CN106800412A - 一种具有核壳结构的氧化钇基透明陶瓷及其制备方法 - Google Patents

一种具有核壳结构的氧化钇基透明陶瓷及其制备方法 Download PDF

Info

Publication number
CN106800412A
CN106800412A CN201710025337.1A CN201710025337A CN106800412A CN 106800412 A CN106800412 A CN 106800412A CN 201710025337 A CN201710025337 A CN 201710025337A CN 106800412 A CN106800412 A CN 106800412A
Authority
CN
China
Prior art keywords
yttria
nitrate
compound
base transparent
transparent ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710025337.1A
Other languages
English (en)
Inventor
王焕平
雷若姗
陈雅倩
徐时清
杨清华
邓德刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201710025337.1A priority Critical patent/CN106800412A/zh
Publication of CN106800412A publication Critical patent/CN106800412A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

本发明公开的具有核壳结构的氧化钇基透明陶瓷,其陶瓷晶粒的核层为Y2O3相、壳层结构为(Y,La,M)2O3相,其中M为Zr、Ti、Mn、Al、Ca、Zn和Mg中的一种或几种,制备过程如下:首先将钇的化合物、镧的化合物以及M的化合物同时溶解在去离子水中,然后加入Y2O3粉体,球磨共混后进行喷雾干燥,随后将干燥好的粉体进行预压成型,并在900~1300℃煅烧,冷却后再经冷等静压,在1550~1750℃烧结后即可获得本发明的氧化钇基透明陶瓷。本发明所采用的原材料来源广泛易得、制备工艺简单可控,利用烧结性能优异的(Y,La,M)2O3薄层对Y2O3粉体进行包覆,可以在相对较少的助剂添加下获得优良的直线透过率。

Description

一种具有核壳结构的氧化钇基透明陶瓷及其制备方法
技术领域
本发明涉及一种氧化钇基透明陶瓷及其制备方法,尤其是具有核壳结构的氧化钇基透明陶瓷及其制备方法,属于材料科学技术领域。
背景技术
氧化钇是立方晶系晶体,具有光学各向同性的性质,所以其具有优良的透光性能,并且具有熔点高、化学和光化学稳定性好、光学透明性范围较宽(0.23~8.0 μm)等优点;其声子能量低,一定程度上可以抑制无辐射跃迁,提高辐射跃迁的几率,从而提高发光量子效率;易实现稀土离子的掺杂进行改性;热导率高,是作为固体激光介质材料的重要基质材料。氧化钇透明陶瓷在宽广的频率范围内,特别是在红外区域,具有80%以上的理论透过率,因此这种材料常被用作各种检测设备和能源窗口。由于其耐火度高,还可作高温炉的观察窗以及透镜。此外,氧化钇透明陶瓷可用于微波基片、耐磨表面材料、红外发生器管、天线罩等,在半导体行业具有潜在应用价值,有些已获得实际应用。
但是,Y2O3的熔融温度高达2430℃,在2280℃时还会发生立方相向六方相的多晶相变,因此采用传统提拉法很难生长Y2O3单晶。采用传统陶瓷工艺,可以在远低于Y2O3熔点的温度制备透明陶瓷,节省了生产成本,提高了生产效率,更重要的是陶瓷制备工艺容易实现激活离子的高掺杂,可以极大的提高激光输出功率,从而使高熔点氧化物用作光学介质和激光介质成为可能。氧化钇透明陶瓷的烧结温度一般在2000℃以上,采用真空烧结和纳米粉体制备技术后,烧结温度降到1700℃,比它的熔融温度低700℃。对于Y2O3基透明陶瓷的研究中发现,La3+和Zr4+的掺杂能有效改善Y2O3基透明陶瓷的烧结性能,并且也具有良好的激光光谱性能。但是陶瓷是多晶的,其晶界、气孔和晶格的不完整性等都会增加光的散射损失及材料的不透明性。所以烧结助剂的掺杂浓度增高会造成透明性的降低,特别是不同价态离子的掺杂会造成非常大的晶格畸变,都对其透明性提出了非常高的挑战。因此,在保持Y2O3基透明陶瓷良好的化学和光化学性能的前提下,降低烧结助剂的掺杂浓度,同时保持良好的烧结性能,并提高氧化钇基透明陶瓷的直线透过率,是氧化钇透明陶瓷更为广泛应用的关键。
发明内容
本发明的目的是提供一种具有核壳结构的氧化钇基透明陶瓷及其制备方法,通过核壳结构的实现使氧化钇基陶瓷具有较低的烧结温度、较高的致密度,以及较小的晶格畸变,从而获得优良的透光性能。
本发明的具有核壳结构的氧化钇基透明陶瓷,其特征在于陶瓷晶粒的核层为Y2O3相、壳层为(Y1-x-yLaxMy)2O3相,其中0.01 ≤ x ≤ 0.1,0 ≤ y ≤ 0.1,M为Zr、Ti、Mn、Al、Ca、Zn和Mg中的一种或几种,壳层物质与核层物质的摩尔比为0.01~0.2:1。
本发明的具有核壳结构的氧化钇基透明陶瓷的制备方法,包括以下步骤:
(1)按壳层组成物中各元素的比例,将钇的化合物、镧的化合物以及M元素的化合物同时溶解在去离子水中,使混合物在去离子水中的浓度为0.01~1 mol/l,搅拌混合均匀得到混合溶液;
(2)按核层物质的量称取Y2O3粉体,放入球磨罐中,同时将上述步骤(1)制得的混合溶液也放入球磨罐中,然后以氧化锆球为磨介,球磨混合4~24小时,随后将混合物进行喷雾干燥,除掉去离子水;
(3)将喷雾干燥后获得的粉体放入模具中,在10~40 MPa的压力下成型,然后升温到900~1300 ℃保温4~8小时,冷却后再放入等静压机中,在150~300 MPa下进行等静压;
(4)将等静压后的产物放在真空炉中,在1550~1750 ℃保温4~24小时,得到具有核壳结构的氧化钇基透明陶瓷。
本发明中,所述的钇的化合物为硝酸钇、氯化钇和醋酸钇中的一种或几种;所述的镧的化合物为硝酸镧、氯化镧和醋酸镧中的一种或几种;所述的M元素的化合物为硝酸锆、醋酸锆、钛酸四丁酯、硝酸钛、硝酸锰、醋酸锰、硝酸铝、醋酸铝、硝酸钙、醋酸钙、硝酸锌、醋酸锌、硝酸镁和醋酸镁中的一种或几种;
本发明中,所述的Y2O3粉体的粒径在0.05~5 μm之间。
本发明具有以下有益效果:通过将钇、镧以及M元素的化合物溶解在去离子水中,然后和Y2O3粉体进行球磨混合,可以获得钇镧M等元素以原子级水平均匀包覆在Y2O3粉体表面的核壳结构;随后进行喷雾干燥,除掉去离子水,从而使得这种核壳结构从溶液状态转变成固态;将上述粉体放入模具中并在10~40 MPa的压力下成型,可以获得陶瓷素坯,但因成型压力较低,素坯结构比较疏松,随后在900~1300 ℃的保温,可以将钇镧M等元素的化合物进行分解挥发,只留下氧化物并生成了陶瓷的主晶相;接下来的150~300 MPa的等静压可以让陶瓷素坯充分致密,随后在1550~1750 ℃的真空炉中烧结,即可获得本发明的透明陶瓷。本发明以粒径0.05~5 μm的Y2O3粉体为核心、通过将La、Zr、Ti、Mn、Al、Ca、Zn和Mg元素(M表示)固溶入氧化钇晶体结构中形成壳层,从而获得以Y2O3为核、(Y,La,M)2O3为壳的核壳结构;由于壳层的(Y,La,M)2O3具有较低的烧结温度和较高的烧结活性,所以本发明的氧化钇基陶瓷可以在较低温度烧结下获得较高的致密度;同时,由于壳层物质与核层物质的摩尔比为0.01~0.2:1,核层的Y2O3相所占比例大,而引起晶格畸变的(Y,La,M)2O3相的比例比较少,因而在烧结后可以获得优良的光学性能。本发明所采用的原材料来源广泛易得、制备工艺简单可控。
具体实施方式
下面结合实例对本发明作进一步描述。
实施例1:Y2O3-0.01(Y0.87La0.1Zr0.03)2O3(x=0.1,y=0.03,M=Zr)
称取0.0087 mol的硝酸钇、0.001 mol的硝酸镧以及0.0003 mol的硝酸锆同时溶解在去离子水中,使混合溶液在去离子水中的浓度为1 mol/l,搅拌混合均匀得到混合溶液。称取0.5 mol的粒径为5 μm的Y2O3粉体,放入球磨罐中,同时将上述制得的混合溶液也放入球磨罐中,然后以氧化锆球为磨介,球磨混合24小时,随后将混合物进行喷雾干燥,除掉去离子水。将喷雾干燥后获得的粉体放入模具中,在10 MPa的压力下成型,然后升温到900 ℃保温8小时,冷却后再放入等静压机中,在300 MPa下进行等静压;将等静压后的产物放在真空炉中,在1750 ℃保温4小时,得到具有核壳结构的氧化钇基透明陶瓷。
实施例2:Y2O3-0.2(Y0.9La0.05Zr0.02Ti0.01Al0.01Zn0.01)2O3(x=0.05,y=0.05,M=Zr,Ti,Al,Zn)
称取0.18 mol的硝酸钇、0.01 mol的硝酸镧、0.004 mol的硝酸锆、0.002 mol的硝酸钛、0.002 mol的硝酸铝以及0.002 mol的硝酸锌同时溶解在去离子水中,使混合溶液在去离子水中的浓度为0.01 mol/l,搅拌混合均匀得到混合溶液。称取0.5 mol的粒径为0.05 μm的Y2O3粉体,放入球磨罐中,同时将上述制得的混合溶液也放入球磨罐中,然后以氧化锆球为磨介,球磨混合4小时,随后将混合物进行喷雾干燥,除掉去离子水。将喷雾干燥后获得的粉体放入模具中,在40 MPa的压力下成型,然后升温到1300 ℃保温4小时,冷却后再放入等静压机中,在150 MPa下进行等静压;将等静压后的产物放在真空炉中,在1550 ℃保温24小时,得到具有核壳结构的氧化钇基透明陶瓷。
实施例3:Y2O3-0.1(Y0.9La0.1)2O3(x=0.1,y=0)
称取0.03 mol的硝酸钇、0.03 mol的氯化钇、0.03 mol的醋酸钇、0.003 mol的氯化镧、0.003 mol的醋酸镧以及0.004 mol的硝酸镧同时溶解在去离子水中,使混合溶液在去离子水中的浓度为0.5 mol/l,搅拌混合均匀得到混合溶液。称取0.5 mol的粒径为0.5 μm的Y2O3粉体,放入球磨罐中,同时将上述制得的混合溶液也放入球磨罐中,然后以氧化锆球为磨介,球磨混合12小时,随后将混合物进行喷雾干燥,除掉去离子水。将喷雾干燥后获得的粉体放入模具中,在30 MPa的压力下成型,然后升温到1200 ℃保温6小时,冷却后再放入等静压机中,在200 MPa下进行等静压;将等静压后的产物放在真空炉中,在1750 ℃保温12小时,得到具有核壳结构的氧化钇基透明陶瓷。
实施例4:Y2O3-0.1(Y0.89La0.01Mn0.03Ca 0.04Mg0.03)2O3(x=0.01,y=0.1,M= Mn, Ca,Mg)
称取0.08 mol的硝酸钇、0.009 mol的醋酸钇、0.001 mol的硝酸镧、0.003 mol的硝酸锰、0.004 mol的醋酸钙以及0.003 mol的硝酸镁同时溶解在去离子水中,使混合溶液在去离子水中的浓度为0.8 mol/l,搅拌混合均匀得到混合溶液。称取0.5 mol的粒径为0.1 μm的Y2O3粉体,放入球磨罐中,同时将上述制得的混合溶液也放入球磨罐中,然后以氧化锆球为磨介,球磨混合8小时,随后将混合物进行喷雾干燥,除掉去离子水。将喷雾干燥后获得的粉体放入模具中,在15 MPa的压力下成型,然后升温到1000 ℃保温7小时,冷却后再放入等静压机中,在250 MPa下进行等静压;将等静压后的产物放在真空炉中,在1650 ℃保温8小时,得到具有核壳结构的氧化钇基透明陶瓷。

Claims (6)

1.一种具有核壳结构的氧化钇基透明陶瓷,其特征在于陶瓷晶粒的核层为Y2O3相、壳层为(Y1-x-yLaxMy)2O3相,其中0.01 ≤ x ≤ 0.1,0 ≤ y ≤ 0.1,M为Zr、Ti、Mn、Al、Ca、Zn和Mg中的一种或几种,壳层物质与核层物质的摩尔比为0.01~0.2:1。
2.制备权利要求1所述的具有核壳结构的氧化钇基透明陶瓷的方法,其特征在于包括下述步骤:
(1)按壳层组成物中各元素的比例,将钇的化合物、镧的化合物以及M元素的化合物同时溶解在去离子水中,使混合物在去离子水中的浓度为0.01~1 mol/l,搅拌混合均匀得到混合溶液;
(2)按核层物质的量称取Y2O3粉体,放入球磨罐中,同时将上述步骤(1)制得的混合溶液也放入球磨罐中,然后以氧化锆球为磨介,球磨混合4~24小时,随后将混合物进行喷雾干燥,除掉去离子水;
(3)将喷雾干燥后获得的粉体放入模具中,在10~40 MPa的压力下成型,然后升温到900~1300 ℃保温4~8小时,冷却后再放入等静压机中,在150~300 MPa下进行等静压;
(4)将等静压后的产物放在真空炉中,在1550~1750 ℃保温4~24小时,得到具有核壳结构的氧化钇基透明陶瓷。
3.根据权利要求2所述的制备具有核壳结构的氧化钇基透明陶瓷的方法,其特征在于所述的钇的化合物为硝酸钇、氯化钇和醋酸钇中的一种或几种。
4.根据权利要求2所述的制备具有核壳结构的氧化钇基透明陶瓷的方法,其特征在于所述的镧的化合物为硝酸镧、氯化镧和醋酸镧中的一种或几种。
5.根据权利要求2所述的制备具有核壳结构的氧化钇基透明陶瓷的方法,其特征在于所述的M元素的化合物为硝酸锆、醋酸锆、钛酸四丁酯、硝酸钛、硝酸锰、醋酸锰、硝酸铝、醋酸铝、硝酸钙、醋酸钙、硝酸锌、醋酸锌、硝酸镁和醋酸镁中的一种或几种。
6.根据权利要求2所述的制备具有核壳结构的氧化钇基透明陶瓷的方法,其特征在于所述的Y2O3粉体的粒径在0.05~5 μm之间。
CN201710025337.1A 2017-01-13 2017-01-13 一种具有核壳结构的氧化钇基透明陶瓷及其制备方法 Withdrawn CN106800412A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710025337.1A CN106800412A (zh) 2017-01-13 2017-01-13 一种具有核壳结构的氧化钇基透明陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710025337.1A CN106800412A (zh) 2017-01-13 2017-01-13 一种具有核壳结构的氧化钇基透明陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN106800412A true CN106800412A (zh) 2017-06-06

Family

ID=58985423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710025337.1A Withdrawn CN106800412A (zh) 2017-01-13 2017-01-13 一种具有核壳结构的氧化钇基透明陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN106800412A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805068A (zh) * 2017-10-20 2018-03-16 中国科学院上海光学精密机械研究所 一种小晶粒y2o3陶瓷的制备方法
CN114349348A (zh) * 2021-12-20 2022-04-15 浙江丹斯登生物材料有限公司 一种全瓷义齿用二硅酸锂玻璃陶瓷及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805068A (zh) * 2017-10-20 2018-03-16 中国科学院上海光学精密机械研究所 一种小晶粒y2o3陶瓷的制备方法
CN107805068B (zh) * 2017-10-20 2020-12-04 中国科学院上海光学精密机械研究所 一种小晶粒y2o3陶瓷的制备方法
CN114349348A (zh) * 2021-12-20 2022-04-15 浙江丹斯登生物材料有限公司 一种全瓷义齿用二硅酸锂玻璃陶瓷及其制备方法
CN114349348B (zh) * 2021-12-20 2024-01-12 浙江丹斯登生物材料有限公司 一种全瓷义齿用二硅酸锂玻璃陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
Yu et al. Fabrication of Nd: YAG transparent ceramics using powders synthesized by citrate sol-gel method
CN104557041B (zh) 一种氧化钇基透明陶瓷的制备方法
CN102311258B (zh) 激活离子受控掺杂的钇铝石榴石基激光透明陶瓷材料及其制备方法
CN105601277A (zh) 一种氧化钇基透明陶瓷的制备方法
CN104725052A (zh) 一种多层复合结构透明陶瓷的制备方法
CN102190499A (zh) 氧化钇透明陶瓷的制备方法
CN103058644A (zh) 一种通过合成稀土掺杂y2o3纳米粉体制备稀土掺杂钇铝石榴石透明陶瓷的方法
CN106673652A (zh) 一种具有核壳结构的氧化钇基激光陶瓷及其制备方法
CN108751991B (zh) 一种激光烧结制备Tb:Lu2O3陶瓷的方法
CN102815941B (zh) 稀土离子掺杂锆酸镧钆透明陶瓷材料及其制备方法
CN101148357A (zh) 掺Yb3+的氧化镧钇上转换发光透明激光陶瓷的制备方法
CN106800412A (zh) 一种具有核壳结构的氧化钇基透明陶瓷及其制备方法
CN106830935B (zh) 一种Nd敏化的氧化钇基激光陶瓷及其制备方法
CN102815945B (zh) 锆酸镧钆透明陶瓷材料及其制备方法
CN102826850A (zh) 氟化钡上转换透明陶瓷及其制备方法
CN106631022B (zh) 一种Tm敏化的氧化钇基激光陶瓷及其制备方法
CN102390856A (zh) 一种低温制备高稳定性γ相纳米硫化镧粉体的方法
Wang et al. Synthesis of nanocrystalline ytterbium-doped yttria by citrate-gel combustion method and fabrication of ceramic materials
CN102320824A (zh) 一种金属离子掺杂二氧化钛靶材的制备方法以及由此获得的靶材
CN110759733A (zh) 一种Y0.5Dy0.5Ta0.5Nb0.5O4钽系陶瓷材料及其制备方法
CN103073295B (zh) Er3+和Tm3+共掺的氧化镧钇闪烁透明陶瓷材料的制备方法
CN102674837A (zh) Er3+:Lu2O3透明陶瓷
CN106800410B (zh) 一种Yb敏化的氧化钇基激光陶瓷及其制备方法
CN104830344B (zh) 一种Er3+,Yb3+共掺YOF红色上转换荧光材料的制备方法
CN109354496B (zh) 一种钒酸钇透明陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170606