CN108715549B - 一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法 - Google Patents

一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法 Download PDF

Info

Publication number
CN108715549B
CN108715549B CN201810569045.9A CN201810569045A CN108715549B CN 108715549 B CN108715549 B CN 108715549B CN 201810569045 A CN201810569045 A CN 201810569045A CN 108715549 B CN108715549 B CN 108715549B
Authority
CN
China
Prior art keywords
powder
gas
gamma
rare earth
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810569045.9A
Other languages
English (en)
Other versions
CN108715549A (zh
Inventor
李焕勇
任晓宇
郗鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Zhihangyu Armor New Materials Co ltd
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201810569045.9A priority Critical patent/CN108715549B/zh
Publication of CN108715549A publication Critical patent/CN108715549A/zh
Application granted granted Critical
Publication of CN108715549B publication Critical patent/CN108715549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种制备稀土硫化物γ‑Ln2S3(Ln=La,Ce,Pr,Nd,Y)透明陶瓷的方法,在相对不高的温度、不大的压力下,利用反应烧结一步实现陶瓷成型,制备出了高稳定性、高致密度、高透过率的稀土硫化物透明陶瓷。与现有陶瓷烧结技术相比,该方法利用了纳米级多硫化物LnS2的热分解形成γ‑Ln2S3纳米粒子原位活化热压成型技术,有利于提高陶瓷的均匀性,同时LnS2热分解释放S有效弥补了烧结过程中的硫缺失,避免了稀土硫化物多晶陶瓷烧结过程中因硫缺失而导致易氧化的问题。通过该方法可获得微观组织一致性高且光学透过率好的γ‑Ln2S3透明陶瓷,此外该方法工艺简单,成本低,效率高,适合于大规模制备稀土硫化物透明陶瓷,具有广阔的应用前景。

Description

一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法
技术领域
本发明属于新材料制备技术领域,涉及一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法,具体涉及一种原位反应烧结制备高稳定性、高致密度、高透过率稀土硫化物γ-Ln2S3(Ln=La,Ce,Pr,Nd,Y)红外透明陶瓷的方法。
背景技术
稀土硫化物γ-Ln2S3(Ln=La,Ce,Pr,Nd,Y),具有立方Th3P4结构(带金属空位),可通过致密化烧结制成透明陶瓷。这类材料一般具有高于2000℃的熔点、大的机械强度、高的硬度、良好的热学稳定性以及优秀的抗雨蚀砂蚀能力,且由于Ln-S键在红外区无吸收,使得γ-Ln2S3在红外波段具有良好的透过率(由于稀土元素不同其吸收限存在一定差异),因此γ-Ln2S3被认为是新一代红外窗口材料。
目前稀土硫化物γ-Ln2S3的研究多数集中于粉体制备上,而将其热压制备成透明陶瓷的研究仅有少数关于γ-Y2S3以及γ-La2S3的报道,其它γ-Ln2S3(Ln=Ce,Pr,Nd)等化合物作为透明陶瓷的制备方法及性能尚未见文献报道。1981年G.P.Skornyakov、M.E.Surov、L.V.Astaf′eva、G.N.Dronova and A.A.Maslakov报道了γ-Y2S3陶瓷的红外光谱图(Optical parameters of La2S3,Y2S3,and EuS ceramics,Journal of AppliedSpectroscopy, 1981,34(2):247~249),提出γ-Y2S3是一种红外透明陶瓷材料,但其透过率低,存在明显氧化物吸收带,且文中未提及制备技术细节;1981年A.A.Kamarzin、K.E.Mironov、 V.V.Sokolov、Y.N.Malovitsky、I.G.Vasil′Yeva通过高温熔体法生长了毫米级γ-La2S3单晶(Growth and properties of lantanum and rare-earth metalsesquisulfide crystals,Journal of Crystal Growth,1981,52(4):619~622.),证实了γ-La2S3单晶的优异的光电性能及作为红外长波材料的潜力;1993年P.N.Kumta、S.H.Risbud将镧的醇盐前驱体真空热压烧结制备出了γ-La2S3透明陶瓷材料(Lowtemperture chemical routes to formation and IR properties of lanthanumsesquisulfide(La2S3)ceramics,Journal of Materials Research,1993, 8(6):1394~1410.),但由于镧的亲氧性导致γ-La2S3陶瓷在烧结制备过程中极易氧化,其报道的红外透过率低于25%;随后在1994年MS Tsai、MH Hon通过Ca2+的掺杂试图改善γ-La2S3的红外性能,制备了富La的CaLa2S4(Hot-press sintering and the properties of lanthanum-rich calcium lanthanum sulfide ceramic,Journal of Materials Research,1994,9(11):2939~2943.);张素敏、Peisen Li、Huanyong Li等人报道了Ca2+, Na+掺入有利于在低温下获得稳定γ-La2S3粉体(Ca2+掺杂γ-La2S3多晶的制备,人工晶体学报,2010,39(3):568-572;Infrared transmission of Na+dopedγ-La2S3ceramics densified by hotpressing,Journal of Physics D-Applied Physics,2011,44(9):095402~095407.),但热压过程中的氧化问题仍未得到解决,制得的陶瓷仍存在明显的氧化物吸收峰,这归因于该类材料的抗氧化能力极低,制备过程中痕量氧、吸附水分以及硫缺失即可引起其氧化,而Ln-O键在红外区一般都存在强吸收,因此导致所制材料红外透过率不高;随后Peisen Li、Wanqi Jie、Huanyong Li又通过掺杂Bi2S3改善γ-La2S3的红外性能,利用Bi2S3热分解释放S弥补了部分热压过程中的硫缺失(Influence of Bi2S3on the optical properties ofγ-La2S3ceramics,Scripta Materialia,2011,64:1023~1027.),另外研究表明还可通过再硫化弥补硫缺失,但效果都不明显;2016年李焕勇、田雷远、丁文忠在发明专利CN106518073《一种高红外透过率的γ-La2S3红外透明陶瓷制备方法》中提出利用水热法得到镧盐前驱体,后经掺杂Na源后在较低温度下硫化得到稳定的纯相γ-La2S3粉体,随后将粉体真空热压烧结制备出一定透过率的γ-La2S3陶瓷,但该方法所使用粉体为200~300目,粒度较大,导致陶瓷均匀性较差,且需要的烧结温度高达 1250~1350℃,此高温往往导致热压烧结过程中硫缺失严重,从而坯体仍易于氧化;总之,目前报道的陶瓷烧结技术普遍存在硫缺失严重的问题,无法避免γ-Ln2S3在烧结过程中样品氧化,所得到的透明陶瓷均存在红外波段的硫氧化物强吸收峰且陶瓷均匀性较差,严重影响了γ-Ln2S3透明陶瓷的性能和应用。因此发展一种新的稀土硫化物γ-Ln2S3透明陶瓷的烧结工艺对稀土硫化物材料的发展具有重要意义。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种制备稀土硫化物γ-Ln2S3(Ln=La,Ce,Pr,Nd,Y)透明陶瓷的方法,解决目前以γ-La2S3为代表的轻稀土硫化物陶瓷在热压制备中由于硫缺失严重导致材料氧化从而透过率低以及该类材料难烧结、均匀性差等不足。
技术方案
一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法,其特征在于步骤如下:
步骤1、纳米级多硫化物LnS2粉体的制备:所述Ln=La,Ce,Pr,Nd,Y;
将碳酸氢氧盐粉体Ln(OH)CO3·nH2O置于气氛管式炉中,通入气流量为 30~50ml/min的Ar气,管式炉以加热速率2~5℃/min升温;当炉温升至400~650℃时,将通入气体改成气流量为30~50ml/min的混合气体,保温2~4h后,将通入气体再改成流量为30~50ml/min的Ar气,管式炉自然冷却至室温;
从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥3~6小时,取出干燥粉体得到纳米级多硫化物LnS2粉体;
所述Ln(OH)CO3·nH2O中n=1~8,表示Ln(OH)CO3·nH2O含有结晶水的程度即干燥程度;
所述Ar气与CS2或Ar气与H2S的混合气体体积比为Ar:CS2=1:1或Ar:H2S=1:1;
步骤2、γ-Ln2S3(Ln=La,Ce,Pr,Nd,Y)红外透明陶瓷的热压烧结制备:
25℃下将LiX或NaX或KX粉体溶于蒸馏水和无水乙醇的混合液中,得到浓度为0.2~0.3mol/L的LiX或NaX或KX稀溶液;将该溶液逐滴滴到表面温度为250~300℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级LiX或NaX或KX粉体;
将步骤1制得的纳米级多硫化物LnS2粉体与纳米级LiX或NaX或KX粉体充分研磨混合后,装入模具并置于热压炉中,通入流量为40~60ml/min的Ar气作为保护气体,将压强加到40~200MPa,通气10~20min后将热压炉以30~90℃/min的速率升温至1000~1200℃,再以30~60℃/min的速率降温至900℃~1100℃,随后保温1~3h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-Ln2S3陶瓷,将其抛光后获得红外波段最高透过率≥45%的γ-Ln2S3透明陶瓷;
所述LiX或NaX或KX中的X=Cl、Br、I;
所述纳米级LiX或NaX或KX粉体添加量为LnS2重量的3~15wt%。
所述碳酸氢氧盐粉体采用分析纯级碳酸氢氧盐粉体。
所述LiX或NaX或KX粉体分析纯级粉体。
所述步骤2蒸馏水和无水乙醇的混合液的体积比为1:1。
有益效果
本发明提出的一种制备稀土硫化物γ-Ln2S3(Ln=La,Ce,Pr,Nd,Y)透明陶瓷的方法,在相对不高的温度、不大的压力下,利用反应烧结一步实现陶瓷成型,制备出了高稳定性、高致密度、高透过率的稀土硫化物透明陶瓷。与现有陶瓷烧结技术相比,该方法利用了纳米级多硫化物LnS2的热分解形成γ-Ln2S3纳米粒子原位活化热压成型技术,有利于提高陶瓷的均匀性,同时LnS2热分解释放S有效弥补了烧结过程中的硫缺失,避免了稀土硫化物多晶陶瓷烧结过程中因硫缺失而导致易氧化的问题。通过该方法可获得微观组织一致性高且光学透过率好的γ-Ln2S3透明陶瓷,此外该方法工艺简单,成本低,效率高,适合于大规模制备稀土硫化物透明陶瓷,具有广阔的应用前景。
具体实施方式
现结合实施例对本发明作进一步描述:
实施例1:一种制备稀土硫化物γ-La2S3透明陶瓷的方法
步骤1纳米级多硫化物LaS2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体 La(OH)CO3·nH2O(n=1~8),将粉体置于气氛管式炉中,通入气流量为30ml/min的Ar气作为保护气体,管式炉以加热速率2℃/min升温;当炉温升至650℃时,将通入气体改成气流量为30ml/min的Ar气与CS2的混合气体,其中混合气体体积比为Ar:CS2为1:1,保温4h,保温结束后,将通入气体再改成气流量为30ml/min的Ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥3小时,取出干燥粉体得到纳米级多硫化物LaS2粉体4.78克;
步骤2γ-La2S3红外透明陶瓷的热压烧结制备:25℃下称取0.29克分析纯级NaCl粉体溶于50mL蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.2mol/L的NaCl稀溶液;将该溶液逐滴滴到表面温度为250℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级NaCl粉体0.26克;称取步骤1制备的纳米级多硫化物LaS2粉体3.50克;按重量比3wt%称取纳米级NaCl粉体0.105克;将纳米级多硫化物 LaS2粉体与纳米级NaCl粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为60ml/min的Ar气作为保护气体,将压强加到40MPa,通气10min后将热压炉以 30℃/min的速率升温至1200℃,再以30℃/min的速率降温至1100℃,保温3h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-La2S3陶瓷,将其抛光后获得厚度为0.45mm,红外波段最高透过率为54%的γ-La2S3透明陶瓷。
实施例2:一种制备稀土硫化物γ-La2S3透明陶瓷的方法
步骤1纳米级多硫化物LaS2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体 La(OH)CO3·nH2O(n=1~8),将粉体置于气氛管式炉中,通入气流量为40ml/min的Ar气作为保护气体,管式炉以加热速率5℃/min升温;当炉温升至600℃时,将通入气体改成气流量为40ml/min的Ar气与CS2的混合气体,其中混合气体体积比为Ar:CS2为1:1,保温2h,保温结束后,将通入气体再改成气流量为40ml/min的Ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥6小时,取出干燥粉体得到纳米级多硫化物LaS2粉体4.82克;
步骤2γ-La2S3红外透明陶瓷的热压烧结制备:25℃下称取0.38克分析纯级LiCl粉体溶于30mL蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.3mol/L的LiCl稀溶液;将该溶液逐滴滴到表面温度为280℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级LiCl粉体0.32克;称取步骤1制备的纳米级多硫化物LaS2粉体3.50克;按重量比5wt%称取纳米级LiCl粉体0.175克;将纳米级多硫化物LaS2粉体与纳米级LiCl粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为 50ml/min的Ar气作为保护气体,将压强加到80MPa,通气20min后将热压炉以60℃/min 的速率升温至1100℃,再以60℃/min的速率降温至1000℃,保温2h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-La2S3陶瓷,将其抛光后获得厚度为 0.43mm,红外波段最高透过率为53%的γ-La2S3透明陶瓷。
实施例3:一种制备稀土硫化物γ-La2S3透明陶瓷的方法
步骤1纳米级多硫化物LaS2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体 La(OH)CO3·nH2O(n=1~8),将粉体置于气氛管式炉中,通入气流量为50ml/min的Ar气作为保护气体,管式炉以加热速率4℃/min升温;当炉温升至600℃时,将通入气体改成气流量为50ml/min的Ar气与CS2的混合气体,其中混合气体体积比为Ar:CS2为1:1,保温3h,保温结束后,将通入气体再改成气流量为50ml/min的Ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥5小时,取出干燥粉体得到纳米级多硫化物LaS2粉体4.79克;
步骤2γ-La2S3红外透明陶瓷的热压烧结制备:25℃下称取0.55克分析纯级KCl 粉体溶于50mL蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.3mol/L的KCl稀溶液;将该溶液逐滴滴到表面温度为290℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级KCl粉体0.51克;称取步骤1制备的纳米级多硫化物LaS2粉体3.50克;按重量比9wt%称取纳米级KCl粉体0.315克;将纳米级多硫化物LaS2粉体与纳米级KCl粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为40ml/min的Ar气作为保护气体,将压强加到150MPa,通气15min后将热压炉以90℃/min的速率升温至1100℃,再以50℃/min的速率降温至1000℃,保温 2h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-La2S3陶瓷,将其抛光后获得厚度为0.45mm,红外波段最高透过率为52%的γ-La2S3透明陶瓷。
实施例4:一种制备稀土硫化物γ-La2S3透明陶瓷的方法
步骤1纳米级多硫化物LaS2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体 La(OH)CO3·nH2O(n=1~8),将粉体置于气氛管式炉中,通入气流量为40ml/min的Ar气作为保护气体,管式炉以加热速率3℃/min升温;当炉温升至600℃时,将通入气体改成气流量为40ml/min的Ar气与H2S的混合气体,其中混合气体体积比为Ar:H2S为1:1,保温4h,保温结束后,将通入气体再改成气流量为40ml/min的Ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥4小时,取出干燥粉体得到纳米级多硫化物LaS2粉体4.83克;
步骤2γ-La2S3红外透明陶瓷的热压烧结制备:25℃下称取0.77克分析纯级NaBr粉体溶于50mL蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.3mol/L的NaBr稀溶液;将该溶液逐滴滴到表面温度为300℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级NaBr粉体0.73克;称取步骤1制备的纳米级多硫化物LaS2粉体3.50克;按重量比15wt%称取纳米级NaBr粉体0.525克;将纳米级多硫化物LaS2粉体与纳米级NaBr粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为60ml/min的Ar气作为保护气体,将压强加到200MPa,通气10min 后将热压炉以40℃/min的速率升温至1000℃,再以40℃/min的速率降温至900℃,保温1h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-La2S3陶瓷,将其抛光后获得厚度为0.40mm,红外波段最高透过率为56%的γ-La2S3透明陶瓷。
实施例5:一种制备稀土硫化物γ-Ce2S3透明陶瓷的方法
步骤1纳米级多硫化物CeS2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体 Ce(OH)CO3·nH2O(n=1~8),将粉体置于气氛管式炉中,通入气流量为40ml/min的Ar气作为保护气体,管式炉以加热速率2℃/min升温;当炉温升至600℃时,将通入气体改成气流量为40ml/min的Ar气与CS2的混合气体,其中混合气体体积比为Ar:CS2为1:1,保温4h,保温结束后,将通入气体再改成气流量为40ml/min的Ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥3小时,取出干燥粉体得到纳米级多硫化物CeS2粉体4.56克;
步骤2γ-Ce2S3红外透明陶瓷的热压烧结制备:25℃下称取0.52克分析纯级LiBr粉体溶于30mL蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.2mol/L的LiBr稀溶液;将该溶液逐滴滴到表面温度为250℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级LiBr粉体0.48克;称取步骤1制备的纳米级多硫化物CeS2粉体3.50克;按重量比12wt%称取纳米级LiBr粉体0.420克;将纳米级多硫化物CeS2粉体与纳米级LiBr粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为50ml/min的Ar气作为保护气体,将压强加到100MPa,通气20min 后将热压炉以60℃/min的速率升温至1100℃,再以30℃/min的速率降温至1000℃,保温2.5h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-Ce2S3陶瓷,将其抛光后获得厚度为0.49mm,红外波段最高透过率为48%的γ-Ce2S3透明陶瓷。
实施例6:一种制备稀土硫化物γ-Ce2S3透明陶瓷的方法
步骤1纳米级多硫化物CeS2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体 Ce(OH)CO3·nH2O(n=1~8),将粉体置于气氛管式炉中,通入气流量为40ml/min的Ar 气作为保护气体,管式炉以加热速率3℃/min升温;当炉温升至600℃时,将通入气体改成气流量为40ml/min的Ar气与CS2的混合气体,其中混合气体体积比为Ar:CS2为1:1,保温4h,保温结束后,将通入气体再改成气流量为40ml/min的Ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥6小时,取出干燥粉体得到纳米级多硫化物CeS2粉体4.77克;
步骤2γ-Ce2S3红外透明陶瓷的热压烧结制备:25℃下称取0.47克分析纯级KBr 粉体溶于40mL蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.2mol/L的KBr稀溶液;将该溶液逐滴滴到表面温度为250℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级KBr粉体0.44克;称取步骤1制备的纳米级多硫化物CeS2粉体3.50克;按重量比10wt%称取纳米级KBr粉体0.350克;将纳米级多硫化物CeS2粉体与纳米级KBr粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为50ml/min的Ar气作为保护气体,将压强加到80MPa,通气15min后将热压炉以70℃/min的速率升温至1000℃,再以60℃/min的速率降温至900℃,保温3h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-Ce2S3陶瓷,将其抛光后获得厚度为0.50mm,红外波段最高透过率为46%的γ-Ce2S3透明陶瓷。
实施例7:一种制备稀土硫化物γ-Pr2S3透明陶瓷的方法
步骤1纳米级多硫化物PrS2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体 Pr(OH)CO3·nH2O(n=1~8),将粉体置于气氛管式炉中,通入气流量为50ml/min的Ar气作为保护气体,管式炉以加热速率4℃/min升温;当炉温升至400℃时,将通入气体改成气流量为50ml/min的Ar气与CS2的混合气体,其中混合气体体积比为Ar:CS2为1:1,保温3.5h,保温结束后,将通入气体再改成气流量为50ml/min的Ar气,管式炉自然冷却至室温;炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥5小时,取出干燥粉体得到纳米级多硫化物 PrS2粉体4.87克;
步骤2γ-Pr2S3红外透明陶瓷的热压烧结制备:25℃下称取0.60克分析纯级NaI粉体溶于20mL蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.2mol/L的NaI稀溶液;将该溶液逐滴滴到表面温度为270℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级NaI粉体0.56克;称取步骤1制备的纳米级多硫化物PrS2粉体3.50克;按重量比8wt%称取纳米级NaI粉体0.280克;将纳米级多硫化物PrS2粉体与纳米级NaI粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为60ml/min的Ar气作为保护气体,将压强加到100MPa,通气10min后将热压炉以30℃/min的速率升温至1000℃,再以50℃/min的速率降温至900℃,保温 3h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-Pr2S3陶瓷,将其抛光后获得厚度为0.49mm,红外波段最高透过率为47%的γ-Pr2S3透明陶瓷。
实施例8:一种制备稀土硫化物γ-Pr2S3透明陶瓷的方法
步骤1纳米级多硫化物PrS2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体 Pr(OH)CO3·nH2O(n=1~8),将粉体置于气氛管式炉中,通入气流量为30ml/min的Ar气作为保护气体,管式炉以加热速率5℃/min升温;当炉温升至500℃时,将通入气体改成气流量为30ml/min的Ar气与CS2的混合气体,其中混合气体体积比为Ar:CS2为1:1,保温3.5h,保温结束后,将通入气体再改成气流量为30ml/min的Ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥5小时,取出干燥粉体得到纳米级多硫化物PrS2粉体4.77克;
步骤2γ-Pr2S3红外透明陶瓷的热压烧结制备:25℃下称取0.80克分析纯级LiI粉体溶于20mL蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.3mol/L的LiI稀溶液;将该溶液逐滴滴到表面温度为300℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级LiI粉体0.75克;称取步骤1制备的纳米级多硫化物PrS2粉体3.50克;按重量比9wt%称取纳米级LiI粉体0.315克;将纳米级多硫化物PrS2粉体与纳米级LiI粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为40ml/min的Ar气作为保护气体,将压强加到60MPa,通气20min后将热压炉以60℃/min的速率升温至1100℃,再以40℃/min的速率降温至1000℃,保温2.5h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-Pr2S3陶瓷,将其抛光后获得厚度为0.49mm,红外波段最高透过率为46%的γ-Pr2S3透明陶瓷。
实施例9:一种制备稀土硫化物γ-Nd2S3透明陶瓷的方法
步骤1纳米级多硫化物NdS2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体 Nd(OH)CO3·nH2O(n=1~8),将粉体置于气氛管式炉中,通入气流量为40ml/min的Ar气作为保护气体,管式炉以加热速率4℃/min升温;当炉温升至600℃时,将通入气体改成气流量为40ml/min的Ar气与CS2的混合气体,其中混合气体体积比为Ar:CS2为1:1,保温4h,保温结束后,将通入气体再改成气流量为40ml/min的Ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥4小时,取出干燥粉体得到纳米级多硫化物NdS2粉体4.80克;
步骤2γ-Nd2S3红外透明陶瓷的热压烧结制备:25℃下称取0.66克分析纯级KI粉体溶于20mL蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.2mol/L的KI稀溶液;将该溶液逐滴滴到表面温度为260℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级KI粉体0.61克;称取步骤1制备的纳米级多硫化物 NdS2粉体3.50克;按重量比12wt%称取纳米级KI粉体0.420克;将纳米级多硫化物 NdS2粉体与纳米级KI粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为60ml/min的Ar气作为保护气体,将压强加到120MPa,通气15min后将热压炉以50℃/min的速率升温至1200℃,再以30℃/min的速率降温至1100℃,保温3h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-Nd2S3陶瓷,将其抛光后获得厚度为0.46mm,红外波段最高透过率为45%的γ-Nd2S3透明陶瓷。
实施例10:一种制备稀土硫化物γ-Y2S3透明陶瓷的方法
步骤1纳米级多硫化物YS2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体 Y(OH)CO3·nH2O(n=1~8),将粉体置于气氛管式炉中,通入气流量为40ml/min的Ar气作为保护气体,管式炉以加热速率3℃/min升温;当炉温升至500℃时,将通入气体改成气流量为40ml/min的Ar气与H2S的混合气体,其中混合气体体积比为Ar:H2S为1:1,保温4h,保温结束后,将通入气体再改成气流量为40ml/min的Ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥5小时,取出干燥粉体得到纳米级多硫化物 YS2粉体4.75克;
步骤2γ-Y2S3红外透明陶瓷的热压烧结制备:25℃下称取0.52克分析纯级NaCl 粉体溶于60mL蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.3mol/L的NaCl稀溶液;将该溶液逐滴滴到表面温度为300℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级NaCl粉体0.47克;称取步骤1制备的纳米级多硫化物YS2粉体3.50克;按重量比12wt%称取纳米级NaCl粉体0.420克;将纳米级多硫化物YS2粉体与纳米级NaCl粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为60ml/min的Ar气作为保护气体,将压强加到150MPa,通气10min 后将热压炉以90℃/min的速率升温至1100℃,再以40℃/s的速率降温至1000℃,保温2h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-Y2S3陶瓷,将其抛光后获得厚度为0.46mm,红外波段最高透过率为51%的γ-Y2S3透明陶瓷。

Claims (4)

1.一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法,其特征在于步骤如下:
步骤1、纳米级多硫化物LnS2粉体的制备:所述Ln=La,Ce,Pr,Nd,Y;
将稀土碱式碳酸盐粉体Ln(OH)CO3·nH2O置于气氛管式炉中,通入气流量为30~50ml/min的Ar气,管式炉以加热速率2~5℃/min升温;当炉温升至400~650℃时,将通入气体改成气流量为30~50ml/min的混合气体,保温2~4h后,将通入气体再改成流量为30~50ml/min的Ar气,管式炉自然冷却至室温;
从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0Pa下,干燥3~6小时,取出干燥粉体得到纳米级多硫化物LnS2粉体;
所述Ln(OH)CO3·nH2O中n=1~8,表示Ln(OH)CO3·nH2O含有结晶水的程度即干燥程度;
所述Ar气与CS2或Ar气与H2S的混合气体体积比为Ar:CS2=1:1或Ar:H2S=1:1;
步骤2、γ-Ln2S3(Ln=La,Ce,Pr,Nd,Y)红外透明陶瓷的热压烧结制备:
25℃下将LiX或NaX或KX粉体溶于蒸馏水和无水乙醇的混合液中,得到浓度为0.2~0.3mol/L的LiX或NaX或KX稀溶液;将该溶液逐滴滴到表面温度为250~300℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级LiX或NaX或KX粉体;
将步骤1制得的纳米级多硫化物LnS2粉体与纳米级LiX或NaX或KX粉体充分研磨混合后,装入模具并置于热压炉中,通入流量为40~60ml/min的Ar气作为保护气体,将压强加到40~200MPa,通气10~20min后将热压炉以30~90℃/min的速率升温至1000~1200℃,再以30~60℃/min的速率降温至900℃~1100℃,随后保温1~3h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-Ln2S3陶瓷,将其抛光后获得红外波段最高透过率≥45%的γ-Ln2S3透明陶瓷;
所述LiX或NaX或KX中的X=Cl、Br、I;
所述纳米级LiX或NaX或KX粉体添加量为LnS2重量的3~15wt%。
2.根据权利要求1所述制备稀土硫化物γ-Ln2S3透明陶瓷的方法,其特征在于:所述稀土碱式碳酸盐粉体采用分析纯级稀土碱式碳酸盐粉体。
3.根据权利要求1所述制备稀土硫化物γ-Ln2S3透明陶瓷的方法,其特征在于:所述LiX或NaX或KX粉体分析纯级粉体。
4.根据权利要求1所述制备稀土硫化物γ-Ln2S3透明陶瓷的方法,其特征在于:所述步骤2蒸馏水和无水乙醇的混合液的体积比为1:1。
CN201810569045.9A 2018-06-05 2018-06-05 一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法 Active CN108715549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810569045.9A CN108715549B (zh) 2018-06-05 2018-06-05 一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810569045.9A CN108715549B (zh) 2018-06-05 2018-06-05 一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法

Publications (2)

Publication Number Publication Date
CN108715549A CN108715549A (zh) 2018-10-30
CN108715549B true CN108715549B (zh) 2021-04-02

Family

ID=63911648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810569045.9A Active CN108715549B (zh) 2018-06-05 2018-06-05 一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法

Country Status (1)

Country Link
CN (1) CN108715549B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788677B (zh) * 2021-09-28 2022-10-11 上海电机学院 一种倍半稀土硫化物高熵陶瓷材料及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596638B2 (ja) * 1990-11-27 1997-04-02 防衛庁技術研究本部長 硫化物セラミックスの製造方法
FR2755971B1 (fr) * 1996-11-19 1999-03-05 Rhodia Chimie Sa Utilisation comme pigment colorant d'un sulfure de terre rare de forme beta et son procede de preparation
JP4230261B2 (ja) * 2003-03-25 2009-02-25 独立行政法人物質・材料研究機構 硫化ランタン薄膜体の製造方法
JP3972067B2 (ja) * 2004-03-17 2007-09-05 北海道ティー・エル・オー株式会社 希土類三二カルコゲナイド焼結体およびその製造方法ならびに希土類三二カルコゲナイド粉末およびその製造方法
CN102107902B (zh) * 2010-12-22 2012-09-26 包头市宏博特科技有限责任公司 一种硫熔法制备红色颜料用倍半硫化铈的方法
CN102390856B (zh) * 2011-11-14 2013-06-19 西北工业大学 一种低温制备高稳定性γ相纳米硫化镧粉体的方法
CN102502762B (zh) * 2011-11-23 2013-11-27 陕西科技大学 一种微波水热法制备薄片层状堆积结构硫化镧微晶的方法
CN106517295B (zh) * 2016-10-18 2018-02-23 西北工业大学 一种合成高稳定性γ‑Pr2S3粉体的方法
CN106518073B (zh) * 2016-10-18 2019-02-15 西北工业大学 一种高红外透过率的γ -La2S3红外透明陶瓷制备方法
CN106518072B (zh) * 2016-10-18 2019-02-15 西北工业大学 一种制备高透过率NaLaS2红外透明陶瓷的方法

Also Published As

Publication number Publication date
CN108715549A (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
CN100360469C (zh) 双掺杂的钇铝石榴石透明陶瓷材料及制备方法
CN100336777C (zh) 一种氧化镥基透明陶瓷的制备方法
CN109516679B (zh) 一种稀土离子掺杂微晶玻璃的中红外发光材料及其制备方法
CN103803804A (zh) 一种纳米玻璃陶瓷上转换发光材料及其制备方法
CN108715549B (zh) 一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法
CN101269964A (zh) 氧化钇透明陶瓷的制备方法
CN102390856B (zh) 一种低温制备高稳定性γ相纳米硫化镧粉体的方法
CN108715551B (zh) 一种低温烧结稀土硫化物γ-Ln2S3红外透明陶瓷的方法
RU2473514C2 (ru) Прозрачный керамический материал и способ его получения
CN108358635A (zh) 一种磁光氧化钬透明陶瓷的制备方法
CN108314325B (zh) 具有超宽带近红外发光的自析晶微晶玻璃及其制备方法和应用
Kaneko et al. Cosolvent-free sol–gel synthesis of rare-earth and aluminum codoped monolithic silica glasses
CN108675792B (zh) 一种反应热压烧结制备CaLa2S4红外透明陶瓷的方法
CN109485090B (zh) 一种禁带宽度可调的铬掺杂锡酸钡纳米粉体及制备方法
CN1955130A (zh) 一种玻璃陶瓷及其制备方法
CN107573071B (zh) 一种单分散球形Y2O3和Al2O3粉制备(Y1-xYbx)AG透明陶瓷的方法
CN106800412A (zh) 一种具有核壳结构的氧化钇基透明陶瓷及其制备方法
CN105693249B (zh) 一种钕锶掺杂氟化钙激光陶瓷及其制备方法
CN109180011B (zh) 一种PbTe/CdTe双量子点共掺硼硅酸盐玻璃及其制备工艺
CN108715550B (zh) 一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法
Li et al. Powder preparation and high infrared performance of NaLaS2 transparent ceramics
CN105255496A (zh) 一种上转换发光材料及其制备方法
CN111454049B (zh) 一种氧化铟透明半导体陶瓷的制备方法
Zhang et al. Effect of melting times on the down-shifting properties in Ce 3+-doped oxyfluoride glass ceramics for a-Si solar cells
CN113322508B (zh) 一种高温相硼硅酸镧晶体的生长方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230615

Address after: 710061 No. 3160, Yayun Road, Xizhang Second Village, Diaotai Subdistricts of China, Fengxi New Town, Xixian New District, Xi'an, Shaanxi

Patentee after: Shaanxi Zhihangyu Armor New Materials Co.,Ltd.

Address before: 710072 No. 127 Youyi West Road, Shaanxi, Xi'an

Patentee before: Northwestern Polytechnical University