CN108589009A - 一种基于模糊pid的手套机机头与橡筋电机同步控制方法 - Google Patents

一种基于模糊pid的手套机机头与橡筋电机同步控制方法 Download PDF

Info

Publication number
CN108589009A
CN108589009A CN201810352096.6A CN201810352096A CN108589009A CN 108589009 A CN108589009 A CN 108589009A CN 201810352096 A CN201810352096 A CN 201810352096A CN 108589009 A CN108589009 A CN 108589009A
Authority
CN
China
Prior art keywords
motor
fuzzy
acceleration
speed
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810352096.6A
Other languages
English (en)
Other versions
CN108589009B (zh
Inventor
董辉
陈志璇
康磊
童辉
王亚男
江丽林
俞立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201810352096.6A priority Critical patent/CN108589009B/zh
Publication of CN108589009A publication Critical patent/CN108589009A/zh
Application granted granted Critical
Publication of CN108589009B publication Critical patent/CN108589009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/94Driving-gear not otherwise provided for
    • D04B15/99Driving-gear not otherwise provided for electrically controlled

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Feedback Control In General (AREA)

Abstract

一种基于模糊PID的手套机机头与橡筋电机同步控制方法,包括以下步骤:1)推算出电机电磁推力与q轴电流的关系;2)确定同步运行控制器的输入量速度误差e与加速度误差ec;3)速度跟踪控制器控制电机的正常运行,根据处理器实时读取判断机头电机的编码器1、橡筋电机的编码器2的位置信息,当编码器1、编码器2测出的位置信息不对等时,同步运行控制器的输出将作为控制信号,经过D/A变换传输至变频器,再通过变频器控制电机转速,达到同步控制的目的。本发明能有效地使机头与橡筋电机位置同步,进而提高智能手套机的生产品质以及产量。

Description

一种基于模糊PID的手套机机头与橡筋电机同步控制方法
技术领域
本发明涉及一种运动控制方法,尤其是一种智能手套机机头与橡筋电机的同步运动控制方法,属于运动控制领域。
背景技术
手套机是一种针织机械,用于编制各种手套,包括劳保手套、半指手套、触摸屏手套以及各种时尚流行手套等,市场需求量巨大。从最开始的链条机发展到现在的智能手套机,自动化程度越来越高,对手套编制工艺要求也越来越高。在编织罗纹部位时,通过加入橡筋线来使罗口具有弹性的功能。现有的智能手套机在编制橡筋部位时,是靠机头带住橡筋沙嘴,然后通过橡筋电机转动主动轮,从而将橡筋线输送过来,由于机头与橡筋电机的参数变化、摩擦力的不平衡和负载变动等不确定因素导致两边的运动无法达到完全一致,影响加工工件的质量,进而这将影响手套机生产手套的品质以及产量。
发明内容
为了克服现有的智能手套机机头与橡筋电机之间的同步性能较差的不足,本发明提供一种能有效地使机头与橡筋电机位置同步的方法,进而提高智能手套机的生产品质以及产量。
本发明解决其技术问题所采用的技术方案是:
一种基于模糊PID的手套机机头与橡筋电机同步控制方法,所述方法包括以下步骤:
第一步,确定电磁推力Fe与q轴电流Iq的关系
机头与橡筋电机均采用永磁同步电机,永磁同步电机的d-q轴模型电压方程以及磁链方程为:
其中,uq为q轴电压,Rs为定子电阻,λpm为永磁体磁链,τ为极距,Iq、Id分别表示流经q、d轴电流,λq、λd分别为磁链在q轴和d轴上的分量,Ld、Lq分别表示d、q轴上的电感;旋转电机三相绕组沿圆周基本对称,因此电磁转矩的谐波分量比较小,即Id=0,认为其力矩与q轴电流成正比,所以电磁推力Fe只与Iq成正比,其关系为:
其中,kT为电磁推力系数;np为磁极对数;
第二步,计算同步运行控制器的输入量速度误差e与加速度误差ec
采用主从结构,把机头电机作为主电机,橡筋电机作为从电机,通过多组速度、加速度传感器测量出主电机速度V1i、加速度a1i,从电机的速度V2i、加速度a2i,选取主电机速度V1i作为评价速度,并与从电机的实际转速V2i比较得到差值ei,取平均值得到速度误差e,选取主电机加速度a1i作为评价加速度,并与从电机的实际加速度a2i比较得到差值eci,取平均值得到加速度误差ec;
第三步,速度跟踪控制器控制电机的正常运行,根据处理器实时读取判断机头电机的编码器1、橡筋电机的编码器2的位置信息,当编码器1、编码器2测出的位置信息不对等时,同步运行控制器的输出将作为控制信号,经过D/A变换传输至变频器,再通过变频器控制电机转速,达到同步控制的目的。
进一步,所述第二步中,同步运行控制器是由速度同步补偿器与加速度同步补偿器组成的两输入三输出的模糊PID控制器,速度误差e和加速度误差ec为输入量,比例系数Kp、积分系数Ki和微分系数Kd为输出量,速度误差的连续取值范围为e=[el,eh],其中el为低极限,eh为高极限,e的论域为{-m,-m+1,……0,……m-1,m},m为自然数,则
在量化因子确定后,将速度误差e转换为模糊PID控制器的输入E上:
式中round()代表取整运算,同理加速度误差的连续取值范围为ec=[ecl,ech],其中ecl为低极限,ech为高极限,e的论域为{-n,-n+1,……0,……n-1,n},n为自然数,则
在量化因子确定后,将加速度误差ec转换为模糊PID控制器的输入EC上:
将{NB(负大),NM(负中),NS(负小),ZE(零),PS(正小),PM(正大)}作为输入变量E、EC和输出变量Kp、Ki、Kd的模糊子集;模糊规则是专家经验生成知识库作为控制规则,并且不断实验进行修正,最后得到最终规则库;根据模糊规则生成Kp、Ki、Kd模糊规则表,再经过模糊清晰化的处理得到输出KP、KI、KD,从而实现对它们的动态调整。
再进一步,所述第三步中,同步运行控制器的输出将作为控制信号,q轴电流为:
因为电磁推力Fe与Iq成正比,所以通过对比例系数、积分系数和微分系数的动态调整将改变电磁推力Fe,进而改变电机转速,实现同步控制。
本发明由于采取以上技术方案,其具有以下优点:
1、机头电机与橡筋电机位置同步后,可以对手套罗口部分进行更好的调节,使编制出来的手套质量更好。
2、速度、加速度-位置偏差耦合控制器采用模糊PID控制算法,增加了系统鲁棒性。
3、模糊PID控制相比较普通PID控制,响应曲线波动更小,恢复更快,抗干扰能力更强。
附图说明
图1为同步运行控制的程序流程图;
图2为模糊PID控制器框图;
图3为基于ARM的手套机橡筋电机与机头运行控制系统构成框图;
图4为e和ec的隶属度函数;
图5为KP、KI、KD的隶属度函数;
图6为KP、KI、KD控制规则图。
具体实施方式
下面结合附图对本发明的实施方式做进一步描述。
参照图1-图6,一种基于模糊PID的手套机机头与橡筋电机同步控制方法,包括以下步骤:
第一步,求得电磁推力Fe与q轴电流Iq的关系
永磁同步电机的d-q轴模型电压方程以及磁链方程为:
其中,uq为q轴电压,Rs为定子电阻,λpm为永磁体磁链,τ为极距,Iq、Id分别表示流经q、d轴电流,λq、λd分别为磁链在q轴和d轴上的分量,Ld、Lq分别表示d、q轴上的电感,旋转电机三相绕组沿圆周基本对称,因此电磁转矩的谐波分量比较小,即Id=0,近似的认为其力矩与q轴电流成正比,所以电磁推力Fe只与Iq成正比,其关系为:
其中,kT为电磁推力系数;np为磁极对数;
第二步,计算同步运行控制器的输入量速度误差e与加速度误差ec
采用主从结构,把机头电机作为主电机,橡筋电机作为从电机,通过多组速度、加速度传感器测量出主电机速度V1i、加速度a1i,从电机的速度V2i、加速度a2i,选取主电机速度V1i作为评价速度,并与从电机的实际转速V2i比较得到差值ei,取平均值得到速度误差e,选取主电机加速度a1i作为评价加速度,并与从电机的实际加速度a2i比较得到差值eci,取平均值得到加速度误差ec;
第三步,速度跟踪控制器控制电机的正常运行,根据处理器实时读取判断机头电机的编码器1、橡筋电机的编码器2的位置信息,当编码器1、编码器2测出的位置信息不对等时,同步运行控制器的输出将作为控制信号,经过D/A变换传输至变频器,再通过变频器控制电机转速,达到同步控制的目的。
进一步,所述第二步中,同步运行控制器是由速度同步补偿器与加速度同步补偿器组成的两输入三输出的模糊PID控制器,速度误差e和加速度误差ec为输入量,比例系数Kp、积分系数Ki和微分系数Kd为输出量,速度误差的连续取值范围为e=[el,eh],其中el为低极限,eh为高极限,e的论域为{-m,-m+1,……0,……m-1,m},m为自然数,则
在量化因子确定后,将速度误差e转换为模糊PID控制器的输入E上:
式中round()代表取整运算,同理加速度误差的连续取值范围为ec=[ecl,ech],其中ecl为低极限,ech为高极限,e的论域为{-n,-n+1,……0,……n-1,n},n为自然数,则
在量化因子确定后,将加速度误差ec转换为模糊PID控制器的输入EC上:
将{NB(负大),NM(负中),NS(负小),ZE(零),PS(正小),PM(正中),PB(正大)}作为输入变量E、EC和输出变量Kp、Ki、Kd的模糊子集;输入语言变量的论域为{-6,6},输出语言变量的论域为{0,6},其隶属度函数分别为图4和图5所示;模糊规则是专家经验生成知识库作为控制规则,并且不断实验进行修正,最后得到最终规则库;根据模糊规则生成Kp、Ki、Kd模糊规则如图6所示,再经过模糊清晰化的处理得到输出KP、KI、KD,从而实现对它们的动态调整。
再进一步,所述第三步中,同步运行控制器的输出将作为控制信号,q轴电流为:
因为电磁推力Fe只与Iq成正比,所以根据模糊PID控制算法设计思想,结合手套机平台所用的微处理器,离线生成模糊控制查询表,再利用微处理器进行在线查询的方式实现比例系数、积分系数和微分系数的动态调整将改变电磁推力Fe,进而改变电机转速实现同步控制。当速度误差e较大时,为了使系统具有很好的跟踪性能,同时避免系统响应出现很大的超调,通常选取较大的KP、较小的Kd和Ki=0。当速度误差e中等大小时,为了使系统响应具有较小的超调,同时保证系统的响应速度,通常选取较小的Kp,Kd的值对系统影响最大,Ki取值适中。当e较小时,为使系统稳定性好,Kp和Ki取值应大一些,Kd的值取决于|ec|,它的值较大时Kd取值较小,反之Kd取值较大。

Claims (2)

1.一种基于模糊PID的手套机机头与橡筋电机同步控制方法,其特征在于,所述方法包括以下步骤:
第一步,确定电磁推力Fe与q轴电流Iq的关系
机头与橡筋电机均采用永磁同步电机,永磁同步电机的d-q轴模型电压方程以及磁链方程为:
其中,uq为q轴电压,Rs为定子电阻,λpm为永磁体磁链,τ为极距,Iq、Id分别表示流经q、d轴电流,λq、λd分别为磁链在q轴和d轴上的分量,Ld、Lq分别表示d、q轴上的电感,旋转电机三相绕组沿圆周基本对称,因此电磁转矩的谐波分量比较小,即Id=0,认为其力矩与q轴电流成正比,所以电磁推力Fe只与Iq成正比,其关系为:
其中,kT为电磁推力系数;np为磁极对数;
第二步,求得同步运行控制器的输入量速度误差e与加速度误差ec
采用主从结构,把机头电机作为主电机,橡筋电机作为从电机,通过多组速度、加速度传感器测量出主电机速度V1i、加速度a1i,从电机的速度V2i、加速度a2i,选取主电机速度V1i作为评价速度,并与从电机的实际转速V2i比较得到差值ei,取平均值得到速度误差e,选取主电机加速度a1i作为评价加速度,并与从电机的实际加速度a2i比较得到差值eci,取平均值得到加速度误差ec;
同步运行控制器是由速度同步补偿器与加速度同步补偿器组成的两输入三输出的模糊PID控制器,速度误差e和加速度误差ec为输入量,比例系数Kp、积分系数Ki和微分系数Kd为输出量,速度误差的连续取值范围为e=[el,eh],其中el为低极限,eh为高极限,e的论域为{-m,-m+1,……0,……m-1,m},m为自然数,则
在量化因子确定后,将速度误差e转换为模糊PID控制器的输入E上:
式中round()代表取整运算,同理加速度误差的连续取值范围为ec=[ecl,ech],其中ecl为低极限,ech为高极限,e的论域为{-n,-n+1,……0,……n-1,n},n为自然数,则
在量化因子确定后,将加速度误差ec转换为模糊PID控制器的输入EC上:
将{NB(负大),NM(负中),NS(负小),ZE(零),PS(正小),PM(正大)}作为输入变量E、EC和输出变量Kp、Ki、Kd的模糊子集,模糊规则是专家经验生成知识库作为控制规则,并且不断实验进行修正,最后得到最终规则库,根据模糊规则生成Kp、Ki、Kd模糊规则表,再经过模糊清晰化的处理得到输出KP、KI、KD,从而实现对它们的动态调整;
第三步,速度跟踪控制器控制电机的正常运行,根据处理器实时读取判断机头电机的编码器1、橡筋电机的编码器2的位置信息,当编码器1、编码器2测出的位置信息不对等时,同步运行控制器的输出将作为控制信号,经过D/A变换传输至变频器,再通过变频器控制电机转速,达到同步控制的目的。
2.如权利要求1所述的基于模糊PID的手套机机头与橡筋电机同步控制方法,其特征在于,所述第三步中,同步运行控制器的输出将作为控制信号,q轴电流为:
因为电磁推力Fe只与Iq成正比,所以通过对比例系数、积分系数和微分系数的动态调整将改变电磁推力Fe,进而改变电机转速,实现同步控制。
CN201810352096.6A 2018-04-19 2018-04-19 一种基于模糊pid的手套机机头与橡筋电机同步控制方法 Active CN108589009B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810352096.6A CN108589009B (zh) 2018-04-19 2018-04-19 一种基于模糊pid的手套机机头与橡筋电机同步控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810352096.6A CN108589009B (zh) 2018-04-19 2018-04-19 一种基于模糊pid的手套机机头与橡筋电机同步控制方法

Publications (2)

Publication Number Publication Date
CN108589009A true CN108589009A (zh) 2018-09-28
CN108589009B CN108589009B (zh) 2019-11-01

Family

ID=63613724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810352096.6A Active CN108589009B (zh) 2018-04-19 2018-04-19 一种基于模糊pid的手套机机头与橡筋电机同步控制方法

Country Status (1)

Country Link
CN (1) CN108589009B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465775A (zh) * 2018-12-25 2019-03-15 国网江苏省电力有限公司检修分公司 一种高压电气远距离锁紧装置及方法
CN112731797A (zh) * 2020-12-10 2021-04-30 清华大学 一种平面电机运动控制方法、装置及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1347916A (en) * 1970-05-30 1974-02-27 Morat Gmbh Franz Method and apparatus for the electronic control of machines
EP0259123A2 (en) * 1986-08-28 1988-03-09 Draper Corporation Circular weft knitting machine
JP2002030549A (ja) * 2000-07-13 2002-01-31 Precision Fukuhara Works Ltd ガーメントレングス編地の編成時における丸編機の速度制御方法
CN102621892A (zh) * 2012-04-06 2012-08-01 杭州电子科技大学 横机伺服系统速度调节器的控制方法
CN102691166A (zh) * 2012-06-25 2012-09-26 绍兴文理学院 同步传动双针筒袜机
CN106887976A (zh) * 2017-04-27 2017-06-23 天津工业大学 考虑加速度的多永磁同步电机偏差耦合控制方法
CN206712696U (zh) * 2017-05-25 2017-12-05 重庆工商职业学院 一种用于模糊pid同步发电机控制器的调速控制装置
CN107894708A (zh) * 2017-04-24 2018-04-10 长春工业大学 一种环形耦合型多轴机器人系统的同步控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1347916A (en) * 1970-05-30 1974-02-27 Morat Gmbh Franz Method and apparatus for the electronic control of machines
EP0259123A2 (en) * 1986-08-28 1988-03-09 Draper Corporation Circular weft knitting machine
JP2002030549A (ja) * 2000-07-13 2002-01-31 Precision Fukuhara Works Ltd ガーメントレングス編地の編成時における丸編機の速度制御方法
CN102621892A (zh) * 2012-04-06 2012-08-01 杭州电子科技大学 横机伺服系统速度调节器的控制方法
CN102691166A (zh) * 2012-06-25 2012-09-26 绍兴文理学院 同步传动双针筒袜机
CN107894708A (zh) * 2017-04-24 2018-04-10 长春工业大学 一种环形耦合型多轴机器人系统的同步控制方法
CN106887976A (zh) * 2017-04-27 2017-06-23 天津工业大学 考虑加速度的多永磁同步电机偏差耦合控制方法
CN206712696U (zh) * 2017-05-25 2017-12-05 重庆工商职业学院 一种用于模糊pid同步发电机控制器的调速控制装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465775A (zh) * 2018-12-25 2019-03-15 国网江苏省电力有限公司检修分公司 一种高压电气远距离锁紧装置及方法
CN109465775B (zh) * 2018-12-25 2023-12-22 国网江苏省电力有限公司检修分公司 一种高压电气远距离锁紧装置
CN112731797A (zh) * 2020-12-10 2021-04-30 清华大学 一种平面电机运动控制方法、装置及系统
CN112731797B (zh) * 2020-12-10 2021-11-23 清华大学 一种平面电机运动控制方法、装置及系统

Also Published As

Publication number Publication date
CN108589009B (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
CN110138297A (zh) 一种永磁同步直线电机速度和电流双闭环控制系统和控制方法
CN103248306B (zh) 永磁同步电机多参数解耦在线辨识方法
CN102969968B (zh) 一种永磁同步电机控制方法
CN105577058B (zh) 基于模糊自抗扰控制器的五相容错永磁电机速度控制方法
CN107800343B (zh) 异步电机自抗扰控制器的设计方法
CN102769426B (zh) 一种在线容错电动汽车交流感应电机驱动控制系统
CN107370431A (zh) 一种工业机器人用永磁同步电机模糊自抗扰控制方法
CN102497141A (zh) 大功率交流伺服驱动器大扭矩启动方法
CN106655938B (zh) 基于高阶滑模方法的永磁同步电机控制系统及控制方法
CN107317532A (zh) 基于滑模的永磁同步电机预测电流控制方法和系统
CN103034127B (zh) 一种轴向磁轴承控制系统
CN112838797B (zh) 基于改进指数趋近律的永磁同步电机模糊滑模控制方法
CN107132759A (zh) 一种直线电机驱动fts基于eso滑模改进重复控制方法
CN108589009B (zh) 一种基于模糊pid的手套机机头与橡筋电机同步控制方法
CN112290843B (zh) 一种变指数幂次趋近律及其pmsm控制应用
CN101340173A (zh) 一种抑制直线电机推力系统脉动的方法
CN107612445A (zh) 具有负载加速度反馈的随动调速系统控制方法
CN106788054A (zh) 一种基于旋转高频注入法和模糊pi控制的无速度传感器控制方法
CN109617488B (zh) 一种考虑励磁电路的虚拟同步机的建模方法
CN106059423A (zh) 一种基于fc和smo的无速度传感器控制系统
CN106533300A (zh) 一种基于速度环模糊控制和高频注入法的无传感器控制系统
CN106788049A (zh) 基于级联滑模观测器的无速度传感器转矩控制系统及方法
CN102778840B (zh) 一种基于滑模变结构的ist控制系统及其控制方法
CN111614294A (zh) 一种基于终端滑模的永磁同步电机矢量控制方法
CN110492814A (zh) 粒子群算法优化滑膜变结构永磁同步电机控制参数的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant