CN108658067B - 一种磷氮共掺杂碳材料及其制备方法与用途 - Google Patents

一种磷氮共掺杂碳材料及其制备方法与用途 Download PDF

Info

Publication number
CN108658067B
CN108658067B CN201810635209.3A CN201810635209A CN108658067B CN 108658067 B CN108658067 B CN 108658067B CN 201810635209 A CN201810635209 A CN 201810635209A CN 108658067 B CN108658067 B CN 108658067B
Authority
CN
China
Prior art keywords
nitrogen
carbon material
phosphorus
doped carbon
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810635209.3A
Other languages
English (en)
Other versions
CN108658067A (zh
Inventor
高勇军
张红
张云芮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heibei University
Original Assignee
Heibei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heibei University filed Critical Heibei University
Priority to CN201810635209.3A priority Critical patent/CN108658067B/zh
Publication of CN108658067A publication Critical patent/CN108658067A/zh
Application granted granted Critical
Publication of CN108658067B publication Critical patent/CN108658067B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • C07C209/365Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst by reduction with preservation of halogen-atoms in compounds containing nitro groups and halogen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种磷氮共掺杂碳材料及其制备方法与用途,称量4~6重量份的磷酸氢二铵和2~4重量份的纤维素,将其混合均匀,得到预制物;将所得预制物在惰性气体保护下,以10~20℃/min的升温速率进行升温,700℃~900℃下煅烧0.5~2h,冷却后得到的黑色粉末即为磷氮共掺杂碳材料。本发明的磷氮共掺杂碳材料制备方法选用含碳丰富的纤维素为碳源,与磷酸氢二铵混合,经高温煅烧产生磷氮共掺杂碳材料,该方法简单、绿色节能,无需前、后续处理,操作简洁方便,适于工业化生产及推广应用;采用本发明方法所得到的磷氮共掺杂碳材料性能优异,可作为非金属催化剂用于在还原剂水合肼的存在下光催化硝基化合物选择性加氢反应,目的产物的产率较高。

Description

一种磷氮共掺杂碳材料及其制备方法与用途
技术领域
本发明涉及一种碳材料的制备方法,具体地说是涉及一种磷氮共掺杂碳材料及其制备方法与用途。
背景技术
芳胺类化合物是一类重要的有机合成中间体,广泛应用于染料、颜料、试剂、橡胶、医药、农药、精细化工等诸多领域。催化加氢法是制备芳胺类化合物的重要手段,如Liou等[The Journal of Organic Chemistry.1982,47,3018-3021]报道了以铑配合物作催化剂,用不同仲醇作为氢供体,在150℃,经7.0h反应,还原芳香族硝基化合物制芳胺,芳胺的产率在14.1%~100%之间;吕德义等[浙江工业大学学报.2002, 30(5): 464-466]采用浸渍法制备了碳纳米管负载 Ni 催化剂,并将其用于催化邻硝基甲苯加氢制备邻甲基苯胺反应,研究结果显示,在493K、0.1Mpa的实验条件下,Ni/CNTs能获得80%的邻硝基甲苯转化率和100%的邻甲基苯胺选择性;Ma等[Mater. Lett.2013,108,285-288]以还原态石墨烯氧化物为催化剂,以水合肼为还原剂,在140℃实现了硝基化合物的还原反应。然而,这些反应有的需要(贵)金属催化剂,有的需要较高温度和压力,因此,如何发展一种简单有效、廉价稳定、对环境友好的催化剂制备方法,并且使催化体系在更加温和的条件下进行是目前仍需努力解决的问题。
多孔碳材料由于优良的物理化学性质如表面积大,多孔结构和良好的导电性等,已广泛应用于染料的吸附、气体吸附和存储、超级电容器、锂离子电池和催化等诸多领域,但是由于碳材料电荷分布均匀,与吸附物种(H2和-NO2等)相互作用会使得其在氢化反应中是惰性的。为了改善碳材料的催化活性,需要对碳材料本身进行功能化修饰。发明专利CN106960729A公开了一种氮硫共掺杂碳材料的制备方法,由含氨基氮五元和六元杂环化合物单体在过硫酸盐引发剂作用下形成聚合物,经过高温碳化后得到氮硫共掺杂的碳材料,应用于超级电容器电极材料。发明专利CN106115653A 公开了一种杂原子掺杂的多孔碳材料的制备方法,其中杂原子为氮、氧、硫、硼、磷中的一种或多种,将离子液体单体与有机小分子单体共聚形成聚合物前驱体,聚合物前驱体在空气中250℃~400℃下预处理后再在氮气保护下800~1500℃碳化,得到杂原子掺杂的多孔碳材料,这种多孔的、含有杂原子的碳材料具有大的比表面积、良好的电解液润湿性和导电性。发明专利CN103213968A公开了N、S、B或P掺杂碳材料的制备方法和应用,利用只含有卤素的有机高分子、含有杂原子的有机物和碳化钙分散在强极性溶剂中,于160~200℃环境进行预混和碳化,再将得到的固体产物,在惰性气氛下于700~900℃进行高温焙烧,得到杂原子掺杂碳材料,所掺杂的杂原子为N、S、B或P,制备的杂原子掺杂碳材料具有较高的石墨化程度,且具有高导电性和高活性催化中心等特性,修饰有该碳材料的电极可以高效地催化氧气还原反应。实践中,在制备杂原子掺杂碳材料时,杂原子种类和原材料是否便宜易得,制备过程是否简便、对环境友好等因素都是人们设计和考虑的重要因素,由此也决定着制备方法的工业价值以及所制碳材料可能具有的优异性能。
发明内容
本发明的目的之一是提供一种磷氮共掺杂碳材料的制备方法,以解决现有杂原子掺杂碳材料制备方法操作复杂,采用多种含杂原子的材料为原料和所得碳材料性能待提高的问题。
本发明的目的之二是提供一种磷氮共掺杂碳材料,以采用简单的方法制备得到性能优异的杂原子掺杂碳材料。
本发明的目的之三是提供一种磷氮共掺杂碳材料在催化硝基苯加氢还原反应中的应用。
本发明的目的之一是这样实现的:
一种磷氮共掺杂碳材料的制备方法,称量4~6重量份的磷酸氢二铵和2~4重量份的纤维素,将其混合均匀,得到预制物;将所得预制物在惰性气体保护下,以10~20℃/min的升温速率进行升温,700℃~900℃下煅烧0.5~2h,冷却后得到的黑色粉末即为磷氮共掺杂碳材料。
所述惰性气体为氮气。
所述惰性气体的流速为40ml/min。
煅烧后采用自然冷却的方式冷却至室温。
具体地,称量4重量份的磷酸氢二铵和2重量份的纤维素,将其研磨至混合均匀,得到预制物;将所得预制物在氮气保护下,以10℃/min的升温速率进行升温,900℃下煅烧2h,冷却后得到的黑色粉末即为磷氮共掺杂碳材料。
本发明的目的之二是这样实现的:
采用前述制备方法得到的磷氮共掺杂碳材料,优选地,其比表面积不小于500m2/g。
本发明的目的之三是这样实现的:
前述磷氮共掺杂碳材料可作为非金属催化剂应用于光催化硝基苯等芳香硝基化合物选择性加氢反应,在还原剂水合肼的存在下催化还原成芳胺类化合物,并且能够获得较高的转化率和选择性。
本发明的磷氮共掺杂碳材料制备方法选用含碳丰富的纤维素为碳源,并与磷酸氢二铵混合,经高温煅烧产生磷氮共掺杂碳材料,该方法简单、绿色节能,无需前、后续处理,操作简洁方便,适于工业化生产及推广应用。
采用本发明方法所得到的磷氮共掺杂碳材料性能优异,可作为非金属催化剂用于在还原剂水合肼的存在下光催化硝基化合物选择性加氢反应,还原为芳胺类化合物,其稳定性好,目的产物的产率较高。
附图说明
图1为实施例1所制备的磷氮共掺杂碳材料PNC-900的SEM图。
图2为实施例1所制备的磷氮共掺杂碳材料PNC-900的TEM图。
图3为实施例1所制备的磷氮共掺杂碳材料PNC-900的X射线衍射谱图。
图4~8为实施例1所制备的磷氮共掺杂碳材料PNC-900的STEM图-mapping图,其中,图4为STEM图,图5~8分别为C、N、O和P元素的分布图。
图9为实施例1所制备的磷氮共掺杂碳材料PNC-900的X射线光电子能谱图。
图10为实施例1所制备的磷氮共掺杂碳材料PNC-900的Raman图。
图11为实施例1所制备的磷氮共掺杂碳材料PNC-900的N2吸脱附等温线图。
具体实施方式
下面结合实施例对本发明做进一步的阐述,下述实施例仅作为说明,并不以任何方式限制本发明的保护范围。
实施例中所用试剂均为分析纯或化学纯,且均可市购或通过本领域普通技术人员熟知的方法制备。下述实施例均实现了本发明的目的。
实施例1 PNC-900的制备
称取4g磷酸氢二铵和2g纤维素,将其一起放入玛瑙研钵中,研磨20min至混合均匀,得到预制物;将预制物放入一头塞入石英棉的石英管中,将石英管放在管式炉上,在氮气的保护下,以10℃/min的升温速率升到900℃,于900℃下煅烧2h,冷却后,得到的黑色粉末即为磷氮共掺杂碳材料,根据煅烧温度命名为PNC-900。
对所得磷氮共掺杂碳材料PNC-900进行扫描电镜分析,所得结果如图1所示,由图1可以看出,所得的磷氮共掺杂碳材料PNC-900具有多孔状结构。
对所得磷氮共掺杂碳材料PNC-900进行透射电镜分析,所得结果如图2所示,由图2可以看出,所得的磷氮共掺杂碳材料PNC-900具有一定的石墨化结构。
对所得磷氮共掺杂碳材料PNC-900进行XRD表征,所得结果如图3所示,由图3可以看出,在2θ = 23.5°和43.5°分别出现一个强衍射峰和一个较弱的衍射峰,这两个衍射峰分别对应于石墨化碳材料的(002)晶面和(100)晶面的特征衍射,证明了材料中有立体有序的石墨相的生成。
对所得磷氮共掺杂碳材料PNC-900进行扫描透射电镜分析和X射线能谱分析,所得结果如图4~9所示,由图4~9可以看出,磷、氮元素确实掺杂至碳材料中。
对所得磷氮共掺杂碳材料PNC-900进行Raman光谱分析,所得结果如图10所示,由图10可以看出,D-带源于有限粒子的尺寸效应或石墨结构的无序和结构缺陷,G-带是由碳环或长链中的sp2原子对的拉伸运动产生的,表示存在晶形的石墨碳。
对所得磷氮共掺杂碳材料PNC-900进行N2吸脱附表征,所得结果如图11所示,由图11可以看出,该材料具有较大的比表面积,为543.7m2/g。
实施例2 PNC-700的制备
称取4g磷酸氢二铵和4g纤维素,将其一起放入玛瑙研钵中,研磨20min至混合均匀,得到预制物;将预制物放入一头塞入石英棉的石英管中,将石英管放在管式炉上,在氮气的保护下,以20℃/min的升温速率升到700℃,于700℃下煅烧1.5h,冷却后,得到的黑色粉末即为磷氮共掺杂碳材料,根据煅烧温度命名为PNC-700。
实施例3 PNC-800的制备
称取6g磷酸氢二铵和2g纤维素,将其一起放入玛瑙研钵中,研磨20min至混合均匀,得到预制物;将预制物放入一头塞入石英棉的石英管中,将石英管放在管式炉上,在氮气的保护下,以15℃/min的升温速率升到800℃,于800℃下煅烧1h,冷却后得到黑色粉末,根据煅烧温度命名为PNC-800。
实施例4 PNC-900-2的制备
称取6g磷酸氢二铵和4g纤维素,将其一起放入玛瑙研钵中,研磨20min至混合均匀,得到预制物;将预制物放入一头塞入石英棉的石英管中,将石英管放在管式炉上,在氮气的保护下,以10℃/min的升温速率升到900℃,于900℃下煅烧0.5h,冷却后得到黑色粉末,根据煅烧温度命名为PNC-900-2。
对比例 1
向30mL反应玻璃管中依次加入0.1mmol硝基苯和1mL水合肼,然后置于光催化反应体系内,反应完成后,利用气相色谱检测反应的产率,苯胺的产率为0。
实施例5 光催化实验
称取10mg 实施例1制备的PNC-900,置于30mL反应玻璃管中,依次加入0.1mmol硝基苯和1mL水合肼,然后置于光催化反应体系内,反应完成后利用气相色谱检测反应的产率。
采用同样方法进行了PNC-900对其他芳硝基化合物的光催化反应,反应完成后,利用气相色谱检测反应的产率。
对比例1和采用PNC进行催化反应的产率结果如表1所示。以上反应结果体现了实施例1制备的PNC-900对芳硝基化合物优异的光催化性能。
表1 催化剂对芳硝基化合物的光催化反应产率
Figure 689709DEST_PATH_IMAGE001
上述实施例只是对本发明构思和实现的说明,并非对其进行限制,在本发明构思下,未经实质变换的技术方案仍然在保护范围内。

Claims (1)

1.一种磷氮共掺杂碳材料在光催化芳香硝基化合物加氢还原反应中的应用,其特征在于,所述磷氮共掺杂碳材料的比表面积不小于500m2/g;所述磷氮共掺杂碳材料采用如下方法制得:称量4~6重量份的磷酸氢二铵和2~4重量份的纤维素,将其混合均匀,得到预制物;将所得预制物在惰性气体保护下,以10~20℃/min的升温速率进行升温,700℃~900℃下煅烧0.5~2h,冷却后得到的黑色粉末即为磷氮共掺杂碳材料。
CN201810635209.3A 2018-06-20 2018-06-20 一种磷氮共掺杂碳材料及其制备方法与用途 Expired - Fee Related CN108658067B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810635209.3A CN108658067B (zh) 2018-06-20 2018-06-20 一种磷氮共掺杂碳材料及其制备方法与用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810635209.3A CN108658067B (zh) 2018-06-20 2018-06-20 一种磷氮共掺杂碳材料及其制备方法与用途

Publications (2)

Publication Number Publication Date
CN108658067A CN108658067A (zh) 2018-10-16
CN108658067B true CN108658067B (zh) 2020-07-17

Family

ID=63772138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810635209.3A Expired - Fee Related CN108658067B (zh) 2018-06-20 2018-06-20 一种磷氮共掺杂碳材料及其制备方法与用途

Country Status (1)

Country Link
CN (1) CN108658067B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473291A (zh) * 2018-11-09 2019-03-15 天津工业大学 一种基于棉花的超高比电容的n,p共掺杂多孔中空炭纤维的制备新方法
CN110193348A (zh) * 2019-06-14 2019-09-03 湘潭大学 一种氮磷改性荷叶生物炭的制备方法及其应用
CN110589826A (zh) * 2019-10-15 2019-12-20 东北林业大学 一种n、p共掺杂炭气凝胶及其制备方法和应用
CN110791289A (zh) * 2019-10-21 2020-02-14 天津科技大学 一种氮磷掺杂生物质基碳量子点、应用和利用其进行细胞成像检测的方法
CN112366316B (zh) * 2020-09-27 2022-03-01 泰山学院 一种氮、磷共掺杂石墨烯的制备方法及其应用
CN112607735B (zh) * 2020-11-30 2023-01-06 河北大学 氮/硫共掺杂多孔碳材料及其制备方法与用途
CN113151936B (zh) * 2021-03-24 2023-07-25 湖北文理学院 一种表面呈均匀球凸的碳纤维及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982240A (zh) * 2010-09-21 2011-03-02 淮北师范大学 可选择性氧化醇和还原硝基化合物的高活性窄带隙光催化剂的设计与制备
CN103539596A (zh) * 2013-10-25 2014-01-29 上海交通大学 催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法
CN105609324A (zh) * 2015-12-25 2016-05-25 哈尔滨工业大学 一种氮磷掺杂碳纤维/石墨烯/细菌纤维素柔性电极材料的制备方法及其应用
CN105702476A (zh) * 2016-03-28 2016-06-22 天津工业大学 一种高比电容对称型电化学电容器及其制备方法
CN106229157A (zh) * 2016-08-17 2016-12-14 哈尔滨万鑫石墨谷科技有限公司 一种多原子共掺杂纳米碳纤维及其一步制备方法和用途
CN106238085A (zh) * 2016-07-28 2016-12-21 安徽师范大学 一种氧掺杂碳化氮‑贵金属复合光催化剂、制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107029694B (zh) * 2017-05-23 2020-03-27 中国石油大学(北京) 一种掺杂碳材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982240A (zh) * 2010-09-21 2011-03-02 淮北师范大学 可选择性氧化醇和还原硝基化合物的高活性窄带隙光催化剂的设计与制备
CN103539596A (zh) * 2013-10-25 2014-01-29 上海交通大学 催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法
CN105609324A (zh) * 2015-12-25 2016-05-25 哈尔滨工业大学 一种氮磷掺杂碳纤维/石墨烯/细菌纤维素柔性电极材料的制备方法及其应用
CN105702476A (zh) * 2016-03-28 2016-06-22 天津工业大学 一种高比电容对称型电化学电容器及其制备方法
CN106238085A (zh) * 2016-07-28 2016-12-21 安徽师范大学 一种氧掺杂碳化氮‑贵金属复合光催化剂、制备方法及应用
CN106229157A (zh) * 2016-08-17 2016-12-14 哈尔滨万鑫石墨谷科技有限公司 一种多原子共掺杂纳米碳纤维及其一步制备方法和用途

Also Published As

Publication number Publication date
CN108658067A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN108658067B (zh) 一种磷氮共掺杂碳材料及其制备方法与用途
Ye et al. Cage-confinement of gas-phase ferrocene in zeolitic imidazolate frameworks to synthesize high-loading and atomically dispersed Fe–N codoped carbon for efficient oxygen reduction reaction
CN110642238B (zh) 类石墨烯氮掺杂多孔碳材料及其制备方法和应用
WO2015106720A1 (zh) 以生物质电厂灰为原料制备超级活性炭的方法
CN104860306B (zh) 一种高度有序介孔石墨烯材料的制备方法
Long et al. Effect of pyrolysis conditions on nitrogen-doped ordered mesoporous carbon electrocatalysts
CN106587017A (zh) 一种多孔石墨烯及其制备方法
CN110117009B (zh) 一种铁氮共掺杂磁性多孔石墨化纳米碳气凝胶的制备方法
CN107265433A (zh) 三维多孔掺氮碳材料及其制备方法和应用
CN108793126A (zh) 一种缺陷可控的吡啶氮掺杂多孔石墨烯及制备与应用
CN106495125B (zh) 一种石油焦基介孔碳的制备方法及应用
CN111533124A (zh) 二维、氮掺杂纳米多孔碳材料及其制备方法
CN107029694B (zh) 一种掺杂碳材料及其制备方法
CN105562050A (zh) 一种多孔类石墨烯结构掺杂碳材料及其制备方法与应用
CN105217627A (zh) 一种椰壳石墨化活性炭的制备方法
CN114914424A (zh) 一种源于黑磷的碳-磷复合材料的制备方法
Chu et al. Functions of hydroxyapatite in fabricating N-doped carbon for excellent catalysts and supercapacitors
Zou et al. Catalytic oxidation of NO on N-doped carbon materials at low temperature
Wang et al. Fluorine and nitrogen co-doped ordered mesoporous carbon as a metal-free electrocatalyst for oxygen reduction reaction
Le et al. High-yield preparation of coal tar pitch based porous carbon via low melting point fire retardant carbonation strategy for supercapacitor
CN103107024A (zh) 一种含氮介孔碳/MnO2复合材料及其制备方法
WO2015010299A1 (zh) 一种制备含硫碳材料的方法及其制备的含硫碳材料
Zhang et al. Interfacial-interaction-induced fabrication of biomass-derived porous carbon with enhanced intrinsic active sites
CN110697708A (zh) 锂离子电容器用的氮掺杂多孔炭材料及其低温共融溶剂活化生物质废弃物高效的制备方法
CN110775959A (zh) 超分子模板法制备氮硫共掺杂多孔石墨烯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200717