丙烯酸酯或这些功能聚合物的混合物。然后,将功能聚合物溶液与至少3种金属复合物(例如钛、钨和锌复合物)在有机溶剂中混合物。可以通过在室温下,将各种金属复合物在溶剂(比例为0.1-40:0.1-40)中溶解10分钟,制备金属复合物溶液。混合工艺由将钨复合物溶液加入功能聚合物溶液中开始,然后在磁力搅拌下在30分钟内,分别将锌和钛复合物溶液加入混合物中。金属复合物溶液中的金属成分可以选自钛、钯、铂、银、金、锌、铜、铁、钨或这些元素的混合物。
(b)将得自(a)的溶液与浓酸(重量比为0.1-30:0.1-30)混合,其中所述的浓酸选自乙酸、硫磺酸、盐酸或这些酸的混合物。
(c)将得自(b)的溶液通过针基静电纺丝、纳米蜘蛛静电纺丝或增强/离心纺丝,制造成纳米纤维。
(d)在非约束下、玻璃纤维约束下或者在载玻片约束下,通过退火和煅烧工艺(AC工艺),将得自(c)的纳米纤维膜加工成金色氧化物纳米纤维膜。煅烧温度可以选自100-900℃,1-24小时。
(e)在可见光、UV或太阳光下,通过贵金属纳米颗粒将得自(c)的纳米纤维或得自(d)的金属氧化物纳米纤维修饰1-24小时。
(f)将得自(e)的纳米纤维或纳米纤维膜洗涤并干燥。
(a)中的有机溶剂可以选自甲醇、乙醇、二氯甲烷、二甲基甲酰胺、二甲基亚砜、氯仿或甲苯。然而,最合适的溶剂为二甲基甲酰胺。
在下个部分中,描述本发明,但不限于给出的实施例。
实施例
用于纳米纤维制造的静电纺丝溶液的合适组成的研发
本部分通过混合所需的金属复合物溶液、然后研究混合后的稳定性,来研究溶液的合适组成的研发(实施例1-4)。
实施例1:由钨和锌复合物在水和乙醇的混合物中制造纳米纤维
由于二氧化钛纳米颗粒(P-25)可溶解于水或乙醇,所以进行包含偏钨酸铵水合物和醋酸锌水合物的纳米纤维制造的初步研究,然后将P-25加入溶液混合物中。
前体溶液的制备和纳米纤维的制造:
(a)将聚乙烯吡咯烷酮(PVP)溶液(PVP:乙醇的重量比为1:10)与偏钨酸铵水合物(AMT)复合物溶液(AMT:水的重量比为1:10)和醋酸锌水合物(ZAH)复合物溶液(ZAH:水的重量比为1:10)混合。
(b)通过纳米蜘蛛机,通过应用18cm的电极到地面的距离、40kV电压和8rpm的电极旋转速度,将由(a)得到的溶液制造成纳米纤维膜。
(c)对由(b)得到的纳米纤维膜进行表征。
结果:包含AMT和ZAH复合物溶液的溶液混合物是稳定的,并且能够制造成均匀的纳米纤维(图1a)。
实施例2:由钨复合物、锌复合物和二氧化钛纳米颗粒在水和乙醇的混合物中制造纳米纤维
实施本实施例的试验,以便研究在将二氧化钛纳米颗粒混合至AMT和ZAH复合物溶液中之后,纳米纤维的稳定性和物理特征。
前体溶液的制备和纳米纤维的制造:
(a)在磁力搅拌下,将聚乙烯吡咯烷酮(PVP)溶液(PVP:乙醇的重量比为1:10)与偏钨酸铵水合物(AMT)复合物溶液(AMT:水的重量比为1:10)、醋酸锌水合物(ZAH)复合物溶液(ZAH:水的重量比为1:10)和二氧化钛纳米颗粒(P-25:PVP溶液的比例为1:10)混合30-60分钟。
(b)通过纳米蜘蛛机,通过应用18cm的电极到地面的距离、40kV电压和8rpm的电极旋转速度,将由(a)得到的溶液制造成纳米纤维膜。
(c)将由(b)得到的纳米纤维在大气压力下在500℃下煅烧4小时,以便分解纳米纤维中的碳含量,然后进一步表征所得的金属氧化物纳米纤维的稳定性和物理特征。
结果:由于P-25的低溶解性,使得纳米纤维的表面显示粗糙的(图1b)可能性,其中所述的P-25的低溶解性导致沿着AMT和ZAH纳米纤维发生颗粒结块。
-在煅烧后,纳米纤维显示高度的脆性(图1c),并且具有不均匀的纤维结构,这是因为它们的一部分包含P-25结块(图1d)。
由本实施例,可以推断,将P-25加入溶液混合物中,会破坏溶液的稳定性,并且影响煅烧过程中纳米纤维的形成,其使得所得的材料不适用于进一步的使用。
实施例3:由钨复合物、锌复合物和异丙醇钛溶液在水和乙醇的混合物中制造纳米纤维
实施本实施例的试验,以便研究在使用异丙醇钛替代P-25之后,纳米纤维的稳定性和物理特征。
纳米纤维的制造工艺包括:
(a)将聚乙烯吡咯烷酮(PVP)溶液(PVP:乙醇的重量比为1:10)分别与偏钨酸铵水合物(AMT)复合物溶液(AMT:水的重量比为1:10)、醋酸锌水合物(ZAH)复合物溶液(ZAH:水的重量比为1:10)和异丙醇钛(TIP)溶液(TIP:PVP溶液的比例为1:5)混合。
(b)通过纳米蜘蛛机,通过应用18cm的电极到地面的距离、40kV电压和8rpm的电极旋转速度,将由(a)得到的溶液制造成纳米纤维膜。
(c)将由(b)得到的纳米纤维在大气压力下在500℃下煅烧4小时,以便分解纳米纤维中的碳含量,然后进一步表征所得的金属氧化物纳米纤维的稳定性和物理特征。
结果:在将TIP溶液加入AMT和ZAH复合物溶液中之后,TIP结块形成白色固体颗粒,其使得溶液不均匀。
在制造后,纳米纤维是不稳定的并且不能制造成膜,这是因为溶液中的固体部分破坏了静电纺丝工艺(图1e)。随后,在煅烧工艺后,发生粗糙的结块的颗粒,并且未发现纳米纤维的痕迹(图1f)。
实施例4:由钨复合物、锌复合物和异丙醇钛在二甲基甲酰胺中制造纳米纤维
实施本实施例的试验,以便研究在使用二甲基甲酰胺(DMF)作为溶剂(其能够溶解AMT、ZAH和TIP溶液)之后,纳米纤维的稳定性和物理特征。首先,由于水可以诱使TIP结块,所以出去系统中的水。然而,使用唯一的乙醇溶剂不足以溶解醋酸锌。由于需要其他的有机溶剂,所以选择DMF。
纳米纤维的制造工艺包括:
(a)将聚乙烯吡咯烷酮(PVP)溶液(PVP:乙醇的重量比为1:10)分别与偏钨酸铵水合物(AMT)复合物溶液(AMT:DMF的重量比为1:10)、醋酸锌水合物(ZAH)复合物溶液(ZAH:DMF的重量比为1:10)和异丙醇钛(TIP)溶液(TIP:PVP溶液的比例为1:5)混合。
(b)将浓乙酸以1:5比例加入到由(a)得到的溶液中。
(c)通过纳米蜘蛛机,通过应用18cm的电极到地面的距离、40kV电压和8rpm的电极旋转速度,将由(a)得到的溶液制造成纳米纤维膜。
(d)将由(c)得到的纳米纤维在大气压力下在指定温度下煅烧4小时,其中为:
500℃(实施例4a)
600℃(实施例4b)
700℃(实施例4c)
(e)对指定为实施例4a、4b和4c的金属氧化物纳米纤维膜进行表征。
结果:所有3种化学组成(AMT、ZAH和TIP)均能够一起溶解于乙醇和DMF混合物中。在制造后,纳米纤维的特征显示是均匀的(图2a)。
图4a:在500℃下煅烧后,纳米纤维的特征显示类似于煅烧之前的它们(图2b)。EDX分析证明纳米纤维内存在钨、锌和钛(图2c)。由X射线衍射仪(XRD)分析,发现大部分的钛晶体结构为锐钛矿形式,少部分为金红石形式。此外,代表钨和锌元素的信号不明显(图2d)。
实施例4b:在将煅烧温度升高至600℃之后,并且使用得自实施例4a的同一种溶液,杆状结构由纳米纤维的表面茎生出来(图3a)。由透射电子显微镜(TEM)进行的颗粒研究来看(图3c),层间距离值暗示杆状结构可以是锌钨氧化物(图3d)。此外,EDX分析证明存在所有预计的元素,其类似于由500℃煅烧得到的样品的那些(图3e)。
由XRD分析,大部分的钛晶体为锐钛矿形式,少部分为金红石形式。此外,钨室和锌室的足迹显示与由实施例4a得到的那些相比,强度更高。在将信号与得自数据库的参照相比后,证明存在ZnWO4(图3f)。
实施例4c:在700℃下煅烧后,纳米纤维的物理和化学特征类似于实施例4b的那些(图3b)。然而,样品显示锐钛矿晶体的量比金红石晶体的量更低。
在实施例2-4中,实施例4(4a-4c)是最均匀的,并且是物理稳定的纳米纤维。此外,由3个实施例中选择实施例4b用于随后的贵金属沉积工艺,这是因为其获得大级份的锐钛矿晶体结构,其具有优异的光催化活性。
综上,选择实施例4b用于贵金属沉积工艺,并且增加纳米纤维在下一个实施例中的稳定性。
用于工业规模应用的纳米纤维膜稳定性增强工艺
该部分研究纳米纤维膜稳定性和挠性的研发,其受到以下事实的激励:金属氧化物纳米纤维的脆性会阻碍工业制造和进一步的研发。偶然地,在实施例4b在600℃下煅烧后,所得的金属氧化物纳米纤维膜(MONM)会急剧地扭曲和碎裂(图4b),极大地不同于煅烧之前的纳米纤维膜(图4a)。由这种观察,可以假设,聚合物在煅烧工艺中快速降解是不稳定的金属氧化物膜的主要原因。
以下研究集中于由实施例4b在煅烧过程中的结构稳定性的研发,因为这可能是用于生产最稳定的金属氧化物纳米纤维的最合适的样品。所述的研发集中于煅烧工艺,其将纳米纤维完全转化成完全的金属氧化物。
实施例5:在煅烧之前通过多个退火步骤由钨复合物、锌复合物和异丙醇钛在二甲基甲酰胺中制造纳米纤维膜
本实施例的制造工艺类似于实施例4b,不同之处在于在低于所包含的聚合物的Tg的温度(100℃)下或者在高于聚合物的Tg的温度(200℃)下实施1个小时的退火步骤,然后在600℃下煅烧4小时,其中:
实施例5a:在100℃和600℃下退火和煅烧工艺(AC工艺)中非约束的纳米纤维膜。
实施例5b:在200℃和600℃下退火和煅烧工艺(AC工艺)中非约束的纳米纤维膜。
实施例5c:在100℃和600℃下退火和煅烧工艺(AC工艺)中处于扁平夹层中的玻璃纤维约束的纳米纤维膜。
实施例5d:在200℃和600℃下退火和煅烧工艺(AC工艺)中处于扁平夹层中的玻璃纤维约束的纳米纤维膜。
实施例5e:在200℃和600℃下退火和煅烧工艺(AC工艺)中处于扁平夹层中的载玻片约束的纳米纤维膜。
实施例5f:弯曲形状的玻璃纤维约束的纳米纤维膜。
实施例5g:曲线形状的玻璃纤维约束的纳米纤维膜。
结果:
实施例5a:煅烧后的MONM显示在膜(与煅烧前纳米纤维膜相比,图4c)的边缘具有低度的偏转(图4d)。
实施例5b:在膜的边缘(图4f)(与煅烧前的纳米纤维膜相比,图4e),就偏转观测而言,煅烧后的MONM类似于实施例5a(在100℃下煅烧)。
由实施例5a和5b来看,其他的退火工艺可以降低MONM的偏转度,但是不能完全克服膜的物理不稳定性。
实施例5c:煅烧后的MONM表面显示扁平,未观察到破碎(图4h)。此外,膜的尺寸相对于煅烧前,比率降低71.43%(图4g)。
实施例5d:煅烧后的MONM类似于实施例5c,但是膜的表面由扁平变成粗糙的结构(图4i)。膜的尺寸降低68.83%,表明比实施例5d的膜具有更强的物理稳定性。
由实施例5c和5d来看,AC工艺与通过玻璃纤维的结构约束的组合得到更稳定的MONM(图5a和5c)。
实施例5e:纳米纤维膜在煅烧前(图4k)和煅烧后(图4l)给出光滑的表面。然而,煅烧后的膜是如此脆,以至于其是破碎的,并且作为整块拿起。
由实施例5e来看,可以推断,使用玻璃纤维进行约束要由于使用载玻片约束(图5b和5d)。
实施例5f:通过使用一对玻璃纤维(用于沿着烧杯内部弯曲的膜约束),研究纳米纤维膜在煅烧时的挠性(图4m)。发现所述的工艺可以根据需要,保持MONM的形状(图4n)。
实施例5g:此外,在与实施例5f相同的条件下,在煅烧前通过将纳米纤维膜包装在玻璃纤维的堆叠层中(图4o),研究纳米纤维膜在煅烧时的挠性。发现,在煅烧后,膜是极其稳定的,并且在以所述的小角度弯曲时,未观察到断裂(图4p)。
在金属氧化物纳米纤维膜上贵金属的光沉积
本研究的目的是改进金属氧化物纳米纤维针对通过可见光和太阳光活化的光催化活性。贵金属修饰的金属氧化物纳米纤维的研发可以通过在表面上掺杂贵金属(例如钯和铂)来进行。
在UV、可见光和自然太阳光下,通过光沉积工艺,选择实施例4b用于这种贵金属的掺杂。
实施例6:在UV、可见光和自然太阳光下在纳米纤维上贵金属的修饰
在纳米纤维上贵金属修饰如下:
(a)硝酸钯(II)水合物和六氯铂酸(IV)金属复合物溶液制备工艺:
在第一烧杯中,在磁力搅拌下,在10分钟内将硝酸钯(II)水合物以0.00167:10的比例(以重量百分率计)加入水中。
在第二烧杯中,在磁力搅拌下,在10分钟内将六氯铂酸(IV)以0.005:10的比例(以重量百分率计)加入水中。
(b)将由(a)得到的两种溶液混合,然后在多种光源照射下,在1小时内加入实施例5d的纳米纤维,其中:
在UV光下(实施例6a)
在可见光下(实施例6b)
在太阳光下(实施例6c)
(c)将得自6a-6c的纳米纤维洗涤并干燥。
(d)对得自(c)的纳米纤维和沉积的贵金属纳米颗粒进行表征。
结果:
实施例6a:通过光源与溶液之间的距离,控制在UV光下,在金属氧化物纳米纤维上,钯和铂离子的还原、以及各种金属的成核现象。在反应后,所得的纳米纤维的特征类似于反应前纳米纤维的特征。但是,纳米纤维的平均直径增加(图6a)。由EDX来看,在纳米纤维的表面上,发现钯和铂元素(图6d)。
实施例6b:使用可见光实施类似的光还原反应。在反应后,纳米纤维的特征类似于实施例6a(图6b)。此外,EDX分析还表明钯和铂元素存在于所述的表面上。
实施例6c:在自然太阳光下,实施光还原反应,并且在试验过程中记录光强度。在反应后,纳米纤维的平均直径增大,并且如EDX分析表明,在表面上观察到比实施例6a和6b更多的金属元素(图6c)。
随后,可以通过TEM表征沉积在金属氧化物纳米纤维上的金属纳米颗粒。发现金属纳米颗粒均匀地沉积在二氧化钛和锌钨氧化物(图6e)上。在分析颗粒的层间距离后,报告钯纳米颗粒的尺寸为1-15纳米(图6f)。在TEM下,观察到锌钨氧化物上的铂纳米颗粒(图6g)小3纳米(图6h)。
由实施例6的结果来看,已经看出在可见光、UV和太阳光下可以进行有效的光还原反应。综上,最佳的实施例以及用于进一步规模扩大的最合适的工艺是实施例6c,这是因为在自然太阳光(自由能)下成功地进行各种光反应,并且比实施例6a和6b的那些更容易。
通过纳米纤维膜光催化分解模型污染物
针对光催化降解亚甲蓝(MB)(作为模型污染物),测量污染物的分解效率。首先,在自然太阳光下,将10mg纳米纤维悬浮在500ppm MB溶液中(图7)。
在本试验中,将两种类型的纳米纤维(TiO2-ZnWO4和Pd/Pt-TiO2-ZnWO4)分别用作用于效率比较的光催化剂。不具有任何催化剂的MB溶液还被用作参照。
结果:两种纳米纤维均显示高的MB降解效率。对于Pd/Pt-TiO2-ZnWO4和TiO2-ZnWO4纳米纤维,最高的MB降解率在最初的两个小时内发生(图7)。
针对气态500ppm苯(挥发性有机化合物,VOC),评价纳米纤维膜的催化活性。通过在可见光下,使用0.1g纳米纤维将500ppm苯处理4小时而进行试验(将悬液与灯泡之间的距离固定为10cm)(图8a)。在反应后,通过气相色谱(GC),评价分解的苯的浓度。
结果:与对照气体相比,通过计算分解的苯的峰值面积,进行苯浓度的分析。由所述的分析来开,用作参照催化剂的WO3纳米纤维未显示苯的降解效率,而TiO2-ZnWO4纳米纤维得到37%的苯的降解效率(表1)。
除了苯的降解反应以外,Pd/Pt-TiO2-ZnWO4纳米纤维进一步用于氧化甲醇转化成甲酸甲酯。在反应后,在6.442下显示GC峰,并且参照GC数据库,证明为甲酸甲酯的峰(图8b和8c)。
表1.纳米纤维的苯的降解效率

Claims (17)

1.一种稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜,其由二氧化钛和钨氧化物作为主要组成的锐钛矿和金红石晶体构成。所述的纳米纤维的表面包含具有sanmatinite晶体的锌钨氧化物纳米棒。此外,所述的纳米纤维和所述的锌钨氧化物纳米棒的表面通过单层形式的贵金属纳米颗粒修饰。
2.根据权利要求1所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜,其中所述的纳米纤维的直径为100-200nm。
3.根据权利要求1或2所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜,其中所述的二氧化钛的锐钛矿晶体结构的量高于金红石晶体结构的量。
4.根据权利要求1至3的任意一项所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜,其中所述的锌钨氧化物的sanmatinite晶体结构表示尺寸为30-50nm的纳米棒。
5.根据权利要求1至4的任意一项所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜,其中在所述的纳米纤维表面上的贵金属纳米颗粒的尺寸为1-15nm。
6.根据权利要求1至5的任意一项所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜,其中所述的贵金属纳米颗粒可以选自钯、铂、银、金、铑、铱、钌、锇、钽、钛或它们的混合物。
7.根据权利要求6所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜,其中所述的最合适的贵金属纳米颗粒为钯。
8.根据权利要求6所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜,其中所述的最合适的贵金属纳米颗粒为铂。
9.根据权利要求1至8的任意一项所要求的由所述的纳米纤维制造的挠性的且稳定的纳米纤维膜,其中所述的纳米纤维沿着它们的轴随意地突出。
10.根据权利要求1至9的任意一项所要求的由所述的纳米纤维制造的挠性的且稳定的纳米纤维膜,其中所述的纳米纤维膜能够耐受500-900℃的温度。
11.根据权利要求1至10的任意一项所要求的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜,其中:
a)将所述的功能聚合物溶液与至少3种金属前体在有机溶剂中混合物,其中所述的金属前体包括钛、钨和锌复合物。所述的混合工艺开始于将所述的钨复合物溶液加入所述的功能聚合物溶液中,然后在磁力搅拌下在30分钟内加入所述的锌和钛的复合物溶液。
b)将由a)得到的所述的溶液以0.1-30:0.1-30的重量比与浓酸混合。
c)通过针基静电纺丝、纳米蜘蛛静电纺丝和增强/离心纺丝,将由b)得到的所述的溶液制造成所述的纳米纤维。
d)通过退火和煅烧工艺(AC工艺),通过非约束、玻璃纤维或载玻片约束,将由c)得到的所述的纳米纤维膜加工成金属氧化物纳米纤维膜。所述的煅烧温度可以选自100-900℃,达1-24小时。
e)在可见光、UV或太阳光下,通过光沉积工艺,通过贵金属纳米颗粒将得自c)的所述的纳米纤维或者得自d)的金属氧化物纳米纤维修饰1-24小时。
f)将得自e)的所述的纳米纤维或纳米纤维膜洗涤并干燥。
12.根据权利要求11所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜的制造工艺,其中所述的功能聚合物溶液可以通过将所述的功能聚合物与乙醇以0.1-40:0.1-40的重量比在室温下混合30分钟来制备。
13.根据权利要求11或12所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜的制造工艺,其中各种金属复合物溶液是通过将所述的金属复合物与溶剂以0.1-40:0.1-40的重量比在室温下混合10分钟而制备。
14.根据权利要求13所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜的制造工艺,其中所述的有机溶剂可以选自甲醇、乙醇、二氯甲烷、二甲基甲酰胺、二甲基亚砜、氯仿、甲苯。所述的合适的有机溶剂为二甲基甲酰胺。
15.根据权利要求11至14的任意一项所要求的所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜的制造工艺,其中所述的功能聚合物沿着所述的烃链具有官能团,例如羟基基团、胺基基团或羧酸基团。所述的功能聚合物可以选自聚丙烯腈,聚乙烯吡咯烷酮,聚乙烯醇,聚羟丙基甲基丙烯酸酯,聚羟乙基甲基丙烯酸酯,聚丙三醇甲基丙烯酸酯或这些功能聚合物的混合物。
16.根据权利要求11至15的任意一项所要求的所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜的制造工艺,其中所述的金属复合物可以选自钛、钯、铂、银、金、铜、铁、钨或它们的混合物。
17.根据权利要求11至16的任意一项所要求的所述的稳定的按照设计的金属氧化物纳米纤维和挠性的且稳定的纳米纤维膜的制造工艺,其中所述的浓酸可以选自乙酸、硫酸、盐酸或它们的混合物。
CN201680077366.6A 2015-12-29 2016-12-28 稳定的金属氧化物纳米纤维,及其制造方法 Expired - Fee Related CN108778499B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TH1501007936 2015-12-29
TH1501007936A TH176227A (th) 2015-12-29 "เส้นใยเมทัลออกไซด์นาโนโฟโตคะตะลิสต์ที่มีความเสถียรสามารถขึ้นรูปได้ และแผ่นเมมเบรนเส้นใยนาโนที่มีความยืดหยุ่น และเสถียรซึ่งขึ้นรูปจากเส้นใยดังกล่าว รวมถึงกรรมวิธีการประดิษฐ์เส้นใยและแผ่นเมมเบรนเส้นใยนาโนขึ้นรูปดังกล่าว"
PCT/TH2016/000106 WO2017116316A1 (en) 2015-12-29 2016-12-28 Flexible metal oxide nanofibers prepared by electrospinning and stable nanofibrous fabric made thereof and preparation process

Publications (2)

Publication Number Publication Date
CN108778499A true CN108778499A (zh) 2018-11-09
CN108778499B CN108778499B (zh) 2022-08-12

Family

ID=58261697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680077366.6A Expired - Fee Related CN108778499B (zh) 2015-12-29 2016-12-28 稳定的金属氧化物纳米纤维,及其制造方法

Country Status (3)

Country Link
JP (1) JP6669875B2 (zh)
CN (1) CN108778499B (zh)
WO (1) WO2017116316A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110894677A (zh) * 2019-11-08 2020-03-20 东华大学 一种导电纳米纤维膜及其制备方法
CN111215059A (zh) * 2020-01-06 2020-06-02 湖北大学 一种金纳米颗粒修饰的二氧化钛(b)纳米片催化剂及其制备方法和应用
CN111282580A (zh) * 2020-03-23 2020-06-16 齐鲁工业大学 一种银修饰钨酸钴/钨酸镉纳米纤维光催化材料及其制备方法与应用
CN113106590A (zh) * 2021-04-15 2021-07-13 苏州大学 一种防起球抗菌型羊毛纱线及其制备方法
CN115449957A (zh) * 2022-10-01 2022-12-09 刘玉文 一种家用纺织面料及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10456776B1 (en) 2019-02-21 2019-10-29 King Saud University Method of fabricating a photocatalyst for water splitting
CN110745934A (zh) * 2019-10-22 2020-02-04 庆泓技术(上海)有限公司 一种改性的高活性无机纤维复合材料和制备及再生方法
CN111569644A (zh) * 2020-04-29 2020-08-25 江苏卓高环保科技有限公司 一种催化分解甲醛氨气材料及其制备的除甲醛除臭净化器
CN111530452A (zh) * 2020-04-29 2020-08-14 江苏卓高环保科技有限公司 一种催化分解甲醛释放负离子复合微球及其制备的净化器
JP6956968B1 (ja) * 2020-06-23 2021-11-02 国立大学法人弘前大学 燃料電池用触媒、電極触媒層、膜電極接合体、固体高分子形燃料電池、および、燃料電池用触媒の製造方法
CN111911924B (zh) * 2020-07-29 2021-12-24 西安菲尔特金属过滤材料股份有限公司 一种平板式铁铬铝纤维燃烧头的制备方法
CN114164511B (zh) * 2021-03-23 2024-02-09 耐酷时(北京)科技有限公司 一种多孔二氧化钛混合聚丙烯腈纤维的制备方法
CN113426492A (zh) * 2021-06-29 2021-09-24 东华大学 一种非晶态多孔陶瓷纳米纤维膜及其制备方法和应用
CN113926455B (zh) * 2021-09-14 2024-01-23 河南科技大学 一种双金属纳米颗粒纤维催化剂的制备方法
WO2023154872A2 (en) * 2022-02-11 2023-08-17 Drexel University Nanomaterial-based processing of dyes and organic compounds
CN116328756A (zh) * 2023-03-16 2023-06-27 东南大学 一种复合薄膜半导体光催化剂及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801909A1 (en) * 2004-10-15 2007-06-27 Bridgestone Corporation Dye sensitized metal oxide semiconductor electrode and method for manufacturing the same, and dye sensitized solar cell
CN101623630A (zh) * 2009-07-24 2010-01-13 中国科学院上海硅酸盐研究所 具有多级异质结构的Bi2WO6/氧化物纤维布、方法及应用
KR20110034146A (ko) * 2009-09-28 2011-04-05 재단법인대구경북과학기술원 다결정질 이산화티탄 나노 막대 및 그의 제조방법
CN102089077A (zh) * 2008-03-20 2011-06-08 阿克隆大学 包含纳米尺寸金属触媒微粒的纳米纤维及其介质
EP2031613A3 (en) * 2007-08-29 2011-09-14 Korea Institute of Science and Technology Dye-sensitized solar cell with metal oxide layer containing metal oxide nanoparticles produced by electrospinning and method for manufacturing same
WO2012031357A1 (en) * 2010-09-10 2012-03-15 Ozin Geoffrey A Photoactive material comprising nanoparticles of at least two photoactive constiuents
US8603936B2 (en) * 2008-01-29 2013-12-10 Seoul National University R&Db Foundation Visible light-responsive photocatalyst composition containing tungsten-based oxides and method of producing the same
CN103623803A (zh) * 2012-08-30 2014-03-12 上海纳晶科技有限公司 一种可见光光催化剂及其制备方法
CN105107519A (zh) * 2015-09-11 2015-12-02 辽宁石油化工大学 一种原位合成钨酸盐/氧化钨异质结光催化剂的方法
JP2015231593A (ja) * 2014-06-09 2015-12-24 国立研究開発法人物質・材料研究機構 光触媒複合体材料及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103806127A (zh) * 2012-11-15 2014-05-21 大连捌伍捌创新工场科技服务有限公司 一种光催化纤维

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801909A1 (en) * 2004-10-15 2007-06-27 Bridgestone Corporation Dye sensitized metal oxide semiconductor electrode and method for manufacturing the same, and dye sensitized solar cell
EP2031613A3 (en) * 2007-08-29 2011-09-14 Korea Institute of Science and Technology Dye-sensitized solar cell with metal oxide layer containing metal oxide nanoparticles produced by electrospinning and method for manufacturing same
US8603936B2 (en) * 2008-01-29 2013-12-10 Seoul National University R&Db Foundation Visible light-responsive photocatalyst composition containing tungsten-based oxides and method of producing the same
CN102089077A (zh) * 2008-03-20 2011-06-08 阿克隆大学 包含纳米尺寸金属触媒微粒的纳米纤维及其介质
CN101623630A (zh) * 2009-07-24 2010-01-13 中国科学院上海硅酸盐研究所 具有多级异质结构的Bi2WO6/氧化物纤维布、方法及应用
KR20110034146A (ko) * 2009-09-28 2011-04-05 재단법인대구경북과학기술원 다결정질 이산화티탄 나노 막대 및 그의 제조방법
WO2012031357A1 (en) * 2010-09-10 2012-03-15 Ozin Geoffrey A Photoactive material comprising nanoparticles of at least two photoactive constiuents
CN103623803A (zh) * 2012-08-30 2014-03-12 上海纳晶科技有限公司 一种可见光光催化剂及其制备方法
JP2015231593A (ja) * 2014-06-09 2015-12-24 国立研究開発法人物質・材料研究機構 光触媒複合体材料及びその製造方法
CN105107519A (zh) * 2015-09-11 2015-12-02 辽宁石油化工大学 一种原位合成钨酸盐/氧化钨异质结光催化剂的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUN-PING JIA ET AL.: "ZnWO4–TiO2 composite nanofilms: Preparation, morphology, structure and photoluminescent enhancement", 《MATERIALS LETTERS》 *
YANEE KEEREETA ET AL.: "Fabrication of ZnWO4 nanofibers by a high direct voltage electrospinning process", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110894677A (zh) * 2019-11-08 2020-03-20 东华大学 一种导电纳米纤维膜及其制备方法
CN110894677B (zh) * 2019-11-08 2022-03-04 东华大学 一种导电纳米纤维膜及其制备方法
CN111215059A (zh) * 2020-01-06 2020-06-02 湖北大学 一种金纳米颗粒修饰的二氧化钛(b)纳米片催化剂及其制备方法和应用
CN111215059B (zh) * 2020-01-06 2022-08-30 湖北大学 一种金纳米颗粒修饰的二氧化钛(b)纳米片催化剂及其制备方法和应用
CN111282580A (zh) * 2020-03-23 2020-06-16 齐鲁工业大学 一种银修饰钨酸钴/钨酸镉纳米纤维光催化材料及其制备方法与应用
CN113106590A (zh) * 2021-04-15 2021-07-13 苏州大学 一种防起球抗菌型羊毛纱线及其制备方法
CN115449957A (zh) * 2022-10-01 2022-12-09 刘玉文 一种家用纺织面料及其制备方法
CN115449957B (zh) * 2022-10-01 2024-05-28 佛山市顺德区丽轩纺织实业有限公司 一种家用纺织面料及其制备方法

Also Published As

Publication number Publication date
WO2017116316A1 (en) 2017-07-06
JP6669875B2 (ja) 2020-03-18
JP2019503325A (ja) 2019-02-07
CN108778499B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN108778499A (zh) 稳定的按照设计的金属氧化物纳米纤维,以及使用纤维及其纳米纤维膜的制造工艺形成的挠性且稳定的纳米纤维膜
Mamaghani et al. Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance
Selvamani et al. Phase-controlled synthesis of bismuth oxide polymorphs for photocatalytic applications
Liu et al. Photocatalytic reduction of CO 2 into methanol over Ag/TiO 2 nanocomposites enhanced by surface plasmon resonance
Adhikari et al. Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation
Dong et al. Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification
d’Elia et al. Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: Nanoparticles, nanotubes and aerogels
Zgura et al. Wet chemical synthesis of ZnO-CdS composites and their photocatalytic activity
Tiwari et al. One-step synthesis of noble metal–titanium dioxide nanocomposites in a flame aerosol reactor
Shahini et al. Immobilization of plasmonic Ag-Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst
Gea et al. Facile synthesis of ZnO–Ag nanocomposite supported by graphene oxide with stabilised band-gap and wider visible-light region for photocatalyst application
Altaf et al. Titania nano-fibers: a review on synthesis and utilities
Nirmala et al. Photocatalytic activities of electrospun tin oxide doped titanium dioxide nanofibers
KR101562254B1 (ko) 가시광선 영역에서 광촉매 활성을 가지는 고분자 나노섬유 및 그 제조방법
Xu et al. Template directed preparation of TiO2 nanomaterials with tunable morphologies and their photocatalytic activity research
Padmaja et al. Fabrication of hetero-structured mesoporours TiO2-SrTiO3 nanocomposite in presence of Gemini surfactant: characterization and application in catalytic degradation of Acid Orange
Wang et al. Open porous BiVO4 nanomaterials: Electronspinning fabrication and enhanced visible light photocatalytic activity
Pathak et al. A review on electrospun nanofibers for photocatalysis: Upcoming technology for energy and environmental remediation applications
Wu et al. Controlled synthesis of porous Co 3 O 4 nanofibers by spiral electrospinning and their application for formaldehyde oxidation
Ghorbani-Choghamarani et al. Application of nanofibers based on natural materials as catalyst in organic reactions
Capeli et al. Effect of hydrothermal temperature on the antibacterial and photocatalytic activity of WO 3 decorated with silver nanoparticles
EP2826559B1 (en) A process for the synthesis of visible light responsive doped titania photocatalysts
Bhat et al. Improving the thermal stability and n-butanol oxidation activity of Ag-TiO2 catalysts by controlling the catalyst architecture and reaction conditions
WO2017068350A1 (en) Methods of making metal oxide catalysts
Thirugnanam et al. Porous tubular rutile TiO2 nanofibers: synthesis, characterization and photocatalytic properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220812

CF01 Termination of patent right due to non-payment of annual fee