CN108723355A - 放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法和应用 - Google Patents

放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法和应用 Download PDF

Info

Publication number
CN108723355A
CN108723355A CN201810548003.7A CN201810548003A CN108723355A CN 108723355 A CN108723355 A CN 108723355A CN 201810548003 A CN201810548003 A CN 201810548003A CN 108723355 A CN108723355 A CN 108723355A
Authority
CN
China
Prior art keywords
powder
composite materials
sintering
discharge plasma
magnetism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810548003.7A
Other languages
English (en)
Inventor
李桂荣
张德
王宏明
解萌蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201810548003.7A priority Critical patent/CN108723355A/zh
Publication of CN108723355A publication Critical patent/CN108723355A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明属于复合材料制备技术领域,具体涉及放电等离子烧结制备磁性Sm2Co17/Al‑Ni‑Co复合材料的方法和应用。本发明采用放电等离子烧结制备磁性Sm2Co17/Al‑Ni‑Co复合材料的方法具体如下:首先将Sm2Co17磁粉与铝粉、钴粉、镍粉按比例混合均匀,加入乙醇,在球磨机中湿磨,真空干燥,得到混合粉体;然后用冷等静压压制成型;将得到的复合材料坯锭放入石墨模具中,在放电等离子烧结炉中进行真空烧结,烧结完成后冷却至室温,即得到Sm2Co17/Al‑Ni‑Co复合材料;将复合材料进行充磁,得到磁性Sm2Co17/Al‑Ni‑Co复合材料。本发明的磁性Sm2Co17/Al‑Ni‑Co复合材料磁性较强,永磁效果更好;复合材料组织均匀,结构稳定,具有更强的抗拉强度、屈服强度。本发明的制备工艺过程简单,可控性高,烧结快速、烧结温度低,有望用于生产中。

Description

放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法 和应用
技术领域
本发明属于复合材料制备技术领域,具体涉及放电等离子烧结制备磁性 Sm2Co17/Al-Ni-Co复合材料的方法和应用。
背景技术
制备磁性复合材料大多采用熔炼法和粉末烧结法制备,熔炼法工序复杂,用时较长,加 热温度高,反应不易控制等缺点。用粉末冶金方法制造的磁性材料是磁性材料领域的一个重 要组成部分,近年来粉末冶金磁性材料飞速发展,尤其是被称为永磁王的Nd-Fe-B永磁材料, 只有采用粉末冶金的工艺才能充分发挥其优异的性能。但传统的粉末冶金法烧结时间长、烧 结温度场不均匀,不利于得到高密度、显微组织细小的烧结体,容易产生偏析等多种缺陷, 影响材料使用性能。
放电等离子烧结(SPS)是一种快速、节能、环保的材料制备加工新技术;该技术是在 加压粉末颗粒间直接通入脉冲电能,由火花放电瞬间产生的等离子体加热颗粒,使烧结体内 各个颗粒均匀地产生焦耳热,进而使颗粒表面活化,实现超快速致密化烧结;与传统的热压、 热等静压技术相比,具有烧结快速、烧结温度低、烧结机理特殊、无需粉末预成形、可直接 烧成致密体等优点。
Al-Ni-Co材料永磁且具有剩磁高、居里温度高且剩磁温度系数小的优点,多用于电气仪 表和通讯机器等要求高可靠性的领域中;根据生产工艺的不同Al-Ni-Co永磁分为铸造磁体和 粉末烧结磁体;铸造铝镍钴型永磁合金由于具有较高的永磁性能和良好的温度稳定性能,因 而在仪表、电子、电力工业和尖端科学技术中得到广泛的应用;由于已有技术的粉末烧结磁 体较之铸造磁体具有材料利用率高、成分偏析小、磁特性波动小的优点,所以粉末烧结磁体 正逐步代替铸造磁体,但总体磁特性略低于铸造磁体,同时粉末烧结工序繁杂,周期较长, 故对工艺控制的要求较高,容易产生缺陷,如气孔、变形、夹杂脏化、密度偏低;因此提高 粉末烧结磁体的磁特性和降低工艺要求,提高产品质量一直是生产上追求的目标。
目前,国内外使用的2:17型Sm-Co磁体最广泛的一类是Sm2(Co Fe Cu Zr)17型合金; 该类磁体居里温度约为820~870℃,剩磁温度系数约为-0.03%/℃,矫顽力温度系数约为 -0.21%/℃,工作温度可高达350℃左右;近年来,随着航空航天技术的高速发展,急需工作 温度更高的磁体,来提高新一代航天器上的发动机机组及其电子元器件的可靠性和安全性, 2:17型Sm-Co永磁体因其较高的居里温度和磁性能成为了首选材料;但其合金中含有大量 的稀缺资源Sm和战略储备资源Co,使其制备成本大大提高,极大的限制了它的产业化发展。
发明内容
本发明的目的在于克服现有技术中存在的缺陷,如:Al-Ni-Co永磁体传统粉末烧结工艺 复杂,周期较长,容易产生缺陷,如气孔、变形、夹杂脏化、密度偏低,磁特性较差,同时 Sm2(Co Fe Cu Zr)17型合金由于其合金中含有大量的稀缺资源Sm和战略储备资源Co,极大 的限制了它的产业化发展等,本发明提供了一种放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co 复合材料的方法。
具体的,本发明采用的技术方案为:
(1)球磨:
将Sm2Co17磁粉与铝粉、钴粉、镍粉按比例混合均匀,加入乙醇,在球磨机中湿磨,将球磨后的粉末放入真空干燥箱中烘干,得到混合粉体;
(2)压制成型:
将步骤(1)中的混合粉体用冷等静压压制成型,得到致密的复合材料坯锭;
(3)放电等离子烧结:
将复合材料坯锭放入石墨模具中,在放电等离子烧结炉中进行真空烧结,烧结完成后冷 却至室温后取出样品,即得到Sm2Co17/Al-Ni-Co复合材料;
(4)充磁:
将步骤(3)得到的Sm2Co17/Al-Ni-Co复合材料放入充磁机充磁,得到磁性Sm2Co17/Al-Ni-Co复合材料;
优选地,步骤(1)中,所述的Sm2Co17磁粉、铝粉、钴粉、镍粉的质量比为1-3:1-3:1-3:1-5;
优选地,步骤(1)中,所述的球磨时间为10-12h;
优选地,步骤(2)中,所述的冷等静压压强为90-100MPa,保压时间为2-5min;
优选地,步骤(3)中,所述烧结温度为450-500℃,升温速率为40-60℃/min,烧结压力为30-40MPa,烧结时间为2-4min;冷却时需要充氩气。
本发明提供了一种磁性Sm2Co17/Al-Ni-Co复合材料的应用,所述磁性Sm2Co17/Al-Ni-Co 复合材料用于生产永磁转子或永磁磁铁。
与现有技术相比较,本发明的有益效果体现如下:
(1)本发明的磁性复合材料,采用Sm2Co17磁粉与Al-Ni-Co两种磁性材料复合,比单一的Al-Ni-Co材料磁性更强,永磁效果更好;
(2)相较于传统粉末烧结工艺,放电等离子烧结技术的优势在于烧结快速、烧结温度低、 烧结机理特殊,整个工艺过程简单,可控性高,解决了Al-Ni-Co永磁体传统粉末烧结工艺复 杂的问题,所制备的复合材料组织均匀,结构稳定,具有更强的抗拉强度、屈服强度和更好 的磁特性,解决了Al-Ni-Co永磁体磁特性较差的问题,本发明制备的Sm2Co17/Al-Ni-Co复合 材料兼备Al-Ni-Co永磁体和Sm2Co17的优点。
(3)和单一的Sm2(Co Fe Cu Zr)17型合金相比,所制备的复合材料大大减少了稀缺资源 Sm和战略储备资源Co的用量,降低了材料制备所需成本。
具体实施方式
下面结合具体实施例对本发明作进一步描述:
实施例1:
(1)制粉:
实验所用铝粉为99.85%纯度的粉末,平均粒径为10μm;通用钴粉,平均粒径2μm;镍粉,平均粒径2μm;工业生产2:17型Sm-Co永磁材料(Sm2Co17磁粉),制粉后平均粒 径约为5μm;
(2)球磨:
称取18gSm2Co17磁粉、18g铝粉、18g钴粉、18g镍粉,将上述粉末混合,加入乙醇, 使乙醇覆盖上述混合粉末,在行星式球磨机中湿磨12h,将球磨后的粉末放入真空干燥箱中烘干,得到混合粉体;
(3)压制成型:
将烘干后的混合粉末经冷等静压压制,加压90MPa,保压5min,得到致密的复合材料坯 锭;
(4)放电等离子烧结:
将步骤(3)中复合材料坯锭放入石墨模具中,在日本Sinter Land公司生产的SPS-3.20MK-Ⅳ型放电等离子烧结系统上进行真空烧结,升温速率为40℃/min,烧结温度为450℃,烧结压力为40MPa,烧结时间为4min,烧结完成后充氩气冷却至100℃以下后取出 样品,即得到Sm2Co17/Al-Ni-Co复合材料;
(5)充磁:
将步骤(4)制得的Sm2Co17/Al-Ni-Co复合材料放入充磁机在3T的磁场下充磁,获得所 需的磁性Sm2Co17/Al-Ni-Co复合材料。
实施例2:
(1)制粉:
实验所用铝粉为99.85%纯度的粉末,平均粒径为10μm;通用钴粉,平均粒径2μm;镍粉,平均粒径2μm;工业生产2:17型Sm-Co永磁材料(Sm2Co17磁粉),制粉后平均粒 径约为5μm;
(2)球磨:
称取25gSm2Co17磁粉、15g铝粉、15g钴粉、15g镍粉,将上述粉末混合,加入乙醇, 使乙醇覆盖上述混合粉末,在行星式球磨机中湿磨10h,将球磨后的粉末放入真空干燥箱中烘干,得到混合粉体;
(3)压制成型:
将烘干后的混合粉末经冷等静压压制,加压100MPa,保压2min,得到致密的复合材料 坯锭;
(4)放电等离子烧结:
将步骤(3)中复合材料坯锭放入石墨模具中,在日本Sinter Land公司生产的SPS-3.20MK-Ⅳ型放电等离子烧结系统上进行真空烧结,升温速率60℃/min,烧结温度为500℃,烧结压力30MPa,烧结时间2min,烧结完成后充氩气冷却至100℃以下后取出样品,即得到Sm2Co17/Al-Ni-Co复合材料;
(5)充磁:
将步骤(4)制得的Sm2Co17/Al-Ni-Co复合材料放入充磁机在3T的磁场下充磁,获得所 需的磁性Sm2Co17/Al-Ni-Co复合材料。
实施例3:
(1)制粉:
实验所用铝粉为99.85%纯度的粉末,平均粒径为10μm;通用钴粉,平均粒径2μm;镍粉,平均粒径2μm;工业生产2:17型Sm-Co永磁材料(Sm2Co17磁粉),制粉后平均粒 径约为5μm;
(2)球磨:
称取36gSm2Co17磁粉、12g铝粉、12g钴粉、12g镍粉,将上述粉末混合,加入乙醇, 使乙醇覆盖上述混合粉末,在行星式球磨机中湿磨11h,将球磨后的粉末放入真空干燥箱中烘干,得到混合粉体;
(3)压制成型:
将烘干后的混合粉末经冷等静压压制,加压95MPa,保压3min,得到致密的复合材料坯 锭;
(4)放电等离子烧结:
将步骤(3)中复合材料坯锭放入石墨模具中,在日本Sinter Land公司生产的SPS-3.20MK-Ⅳ型放电等离子烧结系统上进行真空烧结,升温速率50℃/min,烧结温度为470℃,烧结压力为35MPa,烧结时间3min,烧结完成后充氩气冷却至100℃以下后取出样品,即得到Sm2Co17/Al-Ni-Co复合材料;
(5)充磁:
将步骤(4)制得的Sm2Co17/Al-Ni-Co复合材料放入充磁机在3T的磁场下充磁,获得所 需的磁性Sm2Co17/Al-Ni-Co复合材料。
力学性能测试:
将实施例1-3中制备的磁性Sm2Co17/Al-Ni-Co复合材料,分别用拉力试验机测试其拉伸 强度、屈服强度和延伸率,具体结果如表1所示。
表1实施例1-3中磁性Sm2Co17/Al-Ni-Co复合材料的力学性能
分析表1数据可知,实施例1所获得的磁性Sm2Co17/Al-Ni-Co复合材料,相较于传统Al-Ni-Co永磁体抗拉强度和屈服强度有一定提高,一方面是添加Sm2Co17磁粉的原因,Sm2Co17磁粉本身具有相对于传统Al-Ni-Co永磁体更好的抗拉强度和屈服强度,加入Sm2Co17磁粉相当于在材料中加入脆性相,使材料抗拉强度和屈服强度更好;另一方面应用放电等离子烧结技术虽然大大降低了烧结温度,但相较于传统粉末烧结快速,更加致密,这也使得材料抗拉强度和屈服强度增强。
实施例2所获得磁性Sm2Co17/Al-Ni-Co复合材料,相较于实施例1的复合材料的抗拉强 度和屈服强度有明显提高,一方面是脆性相Sm2Co17磁粉加入量增大的原因;另一方面是放 电等离子烧结的烧结温度和升温速度提高,使材料在烧结过程中颗粒表面活化更充分,各个 颗粒产生的焦耳热更多,烧结更加充分,材料更加致密。
实施例3所获得磁性Sm2Co17/Al-Ni-Co复合材料,相较于实施例2的复合材料的抗拉强 度和屈服强度有明显提高,虽然烧结温度和升温速度相较于实施例2有所降低,但脆性相 Sm2Co17磁粉加入量增大,使复合材料的抗拉强度和屈服强度增强。
磁性能测试:
将实施例1-3中制备的磁性Sm2Co17/Al-Ni-Co复合材料,分别进行磁性能测试(矫顽力、 磁能积、剩磁等),采用Perma-Rema-C750型B-H测试仪(德国Magnet-Physik公 司)。采用Perma-Rema-C750型B-H测试仪来测试磁体的磁性能,最大磁场强度为2T, 测量尺寸均为Ф10*10的标准样品,经充磁后进行检测,测试结果如表2。
表2实施例1-3中磁性Sm2Co17/Al-Ni-Co复合材料的磁性能
分析表2数据可知,实施例1所获得的磁性Sm2Co17/Al-Ni-Co复合材料的剩磁比Sm2Co17磁粉的高,矫顽力优于Al-Ni-Co永磁体,磁能积也要优于Al-Ni-Co永磁体,这主要是由于 加入的Sm2Co17磁粉具有很好的矫顽力,增强了材料的磁性能;同时采用放等离子烧结使 Sm2Co17磁粉在Al-Ni-Co基体中分布均匀,展现出良好的磁性能。
实施例2所获得的磁性Sm2Co17/Al-Ni-Co复合材料的剩磁相较于实施例1所获得的材料 剩磁仅仅降低0.02T,但磁能积却升高26k J·m-3,同时矫顽力也略有提升,主要是由于增加 了Sm2Co17磁粉的用量。
实施例3所获得的磁性Sm2Co17/Al-Ni-Co复合材料,在磁性能方面已基本上达到所用 Sm2Co17磁粉的磁性能,同时大大减少了稀缺资源Sm和战略储备资源Co的用量,降低了材料制备所需成本。
本发明制备得到的磁性Sm2Co17/Al-Ni-Co复合材料,可广泛应用在工业生产中,用于生 产永磁电机里的永磁转子或仪表里的永磁磁铁等。

Claims (9)

1.一种放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法,其特征在于,包括以下步骤:
(1)球磨:
将Sm2Co17磁粉与铝粉、钴粉、镍粉按比例混合均匀,加入乙醇,在球磨机中湿磨,将球磨后的粉末放入真空干燥箱中烘干,得到混合粉体;
(2)压制成型:
将步骤(1)中的混合粉体用冷等静压压制成型,得到致密的复合材料坯锭;
(3)放电等离子烧结:
将复合材料坯锭放入石墨模具中,在放电等离子烧结炉中进行真空烧结,烧结完成后冷却至室温后取出样品,即得到Sm2Co17/Al-Ni-Co复合材料;
(4)充磁:
将步骤(3)得到的Sm2Co17/Al-Ni-Co复合材料放入充磁机充磁,得到磁性Sm2Co17/Al-Ni-Co复合材料。
2.根据权利要求1所述的放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法,其特征在于,步骤(1)中,所述Sm2Co17磁粉、铝粉、钴粉的质量比为1-3:1-3:1-3;钴粉、镍粉的质量比为1-3:1-5。
3.根据权利要求1所述的放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法,其特征在于,步骤(1)中,所述球磨时间为10-12h。
4.根据权利要求1所述的放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法,其特征在于,步骤(2)中,所述冷等静压压强为90-100MPa,保压时间为2-5min。
5.根据权利要求1所述的放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法,其特征在于,步骤(3)中,所述烧结温度为450-500℃,升温速率为40-60℃/min。
6.根据权利要求1所述的放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法,其特征在于,步骤(3)中,所述烧结压力为30-40MPa,烧结时间为2-4min。
7.根据权利要求1所述的放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法,其特征在于,步骤(3)中,所述冷却时需要充氩气。
8.根据权利要求1所述的放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法,其特征在于,步骤(4)中,所述充磁是在3T的磁场下进行。
9.如权利要求1-8任意一项所述的方法制备的磁性Sm2Co17/Al-Ni-Co复合材料用于生产永磁转子或永磁磁铁。
CN201810548003.7A 2018-05-31 2018-05-31 放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法和应用 Pending CN108723355A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810548003.7A CN108723355A (zh) 2018-05-31 2018-05-31 放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810548003.7A CN108723355A (zh) 2018-05-31 2018-05-31 放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法和应用

Publications (1)

Publication Number Publication Date
CN108723355A true CN108723355A (zh) 2018-11-02

Family

ID=63931385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810548003.7A Pending CN108723355A (zh) 2018-05-31 2018-05-31 放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法和应用

Country Status (1)

Country Link
CN (1) CN108723355A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550973A (zh) * 2019-01-29 2019-04-02 重庆科技学院 一种AlNiCo/SmCo复合磁粉的制备方法、磁粉及磁体
EP3862110A1 (en) * 2020-02-07 2021-08-11 EPoS S.r.L. Composite magnetic materials and method of manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1358595A (zh) * 2001-11-16 2002-07-17 清华大学 一种利用放电等离子烧结制备稀土永磁材料的方法
CN1870187A (zh) * 2005-05-23 2006-11-29 包头市科技开发研究院 稀土铝——镁合金永磁材料
KR20080029348A (ko) * 2006-09-29 2008-04-03 김정식 알니코계 복합자석용 조성물, 알니코계 복합자석과 그제조방법, 및 이를 이용한 이종접합형 알니코계 복합자석
CN101786163A (zh) * 2010-02-09 2010-07-28 江苏大学 高性能室温磁致冷纳米块体材料的制备方法
CN102655050A (zh) * 2012-05-04 2012-09-05 江苏大学 一种高性能耐高温纳米复合永磁体的制备方法
CN102403118B (zh) * 2011-11-23 2013-05-08 北京航空航天大学 一种各向异性钐钴基纳米晶稀土永磁体制备方法
CN104762519A (zh) * 2015-03-23 2015-07-08 北京工业大学 一种纳米晶Sm2Co17/Co双相复合永磁合金的制备方法
CN107785141A (zh) * 2017-10-24 2018-03-09 南昌航空大学 一种通过放电等离子烧结技术提高非稀土MnBi永磁合金高温稳定性的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1358595A (zh) * 2001-11-16 2002-07-17 清华大学 一种利用放电等离子烧结制备稀土永磁材料的方法
CN1870187A (zh) * 2005-05-23 2006-11-29 包头市科技开发研究院 稀土铝——镁合金永磁材料
KR20080029348A (ko) * 2006-09-29 2008-04-03 김정식 알니코계 복합자석용 조성물, 알니코계 복합자석과 그제조방법, 및 이를 이용한 이종접합형 알니코계 복합자석
CN101786163A (zh) * 2010-02-09 2010-07-28 江苏大学 高性能室温磁致冷纳米块体材料的制备方法
CN102403118B (zh) * 2011-11-23 2013-05-08 北京航空航天大学 一种各向异性钐钴基纳米晶稀土永磁体制备方法
CN102655050A (zh) * 2012-05-04 2012-09-05 江苏大学 一种高性能耐高温纳米复合永磁体的制备方法
CN102655050B (zh) * 2012-05-04 2013-12-11 江苏大学 一种高性能耐高温纳米复合永磁体的制备方法
CN104762519A (zh) * 2015-03-23 2015-07-08 北京工业大学 一种纳米晶Sm2Co17/Co双相复合永磁合金的制备方法
CN107785141A (zh) * 2017-10-24 2018-03-09 南昌航空大学 一种通过放电等离子烧结技术提高非稀土MnBi永磁合金高温稳定性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张迎春: ""复合粘结永磁材料的研究"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550973A (zh) * 2019-01-29 2019-04-02 重庆科技学院 一种AlNiCo/SmCo复合磁粉的制备方法、磁粉及磁体
CN109550973B (zh) * 2019-01-29 2021-12-24 重庆科技学院 一种AlNiCo/SmCo复合磁粉的制备方法、磁粉及磁体
EP3862110A1 (en) * 2020-02-07 2021-08-11 EPoS S.r.L. Composite magnetic materials and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN106128672B (zh) 一种扩散烧结连续化RE‑Fe‑B磁体及其制备方法
CN103834863B (zh) 用共伴生混合稀土制造钕铁硼永磁材料的方法
CN105070498B (zh) 提高磁体矫顽力的方法
CN107564645B (zh) 一种具有低剩磁温度系数高温用钐钴永磁材料及制备方法
US10672544B2 (en) R-T-B based permanent magnet
CN103839640B (zh) 永磁体、以及使用该永磁体的电动机和发电机
CN108538530B (zh) 一种Nd2Fe14B/Al复合材料的制备方法及应用
CN105489334A (zh) 一种晶界扩散获得高磁性烧结钕铁硼的方法
CN103474225A (zh) 一种镝铈掺杂的钕铁硼磁体的制备方法
WO2013027592A1 (ja) 磁石用圧粉成形体の製造方法、磁石用圧粉成形体、及び焼結体
CN110534280A (zh) 一种基于晶界添加的高性能烧结钕铁硼磁体的制备方法
CN109590461A (zh) 一种3d冷打印制备烧结钕铁硼磁体的方法
CN108754240B (zh) 一种磁性铝基复合材料及其制备方法
CN108723355A (zh) 放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法和应用
CN100559519C (zh) 用钬代替镝的烧结钕铁硼永磁材料
KR20150033528A (ko) 비자성 합금을 포함하는 열간가압변형 자석 및 이의 제조방법
CN113674945B (zh) 一种低成本高矫顽力富LaCe钕铁硼永磁体及其制备方法和应用
CN104464997A (zh) 一种高矫顽力钕铁硼永磁材料及其制备方法
CN117059391A (zh) 基于钕铁硼磁体的烧结方法
KR101804313B1 (ko) 희토류영구자석의 제조방법
CN108269684A (zh) 一种还原渗Dy/Tb制备高性能钕铁硼磁体的方法
CN109326404B (zh) 一种钕铁硼磁性材料及制备方法
JP2021150547A (ja) R−t−b系焼結磁石の製造方法
CN105355352A (zh) 一种低矫顽力的钐钴磁体及其制备方法
US20170287632A1 (en) Radially anisotropic sintered ring magnet and its production method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181102