CN108585858A - 一种复合石墨电极的制备工艺 - Google Patents

一种复合石墨电极的制备工艺 Download PDF

Info

Publication number
CN108585858A
CN108585858A CN201810377438.XA CN201810377438A CN108585858A CN 108585858 A CN108585858 A CN 108585858A CN 201810377438 A CN201810377438 A CN 201810377438A CN 108585858 A CN108585858 A CN 108585858A
Authority
CN
China
Prior art keywords
raw material
hours
treated
kept
coal tar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810377438.XA
Other languages
English (en)
Inventor
柴利春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Datong Xincheng New Material Co Ltd
Original Assignee
Datong Xincheng New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datong Xincheng New Material Co Ltd filed Critical Datong Xincheng New Material Co Ltd
Priority to CN201810377438.XA priority Critical patent/CN108585858A/zh
Publication of CN108585858A publication Critical patent/CN108585858A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained by impregnation of carbon products with a carbonisable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种复合石墨电极的制备工艺,包括如下步骤:S1、配料;S2、成型;S3、焙烧与浸渍;S4、石墨化,将S35处理后的原料放入内热串接(LWG)炉内,充入保护气体并加热至2700‑3000℃,保持15‑30小时,使其石墨化;S5、机加工,将S4处理后的原料进行机加工,直到达到预设尺寸,即制造出石墨电极。本发明工艺简单,且制造成本偏低,成品性能不弱于市场上的主流成品,甚至优于进口成品。因此,能够为企业带来更大的利润空间,提高企业的竞争力。

Description

一种复合石墨电极的制备工艺
技术领域
本发明涉及一种石墨电极,特别是涉及一种复合石墨电极的制备工艺。
背景技术
石墨电极是指以石油焦、沥青焦为骨料,煤沥青为黏结剂,经过原料煅烧、破碎磨粉、配料、混捏、成型、焙烧、浸渍、石墨化和机械加工而制成的一种耐高温石墨质导电材料。其广泛应用于:
(1)用于电弧炼钢炉
电炉炼钢是石墨电极的使用大户。我国电炉钢产量约占粗钢产量的18%左右,炼钢用石墨电极占石墨电极总用量的70%~80%。电炉炼钢是利用石墨电极向炉内导入电流,利用电极端部和炉料之间引发电弧所产生的高温热源来进行冶炼。
(2)用于矿热电炉
矿热电炉主要用于生产工业硅和黄磷等,其特点是导电电极的下部埋在炉料中,在料层内形成电弧,并利用炉料自身的电阻所发出的热能来加热炉料,其中要求电流密度较高的矿热电炉需用石墨电极,例如每生产1t硅需消耗石墨电极约100kg,每生产1t黄磷需消耗石墨电极约40kg。
(3)用于电阻炉
生产石墨制品的石墨化炉、熔化玻璃的熔窑和生产碳化硅用的电炉等都属于电阻炉,炉内所装物料既是发热电阻又是被加热对象,通常,导电用的石墨电极嵌入电阻炉端部的炉头墙中,用于此处的石墨电极不连续消耗。
(4)用于制备异型石墨产品
石墨电极的毛坯还用于加工成各种坩埚、模具、舟皿和发热体等异型石墨产品。例如,在石英玻璃行业,每生产1t电熔管,需用石墨电极坯料10t;每生产1t石英砖,需消耗石墨电极坯料100kg。
目前石墨电极的制造工艺已经十分成熟和多样化,成品性能也比较高,但是各个厂家的制造工艺均属于保密状态或受专利保护,因此,需要进入石墨电极的制造领域就务必设计一种全新的、与现有技术有区别的制造工艺,但是目前,通过自行设计的制造工艺要么工艺复杂、成品率低,造成成本上涨,使得企业失去竞争力;要么产品质量差,使得企业竞争力较差。
因此,申请人提出一种复合石墨电极的制备工艺,其工艺简单,且成本偏低,但是成品性能能够满足目前的需求。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种复合石墨电极的制备工艺。
为实现上述目的,本发明提供了一种复合石墨电极的制备工艺,包括如下步骤:
S1、配料
S11、原料,石油焦、针状焦、煤沥青、碳纳米管、铜粉、二硫化钼、腐植酸,所述的铜粉纯度为99.9%以上、细度为100-120目;腐植酸细度为100-120目;所述的煤沥青的软化点为90-100℃,结焦值为≥55%,灰分≤0.20%;
S12、将石油焦、针状焦放入煅烧炉中,通入保护气(氩气),然后加热到1250-1350℃,保持0.5-1小时,进行煅烧;
S13、将S12中煅烧后的石油焦、针状焦进行破碎、细磨,使其粒径不大于0.075㎜;
S14、将以下组分按照重量份数比均匀混合,S13处理后的石油焦10-12、S13处理后的针状焦4-8、碳纳米管1-2、铜粉1-3、二硫化钼0.5-1、腐植酸0.5-1。混合时可以加入无水乙醇进行湿混,混合完成后烘干,从而提高其混合效率;
S15、将按照以下组分重量份数比取出并均匀混合,S14中混合的原料5-6、煤沥青3-4,混合时间1-2小时;
S2、成型
S21、将S15处理后的原料进行搅拌,且将原料温度增加到90-120℃,搅拌1-2小时;
S22、将S21中混合后的原料放入压力机中通过4-10MPa压实;
S23、将S22中压实的原料通过20-25MPa的压力压紧,保持3-5min,同时抽真空;
S24、将S23中处理后的原料放入挤压机中,加热至100-150℃,通过5-15MPa的压力进行挤压,然后按照预设要求剪切成段,在剪切成段的前,向挤压出来的材料喷射温度为10-25℃的水雾,以使其快速降温;
S3、焙烧与浸渍
S31、一次焙烧,将S24中切断的原料放入焙烧炉中,通过1000-1250℃高温进行焙烧,且充入保护气(氩气);
中升温方式如下:
0-400℃,10℃/min,达到400℃后保持1-2小时;
401-800℃,15℃/min,达到800℃后保持1-2小时;
801-1250℃,25℃/min;达到1250℃后保持320-480小时;
焙烧完成后,停止加热,自然冷却至800℃,然后取出风冷至室温;
S32、浸渍,将S31处理后的原料进行表面清理,然后放入浸渍罐内,并预热至300-450℃,保持6-8小时;
然后将浸渍罐抽真空,并保持1-2小时,再将煤沥青加热至250-300℃后注入浸渍罐内使得原料完全浸入煤沥青内;
然后,往浸渍罐内加入保护气,直到气压达到10-15MPa后,保持8-12小时;
最后泄压,排出煤沥青,原料在浸渍罐内冷却至室温,取出并清理表面;
S33、二次焙烧,将S32处理后的原料再次放入焙烧炉内,通过850-900℃高温进行再次焙烧,且充入保护气;
升温方式如下:
0-400℃,20℃/min;
401-900℃,40℃/min,达到800℃后保持250-320小时,然后在焙烧炉内冷却至室温,取出清理表面。
S34、重复S32-S33两次以上,每次检查浸渍原料的浸渍增重率;
检查的具体标准如下:
浸渍增重率G=(W2-W1)/W1×100% ;W1为浸渍前重量,W2为浸渍后重量;
一次浸渍品增重率≥14%;
二次浸渍品增重率≥9%;
三次浸渍品增重率≥5%;
S35、在焙烧炉内装入钢碳,然后将S34处理后的原料放入钢碳中,充入保护气,气压为2-6KPa,然后加热至900-1000℃,保持2-4小时;
S4、石墨化,将S35处理后的原料放入内热串接(LWG)炉内,充入保护气体并加热至2700-3000℃,保持15-30小时,使其石墨化;
升温方式如下:
0-400℃,20℃/min;
401-800℃,30℃/min;
801-1500℃,50℃/min;
1501-3000℃,80℃/min;
S5、机加工,将S4处理后的原料进行机加工,直到达到预设尺寸,即制造出石墨电极。
本发明的有益效果是:本发明工艺简单,且制造成本偏低,成品性能不弱于市场上的主流成品,甚至优于进口成品。因此,能够为企业带来更大的利润空间,提高企业的竞争力。
本发明在原料中加入了铜粉,可有效提高产品的耐电腐蚀性和强度。同时不会影响整个石墨电极的正常性能。
具体实施方式
下面结合实施例对本发明作进一步说明:
实施例一
一种复合石墨电极的制备工艺,包括如下步骤:
S1、配料
S11、原料,石油焦、针状焦、煤沥青、碳纳米管、铜粉、二硫化钼、腐植酸,所述的铜粉纯度为99.9%以上、细度为100-120目;腐植酸细度为100-120目;所述的煤沥青的软化点为90-100℃,结焦值为≥55%,灰分≤0.20%;
S12、将石油焦、针状焦放入煅烧炉中,通入保护气(氩气),然后加热到1250-1350℃,保持0.5-1小时,进行煅烧;
S13、将S12中煅烧后的石油焦、针状焦进行破碎、细磨,使其粒径不大于0.075㎜;
S14、将以下组分按照重量份数比均匀混合,S13处理后的石油焦12、S13处理后的针状焦8、碳纳米管1.5、铜粉1、二硫化钼0.6、腐植酸0.5。混合时可以加入无水乙醇进行湿混,混合完成后烘干,从而提高其混合效率;
S15、将按照以下组分重量份数比取出并均匀混合,S14中混合的原料5.5、煤沥青4,混合时间1-2小时;
S2、成型
S21、将S15处理后的原料进行搅拌,且将原料温度增加到100℃,搅拌1-2小时;
S22、将S21中混合后的原料放入压力机中通过10MPa压实;
S23、将S22中压实的原料通过25MPa的压力压紧,保持3-5min,同时抽真空;
S24、将S23中处理后的原料放入挤压机中,加热至130℃,通过15MPa的压力进行挤压,然后按照预设要求剪切成段,在剪切成段的前,向挤压出来的材料喷射温度为10-25℃的水雾,以使其快速降温;
S3、焙烧与浸渍
S31、一次焙烧,将S24中切断的原料放入焙烧炉中,通过1250℃高温进行焙烧,且充入保护气(氩气);
中升温方式如下:
0-400℃,10℃/min,达到400℃后保持1-2小时;
401-800℃,15℃/min,达到800℃后保持1-2小时;
801-1250℃,25℃/min;达到1250℃后保持320-480小时;
焙烧完成后,停止加热,自然冷却至800℃,然后取出风冷至室温;
S32、浸渍,将S31处理后的原料进行表面清理,然后放入浸渍罐内,并预热至450℃,保持6-8小时;
然后将浸渍罐抽真空,并保持1-2小时,再将煤沥青加热至250-300℃后注入浸渍罐内使得原料完全浸入煤沥青内;
然后,往浸渍罐内加入保护气,直到气压达到15MPa后,保持10小时;
最后泄压,排出煤沥青,原料在浸渍罐内冷却至室温,取出并清理表面;
S33、二次焙烧,将S32处理后的原料再次放入焙烧炉内,通过900℃高温进行再次焙烧,且充入保护气;
升温方式如下:
0-400℃,20℃/min;
401-900℃,40℃/min,达到800℃后保持320小时,然后在焙烧炉内冷却至室温,取出清理表面。
S34、重复S32-S33两次以上,每次检查浸渍原料的浸渍增重率;
检查的具体标准如下:
浸渍增重率G=(W2-W1)/W1×100% ;W1为浸渍前重量,W2为浸渍后重量;
一次浸渍品增重率≥14% ;
二次浸渍品增重率≥9% ;
三次浸渍品增重率≥5%;
S35、在焙烧炉内装入钢碳,然后将S34处理后的原料放入钢碳中,充入保护气,气压为2-6KPa,然后加热至1000℃,保持2-4小时;
S4、石墨化,将S35处理后的原料放入内热串接(LWG)炉内,充入保护气体并加热至2800℃,保持20小时,使其石墨化;
升温方式如下:
0-400℃,20℃/min;
401-800℃,30℃/min;
801-1500℃,50℃/min;
1501-3000℃,80℃/min;
S5、机加工,将S4处理后的原料进行机加工,直到达到预设尺寸,即制造出石墨电极。
实施例二
一种复合石墨电极的制备工艺,包括如下步骤:
S1、配料
S11、原料,石油焦、针状焦、煤沥青、碳纳米管、铜粉、二硫化钼、腐植酸,所述的铜粉纯度为99.9%以上、细度为100-120目;腐植酸细度为100-120目;所述的煤沥青的软化点为90-100℃,结焦值为≥55%,灰分≤0.20%;
S12、将石油焦、针状焦放入煅烧炉中,通入保护气(氩气),然后加热到1350℃,保持0.5-1小时,进行煅烧;
S13、将S12中煅烧后的石油焦、针状焦进行破碎、细磨,使其粒径不大于0.075㎜;
S14、将以下组分按照重量份数比均匀混合,S13处理后的石油焦11、S13处理后的针状焦6、碳纳米管1.2、铜粉1.2、二硫化钼0.6、腐植酸0.5。混合时可以加入无水乙醇进行湿混,混合完成后烘干,从而提高其混合效率;
S15、将按照以下组分重量份数比取出并均匀混合,S14中混合的原料5-6、煤沥青3.2,混合时间1-2小时;
S2、成型
S21、将S15处理后的原料进行搅拌,且将原料温度增加到90-120℃,搅拌1-2小时;
S22、将S21中混合后的原料放入压力机中通过8MPa压实;
S23、将S22中压实的原料通过25MPa的压力压紧,保持3-5min,同时抽真空;
S24、将S23中处理后的原料放入挤压机中,加热至100-150℃,通过10MPa的压力进行挤压,然后按照预设要求剪切成段,在剪切成段的前,向挤压出来的材料喷射温度为20℃的水雾,以使其快速降温;
S3、焙烧与浸渍
S31、一次焙烧,将S24中切断的原料放入焙烧炉中,通过1250℃高温进行焙烧,且充入保护气(氩气);
中升温方式如下:
0-400℃,10℃/min,达到400℃后保持1-2小时;
401-800℃,15℃/min,达到800℃后保持1-2小时;
801-1250℃,25℃/min;达到1250℃后保持450小时;
焙烧完成后,停止加热,自然冷却至800℃,然后取出风冷至室温;
S32、浸渍,将S31处理后的原料进行表面清理,然后放入浸渍罐内,并预热至400℃,保持6-8小时;
然后将浸渍罐抽真空,并保持1-2小时,再将煤沥青加热至300℃后注入浸渍罐内使得原料完全浸入煤沥青内;
然后,往浸渍罐内加入保护气,直到气压达到10-15MPa后,保持8-12小时;
最后泄压,排出煤沥青,原料在浸渍罐内冷却至室温,取出并清理表面;
S33、二次焙烧,将S32处理后的原料再次放入焙烧炉内,通过850-900℃高温进行再次焙烧,且充入保护气;
升温方式如下:
0-400℃,20℃/min;
401-900℃,40℃/min,达到800℃后保持300小时,然后在焙烧炉内冷却至室温,取出清理表面。
S34、重复S32-S33两次以上,每次检查浸渍原料的浸渍增重率;
检查的具体标准如下:
浸渍增重率G=(W2-W1)/W1×100% ;W1为浸渍前重量,W2为浸渍后重量;
一次浸渍品增重率≥14% ;
二次浸渍品增重率≥9% ;
三次浸渍品增重率≥5%;
S35、在焙烧炉内装入钢碳,然后将S34处理后的原料放入钢碳中,充入保护气,气压为2-6KPa,然后加热至950℃,保持2-4小时;这种方式主要是增加原料表面的含碳量。
S4、石墨化,将S35处理后的原料放入内热串接(LWG)炉内,充入保护气体并加热至3000℃,保持25小时,使其石墨化;
升温方式如下:
0-400℃,20℃/min;
401-800℃,30℃/min;
801-1500℃,50℃/min;
1501-3000℃,80℃/min;
S5、机加工,将S4处理后的原料进行机加工,直到达到预设尺寸,即制造出石墨电极。
本发明未详述之处,均为本领域技术人员的公知技术。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (6)

1.一种复合石墨电极的制备工艺,其特征在于,包括如下步骤:
S1、配料
S11、原料,石油焦、针状焦、煤沥青、碳纳米管、铜粉、二硫化钼、腐植酸,所述的铜粉纯度为99.9%以上、细度为100-120目;腐植酸细度为100-120目;所述的煤沥青的软化点为90-100℃,结焦值为≥55%,灰分≤0.20%;
S12、将石油焦、针状焦放入煅烧炉中,通入保护气,然后加热到1250-1350℃,保持0.5-1小时,进行煅烧;
S13、将S12中煅烧后的石油焦、针状焦进行破碎、细磨,使其粒径不大于0.075㎜;
S14、将以下组分按照重量份数比均匀混合,S13处理后的石油焦10-12、S13处理后的针状焦4-8、碳纳米管1-2、铜粉1-3、二硫化钼0.5-1、腐植酸0.5-1;
S15、将按照以下组分重量份数比取出并均匀混合,S14中混合的原料5-6、煤沥青3-4,混合时间1-2小时;
S2、成型
S21、将S15处理后的原料进行搅拌,且将原料温度增加到90-120℃,搅拌1-2小时;
S22、将S21中混合后的原料放入压力机中通过4-10MPa压实;
S23、将S22中压实的原料通过20-25MPa的压力压紧,保持3-5min,同时抽真空;
S24、将S23中处理后的原料放入挤压机中,加热至100-150℃,通过5-15MPa的压力进行挤压,然后按照预设要求剪切成段;
S3、焙烧与浸渍
S31、一次焙烧,将S24中切断的原料放入焙烧炉中,通过1000-1250℃高温进行焙烧,且充入保护气;
S32、浸渍,将S31处理后的原料进行表面清理,然后放入浸渍罐内,并预热至300-450℃,保持6-8小时;
然后将浸渍罐抽真空,并保持1-2小时,再将煤沥青加热至250-300℃后注入浸渍罐内使得原料完全浸入煤沥青内;
然后,往浸渍罐内加入保护气,直到气压达到10-15MPa后,保持8-12小时;
最后泄压,排出煤沥青,原料在浸渍罐内冷却至室温,取出并清理表面;
S33、二次焙烧,将S32处理后的原料再次放入焙烧炉内,通过850-900℃高温进行再次焙烧,且充入保护气;
S34、重复S32-S33两次以上,每次检查浸渍原料的浸渍增重率;
S35、在焙烧炉内装入钢碳,然后将S34处理后的原料放入钢碳中,充入保护气,气压为2-6KPa,然后加热至900-1000℃,保持2-4小时;
S4、石墨化,将S35处理后的原料放入内热串接(LWG)炉内,充入保护气体并加热至2700-3000℃,保持15-30小时,使其石墨化;
S5、机加工,将S4处理后的原料进行机加工,直到达到预设尺寸,即制造出石墨电极。
2.如权利要求1所述的,其特征是:S24中,在剪切成段的前,向挤压出来的材料喷射温度为10-25℃的水雾。
3.如权利要求1所述的,其特征是:S31中升温方式如下:
0-400℃,10℃/min,达到400℃后保持1-2小时;
401-800℃,15℃/min,达到800℃后保持1-2小时;
801-1250℃,25℃/min;达到1250℃后保持320-480小时;
焙烧完成后,停止加热,自然冷却至800℃,然后取出风冷至室温。
4.如权利要求1所述的,其特征是:S33中升温方式如下:
0-400℃,20℃/min;
401-900℃,40℃/min,达到800℃后保持250-320小时,然后在焙烧炉内冷却至室温,取出清理表面。
5.如权利要求1所述的,其特征是:S34中检查的具体标准如下:
浸渍增重率G=(W2-W1)/W1×100% ;W1为浸渍前重量,W2为浸渍后重量;
一次浸渍品增重率≥14%;
二次浸渍品增重率≥9%;
三次浸渍品增重率≥5%。
6.如权利要求1所述的,其特征是:S4中升温方式如下:
0-400℃,20℃/min;
401-800℃,30℃/min;
801-1500℃,50℃/min;
1501-3000℃,80℃/min。
CN201810377438.XA 2018-04-25 2018-04-25 一种复合石墨电极的制备工艺 Pending CN108585858A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810377438.XA CN108585858A (zh) 2018-04-25 2018-04-25 一种复合石墨电极的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810377438.XA CN108585858A (zh) 2018-04-25 2018-04-25 一种复合石墨电极的制备工艺

Publications (1)

Publication Number Publication Date
CN108585858A true CN108585858A (zh) 2018-09-28

Family

ID=63609099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810377438.XA Pending CN108585858A (zh) 2018-04-25 2018-04-25 一种复合石墨电极的制备工艺

Country Status (1)

Country Link
CN (1) CN108585858A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761609A (zh) * 2019-02-13 2019-05-17 合肥炭素有限责任公司 一种高抗热震性石墨电极的制造工艺及其生产装置
CN111943677A (zh) * 2020-08-21 2020-11-17 合肥炭素有限责任公司 一种复合石墨电极及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104129782A (zh) * 2014-07-30 2014-11-05 焦作市中州炭素有限责任公司 直径348mm石墨电极及其生产制造方法
CN105692603A (zh) * 2016-03-14 2016-06-22 苏州金禾新材料股份有限公司 一种导热石墨膜的制备方法及一种石墨坩埚

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104129782A (zh) * 2014-07-30 2014-11-05 焦作市中州炭素有限责任公司 直径348mm石墨电极及其生产制造方法
CN105692603A (zh) * 2016-03-14 2016-06-22 苏州金禾新材料股份有限公司 一种导热石墨膜的制备方法及一种石墨坩埚

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王振廷等: "《石墨深加工技术》", 30 June 2017, 哈尔滨工业大学出版社 *
蒋文忠: "《炭素工艺学》", 30 April 2009, 冶金工业出版社 *
谢有赞: "《炭石墨材料工艺》", 31 August 1988, 湖南大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761609A (zh) * 2019-02-13 2019-05-17 合肥炭素有限责任公司 一种高抗热震性石墨电极的制造工艺及其生产装置
CN111943677A (zh) * 2020-08-21 2020-11-17 合肥炭素有限责任公司 一种复合石墨电极及其制备方法

Similar Documents

Publication Publication Date Title
CN106564894B (zh) 利用氧化石墨烯制备各向同性等静压石墨材料及制备方法
CN101696116B (zh) 大规格石墨电极的生产方法
CN107140984A (zh) 一次性成型石墨坩埚的制造方法
CN105645397B (zh) 一种用于edm的超细结构石墨及其制备方法
CN103796366A (zh) 一种密闭电极糊及其制造方法
CN107651961B (zh) 一种矿热炉用高功率炭电极及其制备方法
CN108892136A (zh) 一种高抗热震性石墨电极的制造工艺
CN108585858A (zh) 一种复合石墨电极的制备工艺
CN104843707B (zh) 电石炉和利用该电石炉制备电石的方法
CN108218429A (zh) 一种以高温煤沥青为原料制备高纯石墨材料的方法
CN109400166A (zh) 晶体硅金刚线切割废料制备碳化硼碳化硅复合陶瓷的方法
CN100494507C (zh) 高体密半石墨质阴极炭块及其生产方法
CN115466121A (zh) 一种石墨电极的制备方法
CN109502562B (zh) 一种较高纯度六方氮化硼粉体的制备方法
CN108439984A (zh) 一种高抗氧化性石墨电极及其制备方法
CN110526698A (zh) 一种高热导高抗热震的堇青石质耐热瓷及其制备方法
CN108440011A (zh) 一种新型石墨电极生产工艺
CN103979981B (zh) 一种大规格半石墨质碳化硅碳砖及其生产工艺
CN101214985A (zh) 棕刚玉制造工艺
CN105514361A (zh) 一种负极材料无舟皿碳化工艺
CN116082041B (zh) 一种低热膨胀系数石墨材料及其生产方法
CN102260884B (zh) 一种短流程高密度低电阻块状石墨阳极的制备方法
CN110627518A (zh) 一种高强度复合石墨电极的制备方法
CN108863423A (zh) 一种乙烯基树脂浸渍电极石墨的生产工艺
CN103539091B (zh) 一种中低品位磷矿催化还原制备磷酸的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180928

RJ01 Rejection of invention patent application after publication