CN108695139B - 在氮化物半导体上沉积氮化硅(SiN)膜的方法 - Google Patents

在氮化物半导体上沉积氮化硅(SiN)膜的方法 Download PDF

Info

Publication number
CN108695139B
CN108695139B CN201810282155.7A CN201810282155A CN108695139B CN 108695139 B CN108695139 B CN 108695139B CN 201810282155 A CN201810282155 A CN 201810282155A CN 108695139 B CN108695139 B CN 108695139B
Authority
CN
China
Prior art keywords
nitride semiconductor
temperature
growth reactor
pressure
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810282155.7A
Other languages
English (en)
Other versions
CN108695139A (zh
Inventor
住吉和英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN108695139A publication Critical patent/CN108695139A/zh
Application granted granted Critical
Publication of CN108695139B publication Critical patent/CN108695139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02301Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment in-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种在氮化物半导体层上形成作为钝化膜的氮化硅膜的方法。该方法首先设定低于500℃的温度以装入其上具有氮化物半导体层的晶圆。然后,当置换气氛至纯氨气(NH3)或NH3分压大于0.2的NH3和N2的混合气并且设定高于3kPa的压力时,该方法将温度升高至高于750℃的沉积温度。最后,将气氛减压至低于100Pa并供给二氯硅烷(SiH2Cl2),从而将SiN沉积在氮化物半导体层上。本发明还公开了一种形成氮化物半导体器件的方法。本发明的方法在氮化物半导体材料上沉积SiN膜的同时,氮化物半导体材料的表面基本不会分解。

Description

在氮化物半导体上沉积氮化硅(SiN)膜的方法
相关申请的交叉引用
本申请根据35USC§119(a)要求于2017年4月3日提交的日本专利申请No.2017-073821的权益,为本文之所有目的,上述专利申请的全部公开内容通过引用并入本文。
技术领域
本发明涉及一种在氮化物半导体材料上沉积氮化硅(SiN)膜的方法,具体而言,本发明涉及一种在氮化物半导体材料上沉积SiN膜的低压化学气相沉积(LPCVD)方法。
背景技术
日本专利申请待审查公开No.JP-2013-077621A和JP-2013-123047A公开了主要由氮化物半导体材料构成的高电子迁移率晶体管(HEMTs)。前一份文献中公开的HEMT包括位于由碳化硅(SiC)制成的衬底上的半导体层和由氮化硅(SiN)制成并且保护并钝化半导体层的钝化膜。该文献中所公开的钝化层(其通过等离子体辅助化学气相沉积(PECVD)技术形成)设置了填充有栅极的开口。
后一份文献中公开的另一种HEMT包括这样的层叠体,该层叠体包括在衬底上形成的氮化物半导体材料。该层叠体覆盖有钝化膜。后一份专利文献公开了优选通过低压化学气相沉积(LPCVD)技术形成由Si3N4制成的钝化膜,其中沉积温度高于550℃,或进一步优选高于700℃。
由以氮化镓(GaN)为代表的氮化物半导体材料形成的半导体器件在本领域中成为主流。这种半导体器件需要绝缘膜来保护或钝化其表面,其中绝缘膜可由包含硅(Si)的无机材料制成,典型地有SiN、SiO2、SiON等。由于SiN含有氮(N),或两者(SiN和氮化物半导体材料)均为氮化物化合物意义上的普通材料,因此氮化物半导体材料通常具有由SiN构成的绝缘膜作为钝化膜。为了不使工艺温度过高,通常通过等离子体辅助工艺(如等离子体辅助化学气相沉积(PECVD)或利用电子回旋共振的溅射)来形成这种SiN膜。然而,等离子体工艺不可避免地会在将要沉积SiN膜的氮化物半导体材料的表面上引起等离子体损伤。
而被称为低压CVD(LPCVD)的另一种CVD方法在硅定向器件的半导体加工中颇为流行。LPCVD方法在较高温度和较低沉积压力下进行,用于增强源气体的解离。由于工艺温度高,因此通过LPCVD方法沉积的SiN膜通常显示出良好的质量。
当将LPCVD技术应用于化合物半导体材料(例如GaN)的加工时,化合物半导体材料必然暴露于高沉积温度中,这将加速V族元素,即氮(N)、砷(As)、磷(P)等从材料表面的解离。因此,在LPCVD工艺后,化合物半导体材料的表面发生分解。此外,由于二氯硅烷(SiH2Cl2)能够增强沉积的SiN膜的均匀性,因此当将SiH2Cl2用作LPCVD方法中的硅(Si)的源气体时,由于包含在SiH2Cl2中的氯(Cl)进攻并侵蚀氮化物半导体材料,所以氮化物半导体材料的表面会不可避免的分解。
本发明提供了一种通过LPCVD技术在氮化物半导体材料上沉积SiN膜而该氮化物半导体材料的表面基本不分解的技术。
发明内容
本发明的一个方面涉及一种在氮化物半导体材料上沉积氮化硅(SiN)膜的方法。该方法包括以下步骤:(1)将氮化物半导体材料装入生长反应器中;(2)用纯氨气(NH3)或NH3分压大于0.2的NH3和氮气(N2)的混合气吹扫反应器;(3)使生长反应器保持在高于3kPa的第一压力下,同时将生长反应器中的温度从第一温度升高至高于750℃的第二温度;(4)在第二温度下,将生长反应器中的压力从第一压力减压至低于100Pa的第二压力;(5)通过开始供给二氯硅烷(SiH2Cl2),从而在氮化物半导体材料上沉积SiN膜。
附图说明
从以下参照附图对本发明优选实施方案的详细描述中,将更好地理解上述及其他目的、方面和优点,其中:
图1示出了根据本发明第一实施方案的沉积在氮化物半导体层上的钝化膜的截面;
图2示出了沉积由氮化硅(SiN)制成的钝化膜的方法的顺序;
图3示出了沉积由SiN制成的钝化膜的常规方法的顺序;
图4示出了氮化物半导体层的表面粗糙度相对于反应器内生长压力的变化;
图5示出了氮化物半导体层的表面粗糙度相对于氮化物半导体装入反应器时的温度的变化;
图6示出了氮化物半导体层的表面粗糙度相对于氨气(NH3)分压的变化;
图7A至图7C示出了由原子力显微镜拍摄的氮化物半导体层的表面的照片;
图8A至图8C示出了根据本发明第二实施方案的方法中各步骤中半导体器件的截面;
图9A和图9B示出了继图8C所示的步骤之后的各个步骤中半导体器件的截面;
图10A和图10B示出了继图9B所示的步骤之后的各个步骤中半导体器件的截面;和
图11示出了表面粗糙度相对于半导体器件的漏泄电流的变化。
具体实施方式
接下来,将参照附图描述根据本发明的一些实施方案。然而,本发明不限于这些实施方案,并且具有所附权利要求限定的范围和与之等效的所有修改。而且,在附图的描述中,彼此相同或相似的数字和符号将表示彼此相同或相似的元件,不再重复说明。
第一实施方案
图1示出了根据本发明第一实施方案的沉积在氮化物半导体层上的钝化膜的截面。通过所谓的低压化学气相沉积(LPCVD)技术,可以在氮化物半导体层5上沉积与之接触的钝化膜3。生长在由碳化硅(SiC)制成的衬底7上的氮化物半导体层5可由(例如)氮化镓(GaN)制成。衬底7和氮化物半导体层5构成外延晶圆9。
图2示出了根据本发明第一实施方案的沉积可由氮化硅(SiN)构成的钝化膜3的方法的顺序。首先,在步骤S1中,通过在衬底7上外延地生长氮化物半导体层5来制备外延晶圆9。然后,在步骤S2中,LPCVD技术可将由氮化硅(SiN)制成的钝化膜3沉积在外延晶圆9上。
将描述步骤S2的细节。首先,在步骤S21中,将LPCVD方法的生长反应器中的温度设定为低于500℃的第一温度。第一温度可低于400℃或更低。第一实施方案将第一温度设定为500℃。在步骤S22中,使生长反应器内的温度稳定在第一温度,在空气气氛下将外延晶圆9装入生长反应器。然后,在步骤S23中,通过反复抽真空和填充氨气(这有时被称为循环吹扫),以进行将生长反应器从空气吹扫为氨气(NH3)的处理。或者,步骤S23可引入NH3分压大于0.2的氨气(NH3)和氮气(N2)的混合气。
此后,在步骤S24中,将生长反应器的压力变为高于3kPa的第一压力。第一压力可高于10kPa并且低于100kPa(大气压力)。第一实施方案将第一压力设定为3kPa。然后,在步骤S25中,压力维持在第一压力时,将生长反应器内的温度升高至高于750℃的第二温度。第二温度可高于800℃但要低于900℃。第一实施方案将第二温度设定为800℃。
此后,在步骤S26中,生长反应器保持在氨气(NH3)气氛时,将生长反应器中的压力降低至第二压力。第二压力可为20Pa以下但要高于10Pa。第一实施方案将第二压力设定为20Pa。然后,在步骤S27中,在生长反应器内供给二氯硅烷(SiH2Cl2),从而沉积SiN钝化膜。在步骤S27中,SiH2Cl2的流速和NH3的流速可基本彼此相等。本实施方案将两种气体源的流速均设定为100sccm,其中1sccm意思是每分钟一标准cc,即1个大气压和0℃下1cm3/min的流速。
在步骤S28中,完成SiN膜的沉积,停止供给SiH2Cl2和NH3,将生长反应器内的温度降低至(例如)700℃并用氮气(N2)吹扫生长反应器直至氯气的浓度变为低于检测限。最后,在步骤S29中,从生长反应器中取出其上覆盖有SiN钝化膜3的外延晶圆9。从而完成了通过LPCVD技术沉积SiN钝化膜3的过程。
通过将本发明与常规技术相比较,来描述本发明通过LPCVD技术沉积SiN钝化膜3的优点。图3示出了通过LPCVD方法沉积由SiN制成的钝化膜的常规顺序。与上述实施方案相似,在步骤S4中,以常规顺序在氮化物半导体层上沉积SiN钝化膜。具体而言,在步骤S41中,常规顺序首先将生长反应器中的温度设定为700℃。在步骤S42中,当生长反应器的温度稳定在700℃后,将外延晶圆9装入处于环境空气下的生长反应器中。然后,在步骤S43中,通过反复抽真空和填充N2,将生长反应器置换为N2气氛。
然后,在步骤S44中,常规方法将反应器内的压力降低至(例如)20Pa,该压力与SiN钝化膜的沉积压力基本上相等。此后,在步骤S45中,将生长反应器内的温度升高至生长温度,其可为(例如)800℃。在生长反应器中的温度稳定后,在步骤S47中,通过反复抽真空和填充NH3,将生长反应器从N2气氛置换为NH3气氛。气氛置换后,在步骤S48中,在100sccm的NH3流速下,将生长反应器的压力变为生长压力20Pa,然后在生长反应器内供给二氯硅烷(SiH2Cl2),进行SiN膜3的沉积。将SiH2Cl2的流速设定为100sccm。
如图2所示,步骤S24将生长反应器预先设定为高于3kPa的高压,而后升高生长反应器的温度。图4示出了氮化物半导体层5的表面粗糙度相对于其实际沉积前的生长压力的变化,其中,表面粗糙度由均方根(RMS)因数表示,并且在通过氢氟酸(HF)去除SiN钝化膜3以后,利用原子力显微镜(AFM)测量氮化物半导体层5的表面来测量其表面粗糙度。通过与上述相同方式获得后续图中出现的表面粗糙度。通过使外延晶圆装入生长反应器的装入温度为400℃,从而获得图4所示的粗糙度的变化。
参照图4,随着沉积前的预先压力(可被称为预压力)变高,半导体层5的表面粗糙度变小。预压力高于100Pa,使得表面粗糙度为0.49nm或更小。预压力高于3kPa使得表面粗糙度降低至小于0.28nm的值。
而且,如图2所示,本发明的步骤S21将生长反应器的第一温度设定为低于500℃,而如图3所示,常规方法将生长反应器温度设定为700℃。图5示出了氮化物半导体层5的表面粗糙度相对于外延晶圆装入反应器时的温度的变化。在SiN钝化膜3沉积前的预压力为10kPa以及NH3气氛的条件下,取得图5所示的变化。
参照图5,沉积前的温度(可被称为预温度)较低,使得表面粗糙度较低。例如,预温度低于500℃实现了基本为0.28nm的表面粗糙度。
本实施方案的步骤S23将生长反应器从空气气氛变为NH3气氛、或变为NH3分压大于0.2的氨气(NH3)和氮气(N2)的混合气氛。图6示出了氮化物半导体层5的表面粗糙度相对于NH3分压的变化,其中分压小于1.0意味着将生长反应器设定为NH3和N2的混合气氛。在将外延晶圆的装入温度设定为400℃,并且将生长反应器中的温度升高至生长温度时的第一压力设定为10kPa的条件下,得到图6所示的变化。
参照图6,随着NH3分压增大,氮化物半导体层5的表面粗糙度变小。当NH3分压为0.2、0.4、0.6和0.8时,所得到的表面粗糙度RMS因数分别为0.34、0.30、0.29和0.28nm。当在NH3分压大于0.6(步骤S24中设定)的情况下进行步骤S25(将生长反应器中的温度升高至生长温度)时,则不必进行通常所需的重复吹扫生长反应器至NH3气氛的步骤S47。氮化物半导体层5的表面不必暴露在高温下的真空环境中,可保护表面不发生氮(N)解离。因此,对于通过LPCVD技术进行SiN钝化膜3的沉积,NH3分压大于0.6的条件是优选的。
图7A至图7C示出了原子力显微镜拍摄的1μm×1μm范围内的氮化物半导体层5的表面状态,其中图7A对应于小于0.35nm的表面粗糙度,这意味着表面几乎没有分解。图7B对应于表面略有分解的0.35至0.50的表面粗糙度,而图7C对应于高于0.5的表面粗糙度,这意味着表面完全分解。图7A至图7C的照片为在SiN钝化膜3沉积之前所拍摄的氮化物半导体层5的表面,但此时已经进行了步骤S27(SiN膜3的沉积步骤)之前的步骤。图7A清楚地示出了原子层的梯级(steps)和约十几个错位。如图7B的照片所示,当表面粗糙度超过0.35时,表面出现许多凹点,这是氮(N)原子解离的痕迹。如图7C的照片所示,当表面粗糙度超过0.5时,氮化物半导体层7的表面完全分解,以致不能观察到原子层的梯级,其中分解源自图7B中出现的具有5nm至20nm的宽度和0.5nm至2nm的深度的黑点。图7C所示的照片中出现的黑点增加,并且变得更大以致相互重叠。
当沉积前的预压力高于3kPa时,表面粗糙度的RMS因数降低至0.32nm。因此,在图2中的步骤S24将生长反应器中的预压力设定为高于3kPa,可以获得如图7A所示的半导体层5的无分解表面。
而且,当第一温度(即外延晶圆9进入生长反应器的装入温度)低于500℃时,氮化物半导体层5的表面粗糙度的RMS因数为0.32。因此,在步骤S21中,将第一温度设定为低于500℃,可以获得半导体层5的无分解表面。
而且,由于NH3气氛或NH3分压高于0.2的NH3和N2的混合气氛将RMS因数降低至0.34nm,因此通过在图2的步骤S23中将相对与氮气(N2)的NH3压力设定为高于0.2,可以获得如图7A所示的半导体层5的无分解表面。
第二实施方案
将描述形成半导体器件的另一种方法作为本发明的第二实施方案,该方法通过第一实施方案的顺序在氮化物半导体层5上沉积了SiN钝化膜。图8A至图8C示出了该方法各个步骤中半导体器件的截面。本实施方案的半导体器件具有所谓的氮化镓(GaN)高电子迁移率晶体管(HEMT)类型。
首先,如图8A所示,该方法通过MOCVD技术在衬底10上连续地生长氮化物半导体层。衬底10可由具有(0001)晶体取向的主表面的碳化硅(SiC)制成,其中层叠方向对应于[0001]晶体取向。从衬底10侧起,半导体层叠体20包括成核层12、电子传输层14、电子供给层16和盖层18。可由氮化铝(AlN)制成的成核层12具有几十纳米的厚度。可由未掺杂GaN制成的电子传输层14具有约1000nm的厚度,确切地来说,其厚度优选大于500nm。可由氮化铝镓(AlGaN)制成的电子供给层16具有20nm的厚度,而可由氮化镓(GaN)制成的盖层18具有5nm的厚度。
然后,如图8B所示,通过第一实施方案的方法将SiN钝化膜26沉积在半导体层叠体20上,其中SiN钝化膜26具有100nm的厚度,但不限于此。SiN钝化膜26的厚度可取决于HEMT1A的其他层结构。可在800℃的温度下,并且使用NH3和二氯硅烷(SiH2Cl2)分别作为氮(N)和硅(Si)的来源进行沉积。
此后,如图8C所示,以光刻胶50覆盖SiN膜26,其中光刻胶50具有开口50a。然后,通过反应性离子蚀刻(RIE)连续地干法蚀刻SiN膜26和盖层18中各自与开口50a对应的部分,从而暴露电子供给层16。干法蚀刻略微蚀刻了电子供给层16,从而在其中形成凹陷。蚀刻后,将光刻胶50完全去除。
此后,如图9A所示,以另一光刻胶51覆盖SiN膜26,其中该另一光刻胶还具有比此前开口50a的尺寸更大的开口51a。在前述步骤中暴露的电子供给层16在开口51a中完全暴露。然后,将源极22和漏极24的金属蒸发于电子供给层16上,其中金属包括厚度为30nm的钛(Ti)和厚度为300nm的铝(Al)。或者,钛(Ti)可替换为厚度为约30nm的钽(Ta)。作为剩余部分,金属23也沉积在光刻胶51上,但作为剩余部分的金属23可与光刻胶51一同去除。然后,在约400℃或更高温度下进行热处理,可使金属22和24在电子供给层16上合金化,从而形成源极22和漏极24。在高于550℃的温度下进行热处理,可进一步降低源极22和漏极24相对于电子供给层16的接触电阻。
此后,如图9B所示,再以另一光刻胶52覆盖SiN膜26,从而覆盖源极22和漏极24,其中光刻胶52还具有开口52a。然后,用干法蚀刻有选择地蚀刻暴露于开口52a中的SiN膜26,从而在SiN膜26中形成窗口。干法蚀刻后,将光刻胶52完全去除。
此后,与图9A所示的步骤相似,以另一光刻胶覆盖SiN膜26,从而暴露在前述步骤中形成的SiN膜26中的窗口。然后,如图10A所示,在SiN膜26的窗口中真空蒸发沉积栅极28。栅极28包括厚度为50nm的镍(Ni)和厚度为400nm的金(Au)的堆叠金属,其中Ni与盖层18接触。可在去除光刻胶时一并去除积累在光刻胶上的剩余金属。
此后,如图10B所示,可通过(例如)等离子体辅助化学气相沉积(PECVD)技术在SiN膜26上覆盖绝缘膜30,从而完全覆盖电极22至28。绝缘膜30可由厚度为500nm的氮化硅(SiN)制成。通过使用缓冲氢氟酸(BHF)的湿法蚀刻,在绝缘膜30内与源极22和漏极24对应的位置处形成开口30a,使源极22和漏极24各自的顶部暴露在开口30a内。从而完成了形成HEMT 1A的过程。
由于在氮化物半导体层上存在通过LPCVD技术形成的SiN钝化膜26,因此可增强通过上述方法形成的HEMT的性能。图11示出了氮化物半导体层的表面粗糙度相对于HEMT 1A的栅漏电流的变化,其中以RMS单位表示的粗糙度对应于出现在半导体层叠体20表面(即盖层18顶面)的粗糙度,并且栅漏电流是通过在栅极和漏极之间施加50V的偏压但打开源极时,在栅极和漏极之间测量得到的。点P1至P3对应于下表所列的沉积SiN钝化膜的条件,其中HEMT具有7.2μm的源-漏间距Lsd、1.4μm的源-栅间距Lsg、5.2μm的栅-漏间距Lgd、0.6μm的栅长Lg和500μm的栅宽。
Figure BDA0001614961940000091
如图11所示,漏泄电流随着半导体层叠体20的粗糙度的降低而减小。点P1显示了最小的漏泄电流,其对应的条件为:其上暴露半导体层叠体20的外延晶圆的装入温度为400℃、实际沉积前的预压力为10kPa并且在氨气(NH3)气氛中升温。点P2和P3之间的差异似乎是由升温过程中的压力造成,其中前者在300Pa下进行升温,而后者在30Pa进行升温。
虽然已经阐明和描述了目前被认为是本发明的示例性实施方案,但本领域技术人员应当理解,在不脱离本发明真实范围的前提下,可进行各种其他的修改和等效替代。此外,在不脱离本文所述的本发明的中心思想的前提下,可进行许多修改,从而使特定情况适应本发明的教导。因此,目的是本发明不限于以上公开的特定实施方案,而是本发明包括落入所附权利要求范围内的所有实施方案。

Claims (9)

1.一种通过低压化学气相沉积法在氮化物半导体材料上沉积氮化硅(SiN)膜的方法,该方法包括以下步骤:
在低于500℃的第一温度下将所述氮化物半导体材料装入生长反应器中;
用纯氨气(NH3)或NH3分压大于0.2的氨气(NH3)和氮气(N2)的混合气体吹扫所述生长反应器;
使所述生长反应器保持在高于3kPa的第一压力下,同时将所述生长反应器中的温度从所述第一温度升高至高于750℃的第二温度;
在所述第二温度下,将所述生长反应器中的压力从所述第一压力减压至低于100Pa的第二压力;
通过开始供给二氯硅烷(SiH2Cl2),在所述氮化物半导体材料上沉积SiN膜。
2.根据权利要求1所述的方法,其中所述吹扫生长反应器的步骤包括使用NH3和N2的混合气体吹扫所述生长反应器的步骤,其中所述混合气体的NH3分压大于0.6且小于1.0。
3.根据权利要求1所述的方法,其中所述第二温度低于900℃。
4.根据权利要求1所述的方法,其中所述第一压力大于10kPa。
5.一种形成氮化物半导体器件的方法,包括以下步骤:
通过金属有机化学气相沉积(MOCVD)技术在衬底上连续地生长半导体层,所述半导体层包括位于其顶部的氮化物半导体层;
通过低压化学气相沉积法在所述氮化物半导体层上形成由氮化硅(SiN)制得的钝化膜,步骤如下:
在低于500℃的第一温度下将所述衬底装入生长反应器中,在纯氨气(NH3)或NH3分压大于0.2的氨气(NH3)和氮气(N2)的混合气体气氛中吹扫所述生长反应器,
在使所述生长反应器中的压力保持为高于3kPa的第一压力的情况下,将所述生长反应器中的温度从所述第一温度升高至高于750℃的第二温度,
在所述第二温度下,将所述生长反应器减压至低于100Pa的第二压力,以及
通过供给二氯硅烷(SiH2Cl2),在所述氮化物半导体层上沉积所述钝化膜,以及
通过在所述钝化膜内形成开口,并且在所述钝化膜的所述开口内沉积金属以便与所述氮化物半导体层接触,从而在所述氮化物半导体层上形成电极。
6.根据权利要求5所述的方法,其中所述吹扫生长反应器的步骤使用NH3和N2的混合气体吹扫所述生长反应器,其中所述混合气体的NH3分压大于0.6且小于1.0。
7.根据权利要求5所述的方法,其中所述第二温度低于900℃。
8.根据权利要求5所述的方法,其中所述第一压力高于10kPa。
9.根据权利要求5所述的方法,其中所述沉积所述钝化膜的步骤沉积厚度为100nm的SiN膜。
CN201810282155.7A 2017-04-03 2018-04-02 在氮化物半导体上沉积氮化硅(SiN)膜的方法 Active CN108695139B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-073821 2017-04-03
JP2017073821A JP6834709B2 (ja) 2017-04-03 2017-04-03 窒化珪素パッシベーション膜の成膜方法及び半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN108695139A CN108695139A (zh) 2018-10-23
CN108695139B true CN108695139B (zh) 2023-06-06

Family

ID=63671732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810282155.7A Active CN108695139B (zh) 2017-04-03 2018-04-02 在氮化物半导体上沉积氮化硅(SiN)膜的方法

Country Status (3)

Country Link
US (1) US10566184B2 (zh)
JP (1) JP6834709B2 (zh)
CN (1) CN108695139B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6885288B2 (ja) * 2017-09-29 2021-06-09 住友電気工業株式会社 窒化珪素パッシベーション膜の成膜方法及び半導体装置の製造方法
JP7439660B2 (ja) 2019-09-04 2024-02-28 住友電気工業株式会社 窒化珪素パッシベーション膜の成膜方法及び半導体装置の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794731A (ja) * 1993-09-24 1995-04-07 Toshiba Corp 半導体装置及びその製造方法
JP2972687B2 (ja) * 1998-01-16 1999-11-08 松下電子工業株式会社 半導体装置の製造方法
TW473915B (en) * 2000-12-29 2002-01-21 Applied Materials Inc Manufacture method of silicon nitride layer
US8823057B2 (en) * 2006-11-06 2014-09-02 Cree, Inc. Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices
JP5646984B2 (ja) * 2010-12-24 2014-12-24 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP2012142386A (ja) * 2010-12-28 2012-07-26 Elpida Memory Inc 窒化膜の形成方法
US9070758B2 (en) * 2011-06-20 2015-06-30 Imec CMOS compatible method for manufacturing a HEMT device and the HEMT device thereof
CN102260860B (zh) * 2011-08-01 2013-04-24 无锡中微晶园电子有限公司 一种sonos结构中氮化硅的生长工艺
JP5998446B2 (ja) 2011-09-29 2016-09-28 富士通株式会社 化合物半導体装置及びその製造方法
EP2602827B1 (en) 2011-12-09 2016-02-03 Imec Enhancement mode III-nitride device and method for manufacturing thereof
US9580304B2 (en) * 2015-05-07 2017-02-28 Texas Instruments Incorporated Low-stress low-hydrogen LPCVD silicon nitride

Also Published As

Publication number Publication date
US10566184B2 (en) 2020-02-18
CN108695139A (zh) 2018-10-23
JP2018181885A (ja) 2018-11-15
JP6834709B2 (ja) 2021-02-24
US20180286661A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US20200181770A1 (en) Method of forming a structure including silicon nitride on titanium nitride and structure formed using the method
US8247842B2 (en) Nitride semiconductor device having graded aluminum content
CN102197468B (zh) 化合物半导体器件及其制造方法
JP7013710B2 (ja) 窒化物半導体トランジスタの製造方法
CN108695139B (zh) 在氮化物半导体上沉积氮化硅(SiN)膜的方法
JP6085178B2 (ja) Mes構造トランジスタを作製する方法、mes構造トランジスタ
CN108122740B (zh) 外延衬底的制造方法
CN107785243B (zh) 形成氮化物半导体层的工艺
CN109671775B (zh) 形成氮化物半导体器件的工艺
JP6519920B2 (ja) 半導体基板の製造方法、及び半導体装置の製造方法
CN109881177B (zh) 形成氮化硅(SiN)膜和具有SiN膜的半导体器件的方法
US11545550B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN111512416A (zh) 在硅衬底上形成碳化硅的方法
JP2019067887A (ja) 窒化珪素パッシベーション膜の成膜方法及び半導体装置の製造方法
JP5432480B2 (ja) Si基板上のGaN系デバイスの熱処理方法
JP6988530B2 (ja) 窒化物半導体装置の製造方法
JP7099047B2 (ja) 窒化珪素パッシベーション膜の成膜方法及び半導体デバイスの製造方法
CN109585267B (zh) 氮化硅膜的形成方法
CN112447841B (zh) 一种高电子迁移率晶体管及其制备方法
US10546746B2 (en) Process of forming semiconductor epitaxial substrate
CN116825619A (zh) 一种基于MOCVD的垂直GaN器件的掩膜钝化层生长方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant