CN108585848A - 一种KSr2Nb5O15透明铁电陶瓷的制备方法 - Google Patents

一种KSr2Nb5O15透明铁电陶瓷的制备方法 Download PDF

Info

Publication number
CN108585848A
CN108585848A CN201810453243.9A CN201810453243A CN108585848A CN 108585848 A CN108585848 A CN 108585848A CN 201810453243 A CN201810453243 A CN 201810453243A CN 108585848 A CN108585848 A CN 108585848A
Authority
CN
China
Prior art keywords
ksr
powder
ceramics
ksn
microcrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810453243.9A
Other languages
English (en)
Other versions
CN108585848B (zh
Inventor
高峰
曹舒尧
许杰
陈倩
史芳军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201810453243.9A priority Critical patent/CN108585848B/zh
Publication of CN108585848A publication Critical patent/CN108585848A/zh
Application granted granted Critical
Publication of CN108585848B publication Critical patent/CN108585848B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种KSr2Nb5O15透明铁电陶瓷的制备方法,通过设计球磨工艺,实现颗粒级配;通过优化排胶工艺,避免陶瓷坯体在排胶过程中产生较大的气孔;采用氧气气氛烧结,使烧结过程中坯体内部气孔中的气体与材料体系产生相容性,有利于氧原子的排出,从而减小气孔率,提高陶瓷密度。本发明制得的KSr2Nb5O15透明陶瓷的密度大,气孔率低,可见光透过率高,为后续该体系材料的光功能化应用提供了技术基础。并且所采用无压气氛烧结,对烧结设备要求低,制备周期短,且不需要后期退火处理,经济便捷。

Description

一种KSr2Nb5O15透明铁电陶瓷的制备方法
技术领域
本发明属于透明陶瓷制备技术领域,涉及一种透明铁电陶瓷的制备方法,具体涉及一种KSr2Nb5O15透明铁电陶瓷及其制备方法。
背景技术
近年来,铌酸锶钾(化学式KSr2Nb5O15,简称KSN)因其具有铁电、介电、电光、热电、光催化等多种性能而受到科技界的广泛关注。铌酸锶钾具有典型的四方钨青铜结构。其中,NbO6八面体通过共顶连接形成骨架结构,并沿c轴有序排布,围成三种不同的格位以供阳离子占据。因其特殊的晶体结构,便于实现多种阳离子掺杂,以提高材料的性能。
目前,市场上的透明功能材料仍以单晶与玻璃为主。新型透明功能陶瓷不仅具有优良的透光性能,而且具有功能陶瓷材料的特有优势。与单晶相比,制备成本低廉、工艺简单、易于实现大尺寸材料的制备;与玻璃材料相比,具有高强度、高硬度、耐腐蚀、耐高温等优点。目前研究较为成熟的透明铁电陶瓷材料有(Pb,La)(Zr,Ti)O3(简称PLZT)体系,Pb(Mg1/2Nb2/3)O3-PbTiO3(简称PMN-PT)体系等。由于PLZT及PMN-PT等成熟的透明铁电陶瓷材料成分中含有重金属元素Pb,对环境及人体有一定的危害,在应用过程中会受到制约。
传统的透明陶瓷制备,多采用热压烧结工艺,对设备及原料的要求高。同时,热压多采用石墨模具,在热压烧结后,需要对材料进行长时间的退火除碳,以降低材料气孔率,提高陶瓷透明度。因此,传统的热压烧结,不仅工艺复杂,设备成本高,且材料制备周期长,能耗大。
在DOI:http://dx.doi.org/10.1109/TUFFc.2013.2703中,Guoxin Hu等公开发表了《Microstructure and Dielectric Behavior of Bi2O3-Doped KSr2Nb5O15Ceramics》的论文。该论文中,通过添加Bi2O3烧结助剂,将KSN陶瓷相对密度提高至96%以上。
在专利号201310337876的发明专利中,高峰等公开了一种铌酸锶钾无铅致密织构陶瓷及其制备方法。该方法中采用熔盐法制备的铌酸锶钾粉体为原料,以三氧化二铋为烧结助剂,采用流延成型的方法制备出坯体,并经过两步烧结制备出了铌酸锶钾无铅致密织构陶瓷。同时,相关的研究内容发表了题为Dense KSr2Nb5O15ceramics with uniformgrain size prepared by molten salt synthesis的论文(DOI:http://dx.doi.org/10.1016/j.jallcom.2014.07.155)。2015年,Liangliang Liu等人发表了题为A DuplexStructure in Dense KSr2Nb5O15Ferroelectric Ceramics的论文(DOI:10.1080/00150193.2015.996455),通过控制KSN陶瓷内部晶粒异常生长形成双重微结构以提高陶瓷的致密度。
现有的KSN制备工艺所得的KSN陶瓷,存在致密度不够高,光学透过率较低。已报道可见光范围内KSN陶瓷的最高光学透过率仅为25%,对于后续的光学应用而言,已有技术所制备的KSN陶瓷的光学透过率远不够要求。现有技术的制备过程中,并未关注颗粒级配对致密化的影响。同时,对于排胶工艺也未过多关注,排胶过程中过高的升温速率将在坯体中形成较大的气孔,不利于后续烧结致密化。此外,现有技术并未考虑气氛对烧结过程中晶界迁移的影响,未采用气氛烧结进一步提高陶瓷的密度。因此,寻求一种提高KSN陶瓷密度及光学透过率的制备工艺对KSN透明陶瓷的发展及光学应用十分重要。
发明内容
为克服现有技术中存在的在坯体中形成较大的气孔,有待进一步提高陶瓷的密度的问题,本发明提出了一种KSr2Nb5O15透明铁电陶瓷的制备方法。
本发明的具体过程是:
步骤1,混料。以熔盐法制备的棒状KSr2Nb5O15微晶粉体为原料,以Bi2O3粉体为烧结助剂,按KSr2Nb5O15微晶粉体:Bi2O3粉体=1000:2~6的重量比例称取该KSr2Nb5O15微晶粉体及Bi2O3粉体。所述KSr2Nb5O15微晶粉体的形貌呈棒状;该棒状KSr2Nb5O15微晶粉体的直径为1~3μm,长度为5~15μm。将该KSr2Nb5O15微晶粉体与Bi2O3粉体混合,即完成陶瓷粉体与烧结助剂的混料。
步骤2,制备浆料。在得到的混料中加入乙醇和ZrO2球石,并混合后装入球磨罐内,以250r/min~300r/min转速球磨6h~12h,得到球磨好的浆料。所述混料:乙醇:球石=1:2:3;所述的比例为重量比。经过球磨,使30%~50%的所述KSr2Nb5O15微晶粉体破碎,成为1~3μm的无规则形貌的颗粒,使得浆料中的KSr2Nb5O15微晶粉体分为不同尺寸,实现该KSr2Nb5O15微晶粉体的颗粒级配。
步骤3,造粒。将球磨好的浆料在60℃下烘干。研磨过100目筛,取筛下物,得到粉体。以浓度为5wt%的PVA溶液作为粘结剂,加入到得到的粉体中,采用常规方法进行造粒。对得到的造粒过筛,取粒径为50目~100目之间的微粒用于干压成型。所述PVA溶液的加入量为,每10g粉体中滴加5ml~15ml的PVA溶液。
步骤4,成型。将过筛后得到的微粒装入模具,施加200MPa~300MPa的压力并保压30s进行干压成型,获得KSN陶瓷坯体。
步骤5,排胶。得到的KSN陶瓷坯体以0.5℃/min~1℃/min升温速率加热至500℃保温3h~6h,进行排胶处理,得到经过排胶处理的坯体。
步骤6,预烧结。将排胶后的坯体以5℃/min升温速率加热至1250℃后保温1h~4h,进行预烧结。保温结束后,将排胶后的坯体以5℃/min速率降温至500℃后,随炉冷却至室温,得到KSN陶瓷预制体。
步骤7,气氛烧结。将得到的KSN陶瓷预制体置于O2气氛下烧结;氧气气体流量为20sccm~50sccm。烧结时,将所述KSN陶瓷预制体以5℃/min升温速率加热至1350℃后,保温2h~6h。保温结束后,以5℃/min速率降温至500℃,随炉冷却后取出,打磨抛光后即得到KSr2Nb5O15透明铁电陶瓷。
与现有技术相比,本发明具有以下有益的技术效果:
本发明制得的KSr2Nb5O15透明铁电陶瓷密度高,透光性较好。所述KSr2Nb5O15透明铁电陶瓷的密度超过4.88g/cm3,500nm~800nm范围内光透过率介于40%~60%。附图2展示了本发明所制备的KSN透明陶瓷的实物照片,从图中可以明显看出所制备的KSN透明陶瓷具有优良的密度及透光性,透过陶瓷片可以明显地观察到底部纸张上的图案。本发明的技术原理包括:1.设计球磨工艺,实现颗粒级配。本发明中的颗粒级配,是指通过控制球磨工艺,使30%~50%的棒状KSN微晶粉体破碎成尺寸约1~3μm的无规则形貌的小颗粒,在后续成型过程中,小颗粒可填充棒状KSN微晶粉体的间隙,实现密堆积,提高陶瓷坯体密度;2.优化排胶工艺,避免陶瓷坯体排胶过程中产生较大气孔,有利于后续烧结过程,陶瓷坯体内部气孔的排出;3.采用氧气气氛烧结,使烧结过程中,坯体内部气孔中的气体与材料体系有一定的相容性,氧原子可借由材料晶格中的氧空位迁移排出,从而减小气孔率,提高陶瓷密度。现有其他工艺在空气下进行烧结,由于气孔中含有较多氮气,难以通过晶界迁移完全排出。附图3展示了本发明工艺所得KSN透明陶瓷微观结构的扫描电镜照片,从图中可以看出,KSN陶瓷内分布有不同尺寸的晶粒,存在尺寸约1~3μm的无规则形貌的小颗粒填充于大尺寸颗粒的间隙位置,该结果证实颗粒级配的密堆积效果。同时,样品微结构中未观察到明显的气孔,表明优化的排胶工艺,未在陶瓷坯体内部产生尺寸过大的气孔。后续氧气气氛的环境下烧结促进KSN晶粒界面迁移进一步消除内部小气孔,从而实现致密化,图3中未观察到明显的气孔证实了氧气气氛烧结促进KSN陶瓷致密化的效果。附图4展示了本发明工艺所制备的KSN透明陶瓷的透射光谱。如图所示,在500nm~800nm波长范围内KSN透明陶瓷的光学透过率达40%~60%,该结果表明本发明所得KSN陶瓷具有优良的光学透过率,明显优于已报道的其他KSN陶瓷的制备技术。并且KSr2Nb5O15材料本身具有铁电,电光,光催化,热点等诸多功能性,为后续KSr2Nb5O15材料的功能性优化、光学性能开发及应用提供了技术基础。此外,KSr2Nb5O15透明铁电陶瓷不含Pb等有害元素,绿色环保,具有应用前景。
本发明制得的KSr2Nb5O15透明陶瓷的密度大,气孔率低,可见光透过率高,为后续该体系材料的光功能化应用提供了技术基础。并且所采用无压气氛烧结,对烧结设备要求低,制备周期短,且不需要后期退火处理,经济便捷。
附图说明
图1为实施例1制得的KSr2Nb5O15透明铁电陶瓷的XRD图谱;
图2为实施例3制得的0.5mm厚的KSr2Nb5O15透明铁电陶瓷的实物照片;
图3为实施例4制得的KSr2Nb5O15透明铁电陶瓷表面热辐射后的SEM照片;
图4为实施例5制得的0.5mm厚的KSr2Nb5O15透明铁电陶瓷的透射光谱;
图5是本发明的流程图。
具体实施方式
实施例1
本实施例是一种KSr2Nb5O15透明铁电陶瓷的制备方法,具体过程是:
步骤1,混料。以熔盐法制备的棒状KSr2Nb5O15微晶粉体为原料,以Bi2O3粉体为烧结助剂,按KSr2Nb5O15微晶粉体:Bi2O3粉体=1000:3的重量比例称取该KSr2Nb5O15微晶粉体及Bi2O3粉体;本实施例中,所称取的KSr2Nb5O15微晶粉体为10g,称取的Bi2O3粉体为0.03g。所述KSr2Nb5O15微晶粉体的形貌呈棒状;该棒状KSr2Nb5O15微晶粉体的直径为1~3μm,长度为5~15μm。将该KSr2Nb5O15微晶粉体与Bi2O3粉体混合,即完成陶瓷粉体与烧结助剂的混料。
步骤2,制备浆料。在得到的混料中加入乙醇和ZrO2球石,并混合后装入球磨罐内,以250r/min转速球磨12h,得到球磨好的浆料。所述混料:乙醇:球石=1:2:3;所述的比例为重量比。经过球磨,使30%~50%的所述KSr2Nb5O15微晶粉体破碎,成为1~3μm的无规则形貌的颗粒,使得浆料中的KSr2Nb5O15微晶粉体分为不同尺寸,实现该KSr2Nb5O15微晶粉体的颗粒级配。
步骤3,造粒。将球磨好的浆料在60℃下烘干。研磨过100目筛,取筛下物,得到粉体。以浓度为5wt%的PVA溶液作为粘结剂,加入到得到的粉体中,采用常规方法进行造粒。对得到的造粒过筛,取粒径为50目~100目之间的微粒用于干压成型。所述PVA溶液的加入量为,每10g粉体中滴加8ml的PVA溶液。
步骤4,成型。将过筛后得到的微粒装入模具,施加200MPa的压力并保压30s进行干压成型,获得KSN陶瓷坯体。
步骤5,排胶。得到的KSN陶瓷坯体以0.7℃/min升温速率加热至500℃保温6h,进行排胶处理,得到经过排胶处理的坯体。
步骤6,预烧结。将排胶后的坯体以5℃/min升温速率加热至1250℃后保温1h,进行预烧结。保温结束后,将排胶后的坯体以5℃/min速率降温至500℃后,随炉冷却至室温,得到KSN陶瓷预制体。
步骤7,气氛烧结。将得到的KSN陶瓷预制体置于O2气氛下烧结;氧气气体流量为20sccm。烧结时,将所述KSN陶瓷预制体以5℃/min升温速率加热至1350℃后,保温6h。保温结束后,以5℃/min速率降温至500℃,随炉冷却后取出,打磨抛光后即得到KSr2Nb5O15透明铁电陶瓷。
图1为本实施例制得的KSr2Nb5O15透明陶瓷的XRD图谱。从图中可以看出,本实施例所制备的样品的仍保持KSr2Nb5O15主晶相,未出现明显的杂质衍射峰。
实施例2
本实施例是一种KSr2Nb5O15透明铁电陶瓷的制备方法,具体过程是:
步骤1,混料。以熔盐法制备的棒状KSr2Nb5O15微晶粉体为原料,以Bi2O3粉体为烧结助剂,按KSr2Nb5O15微晶粉体:Bi2O3粉体=1000:6的重量比例称取该KSr2Nb5O15微晶粉体及Bi2O3粉体;本实施例中,所称取的KSr2Nb5O15微晶粉体为10g,称取的Bi2O3粉体为0.06g。所述KSr2Nb5O15微晶粉体的形貌呈棒状;该棒状KSr2Nb5O15微晶粉体的直径为1~3μm,长度为5~15μm。将该KSr2Nb5O15微晶粉体与Bi2O3粉体混合,即完成陶瓷粉体与烧结助剂的混料。
步骤2,制备浆料。在得到的混料中加入乙醇和ZrO2球石,并混合后装入球磨罐内,以300r/min转速球磨6h,得到球磨好的浆料。所述混料:乙醇:球石=1:2:3;所述的比例为重量比。经过球磨,使30%~50%的所述KSr2Nb5O15微晶粉体破碎,成为1~3μm的无规则形貌的颗粒,使得浆料中的KSr2Nb5O15微晶粉体分为不同尺寸,实现该KSr2Nb5O15微晶粉体的颗粒级配。
步骤3,造粒。将球磨好的浆料在60℃下烘干。研磨过100目筛,取筛下物,得到粉体。以浓度为5wt%的PVA溶液作为粘结剂,加入到得到的粉体中,采用常规方法进行造粒。对得到的造粒过筛,取粒径为50目~100目之间的微粒用于干压成型。所述PVA溶液的加入量为,每10g粉体中滴加5ml的PVA溶液。
步骤4,成型。将过筛后得到的微粒装入模具,施加300MPa的压力并保压30s进行干压成型,获得KSN陶瓷坯体。
步骤5,排胶。得到的KSN陶瓷坯体以0.5℃/min升温速率加热至650℃保温3h,进行排胶处理,得到经过排胶处理的坯体;
步骤6,预烧结。将排胶后的坯体以5℃/min升温速率加热至1250℃后保温2h,进行预烧结。保温结束后,将排胶后的坯体以5℃/min速率降温至500℃后,随炉冷却至室温,得到KSN陶瓷预制体。
步骤7,气氛烧结。将得到的KSN陶瓷预制体置于O2气氛下烧结;氧气气体流量为30sccm。烧结时,将所述KSN陶瓷预制体以5℃/min升温速率加热至1350℃后,保温3h。保温结束后,以5℃/min速率降温至500℃,随炉冷却后取出,打磨抛光后即得到KSr2Nb5O15透明铁电陶瓷。
实施例3
本实施例是一种KSr2Nb5O15透明铁电陶瓷的制备方法,具体过程是:
步骤1,混料。以熔盐法制备的棒状KSr2Nb5O15微晶粉体为原料,以Bi2O3粉体为烧结助剂,按KSr2Nb5O15微晶粉体:Bi2O3粉体=1000:4的重量比例称取该KSr2Nb5O15微晶粉体及Bi2O3粉体;本实施例中,所称取的KSr2Nb5O15微晶粉体为10g,称取的Bi2O3粉体为0.04g。所述KSr2Nb5O15微晶粉体的形貌呈棒状;该棒状KSr2Nb5O15微晶粉体的直径为1~3μm,长度为5~15μm。将该KSr2Nb5O15微晶粉体与Bi2O3粉体混合,即完成陶瓷粉体与烧结助剂的混料。
步骤2,制备浆料。在得到的混料中加入乙醇和ZrO2球石,并混合后装入球磨罐内,以300r/min转速球磨10h,得到球磨好的浆料。所述混料:乙醇:球石=1:2:3;所述的比例为重量比。经过球磨,使30%~50%的所述KSr2Nb5O15微晶粉体破碎,成为1~3μm的无规则形貌的颗粒,使得浆料中的KSr2Nb5O15微晶粉体分为不同尺寸,实现该KSr2Nb5O15微晶粉体的颗粒级配。
步骤3,造粒。将球磨好的浆料在60℃下烘干。研磨过100目筛,取筛下物,得到粉体。以浓度为5wt%的PVA溶液作为粘结剂,加入到得到的粉体中,采用常规方法进行造粒。对得到的造粒过筛,取粒径为50目~100目之间的微粒用于干压成型。所述PVA溶液的加入量为,每10g粉体中滴加15ml的PVA溶液。
步骤4,成型。将过筛后得到的微粒装入模具,施加250MPa的压力并保压30s进行干压成型,获得KSN陶瓷坯体。
步骤5,排胶。得到的KSN陶瓷坯体以0.5℃/min升温速率加热至650℃保温4h,进行排胶处理,得到经过排胶处理的坯体。
步骤6,预烧结。将排胶后的坯体以5℃/min升温速率加热至1250℃后保温4h,进行预烧结。保温结束后,将排胶后的坯体以5℃/min速率降温至500℃后,随炉冷却至室温,得到KSN陶瓷预制体。
步骤7,气氛烧结。将得到的KSN陶瓷预制体置于O2气氛下烧结;氧气气体流量为25sccm。烧结时,将所述KSN陶瓷预制体以5℃/min升温速率加热至1350℃后,保温2h。保温结束后,以5℃/min速率降温至500℃,随炉冷却后取出,打磨抛光后即得到KSr2Nb5O15透明铁电陶瓷。
参见图2,为本实施例所得样品的照片,从照片中可以明显看出,样品具有较好的光学透过性能,透过样品可以清楚看到样品下方的图案,表明样品具有较高的致密化程度。
实施例4
本实施例是一种KSr2Nb5O15透明铁电陶瓷的制备方法,具体过程是:
步骤1,混料。以熔盐法制备的棒状KSr2Nb5O15微晶粉体为原料,以Bi2O3粉体为烧结助剂,按KSr2Nb5O15微晶粉体:Bi2O3粉体=1000:2的重量比例称取该KSr2Nb5O15微晶粉体及Bi2O3粉体;本实施例中,所称取的KSr2Nb5O15微晶粉体为10g,称取的Bi2O3粉体为0.02g。所述KSr2Nb5O15微晶粉体的形貌呈棒状;该棒状KSr2Nb5O15微晶粉体的直径为1~3μm,长度为5~15μm。将该KSr2Nb5O15微晶粉体与Bi2O3粉体混合,即完成陶瓷粉体与烧结助剂的混料。
步骤2,制备浆料。在得到的混料中加入乙醇和ZrO2球石,并混合后装入球磨罐内,以300r/min转速球磨12h,得到球磨好的浆料。所述混料:乙醇:球石=1:2:3;所述的比例为重量比。经过球磨,使30%~50%的所述KSr2Nb5O15微晶粉体破碎,成为1~3μm的无规则形貌的颗粒,使得浆料中的KSr2Nb5O15微晶粉体分为不同尺寸,实现该KSr2Nb5O15微晶粉体的颗粒级配。
步骤3,造粒。将球磨好的浆料在60℃下烘干。研磨过100目筛,取筛下物,得到粉体。以浓度为5wt%的PVA溶液作为粘结剂,加入到得到的粉体中,采用常规方法进行造粒。对得到的造粒过筛,取粒径为50目~100目之间的微粒用于干压成型。所述PVA溶液的加入量为,每10g粉体中滴加12ml的PVA溶液。
步骤4,成型。将过筛后得到的微粒装入模具,施加300MPa的压力并保压30s进行干压成型,获得KSN陶瓷坯体。
步骤5,排胶。得到的KSN陶瓷坯体以0.5℃/min升温速率加热至650℃保温4h,进行排胶处理,得到经过排胶处理的坯体。
步骤6,预烧结。将排胶后的坯体以5℃/min升温速率加热至1250℃后保温2h,进行预烧结。保温结束后,将排胶后的坯体以5℃/min速率降温至500℃后,随炉冷却至室温,得到KSN陶瓷预制体。
步骤7,气氛烧结。将得到的KSN陶瓷预制体置于O2气氛下烧结;氧气气体流量为50sccm。烧结时,将所述KSN陶瓷预制体以5℃/min升温速率加热至1350℃后,保温3h。保温结束后,以5℃/min速率降温至500℃,随炉冷却后取出,打磨抛光后即得到KSr2Nb5O15透明铁电陶瓷。
参见图3,为本实施例制得的KSr2Nb5O15透明陶瓷的SEM照片,由图可知,所得样品中的气孔较少,晶粒排布紧密,且存在部分大尺寸晶粒周围被小尺寸晶粒完全填充,表明前期球磨破碎的部分颗粒与未破碎的棒状颗粒形成了颗粒级配,实现了密堆积与间隙填充。
实施例5
本实施例是一种KSr2Nb5O15透明铁电陶瓷的制备方法,具体过程是:
步骤1,混料。以熔盐法制备的棒状KSr2Nb5O15微晶粉体为原料,以Bi2O3粉体为烧结助剂,按KSr2Nb5O15微晶粉体:Bi2O3粉体=1000:4的重量比例称取该KSr2Nb5O15微晶粉体及Bi2O3粉体;本实施例中,所称取的KSr2Nb5O15微晶粉体为10g,称取的Bi2O3粉体为0.04g。所述KSr2Nb5O15微晶粉体的形貌呈棒状;该棒状KSr2Nb5O15微晶粉体的直径为1~3μm,长度为5~15μm。将该KSr2Nb5O15微晶粉体与Bi2O3粉体混合,即完成陶瓷粉体与烧结助剂的混料。
步骤2,制备浆料。在得到的混料中加入乙醇和ZrO2球石,并混合后装入球磨罐内,以280r/min转速球磨10h,得到球磨好的浆料。所述混料:乙醇:球石=1:2:3;所述的比例为重量比。经过球磨,使30%~50%的所述KSr2Nb5O15微晶粉体破碎,成为1~3μm的无规则形貌的颗粒,使得浆料中的KSr2Nb5O15微晶粉体分为不同尺寸,实现该KSr2Nb5O15微晶粉体的颗粒级配。
步骤3,造粒。将球磨好的浆料在60℃下烘干。研磨过100目筛,取筛下物,得到粉体。以浓度为5wt%的PVA溶液作为粘结剂,加入到得到的粉体中,采用常规方法进行造粒。对得到的造粒过筛,取粒径为50目~100目之间的微粒用于干压成型。所述PVA溶液的加入量为,每10g粉体中滴加10ml的PVA溶液。
步骤4,成型。将过筛后得到的微粒装入模具,施加300MPa的压力并保压30s进行干压成型,获得KSN陶瓷坯体。
步骤5,排胶。得到的KSN陶瓷坯体以0.5℃/min升温速率加热至600℃保温3h,进行排胶处理,得到经过排胶处理的坯体。
步骤6,预烧结。将排胶后的坯体以5℃/min升温速率加热至1250℃后保温1h,进行预烧结。保温结束后,将排胶后的坯体以5℃/min速率降温至500℃后,随炉冷却至室温,得到KSN陶瓷预制体。
步骤7,气氛烧结。将得到的KSN陶瓷预制体置于O2气氛下烧结;氧气气体流量为30sccm。烧结时,将所述KSN陶瓷预制体以5℃/min升温速率加热至1350℃后,保温2h。保温结束后,以5℃/min速率降温至500℃,随炉冷却后取出,打磨抛光后即得到KSr2Nb5O15透明铁电陶瓷。
参见图4,为本实施例制得的KSr2Nb5O15透明陶瓷的透射光谱,由图可知,所得样品在375nm附近透过率最低,与该材料的能带结构有关。在500nm~800nm的波长范围内,可见光透过率达到40%~60%,表明材料具有一定的透光性能。

Claims (5)

1.一种KSr2Nb5O15透明铁电陶瓷的制备方法,其特征在于,具体过程是:
步骤1,混料;
步骤2,制备浆料:
在得到的混料中加入乙醇和ZrO2球石混合后,以250r/min~300r/min转速球磨6h~12h,得到经过球磨的浆料;所述混料:乙醇:球石=1:2:3;所述的比例为重量比;球磨后,30%~50%的所述KSr2Nb5O15微晶粉体破碎,成为1~3μm的无规则形貌的颗粒,使得浆料中的KSr2Nb5O15微晶粉体分为不同尺寸,实现该KSr2Nb5O15微晶粉体的颗粒级配;
步骤3,造粒;
步骤4,成型:
将得到的微粒装入模具,施加200MPa~300MPa的压力并保压30s进行干压成型,获得KSN陶瓷坯体;
步骤5,排胶:
得到的KSN陶瓷坯体以0.5℃/min~1℃/min升温速率加热至500℃保温3h~6h,进行排胶处理,得到经过排胶处理的坯体;
步骤6,预烧结:
将排胶后的坯体以5℃/min升温速率加热至1250℃后保温1h~4h,进行预烧结;保温结束后,将排胶后的坯体以5℃/min速率降温至500℃后,随炉冷却至室温,得到KSN陶瓷预制体;
步骤7,气氛烧结:
将得到的KSN陶瓷预制体置于O2气氛下烧结;氧气气体流量为20sccm~50sccm;烧结时,将所述KSN陶瓷预制体以5℃/min升温速率加热至1350℃后,保温2h~6h;保温结束后,以5℃/min的速率降温至500℃,随炉冷却后取出,打磨抛光后即得到KSr2Nb5O15透明铁电陶瓷。
2.如权利要求1所述KSr2Nb5O15透明铁电陶瓷的制备方法,其特征在于,所述的混料是以熔盐法制备的棒状KSr2Nb5O15微晶粉体为原料,以Bi2O3粉体为烧结助剂,按KSr2Nb5O15微晶粉体:Bi2O3粉体=1000:2~6的重量比例称取该KSr2Nb5O15微晶粉体及Bi2O3粉体;将该KSr2Nb5O15微晶粉体与Bi2O3粉体混合,得到陶瓷粉体与烧结助剂的混料。
3.如权利要求2所述KSr2Nb5O15透明铁电陶瓷的制备方法,其特征在于,所述KSr2Nb5O15微晶粉体的形貌呈棒状;该棒状KSr2Nb5O15微晶粉体的直径为1~3μm,长度为5~15μm。
4.如权利要求1所述KSr2Nb5O15透明铁电陶瓷的制备方法,其特征在于,所述造粒的具体过程是,将经过球磨的浆料在60℃下烘干并研磨,得到小于100目的粉体;以浓度为5wt%的PVA溶液作为粘结剂,加入到得到的粉体中进行造粒;得到粒径为50~100目的微粒。
5.如权利要求1所述KSr2Nb5O15透明铁电陶瓷的制备方法,其特征在于,所述PVA溶液的加入量为每10g粉体中滴加5ml~15ml的PVA溶液。
CN201810453243.9A 2018-05-14 2018-05-14 一种KSr2Nb5O15透明铁电陶瓷的制备方法 Active CN108585848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810453243.9A CN108585848B (zh) 2018-05-14 2018-05-14 一种KSr2Nb5O15透明铁电陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810453243.9A CN108585848B (zh) 2018-05-14 2018-05-14 一种KSr2Nb5O15透明铁电陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN108585848A true CN108585848A (zh) 2018-09-28
CN108585848B CN108585848B (zh) 2021-04-02

Family

ID=63637039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810453243.9A Active CN108585848B (zh) 2018-05-14 2018-05-14 一种KSr2Nb5O15透明铁电陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN108585848B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109502646A (zh) * 2018-12-17 2019-03-22 太原理工大学 一种制备化学计量比铌酸锶钾针状微晶粉体的方法
CN109534812A (zh) * 2018-12-17 2019-03-29 太原理工大学 一种具有微米管的铌酸锶钾微晶粉体的制备方法
CN109704765A (zh) * 2019-03-07 2019-05-03 哈尔滨工业大学 具有准同型晶相结构的高致密化铁电陶瓷及其制备方法
CN116813345A (zh) * 2023-07-14 2023-09-29 西安科技大学 一种高热电性能的铌酸锶钾陶瓷及其构建方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244939A (zh) * 2008-03-18 2008-08-20 中国科学院上海硅酸盐研究所 气氛热压烧结制备大尺寸压电陶瓷的方法
LV14533A (lv) * 2012-04-12 2012-05-20 Rīgas Tehniskā Universitāte Bezsvina segnetoelektriska keramika uz sārmu metālu niobātu bāzes un tās izgatavošanas paņēmiens
CN102616852A (zh) * 2012-03-21 2012-08-01 西北工业大学 一种针状铌酸锶钾微晶粉体的制备方法
CN103420673A (zh) * 2013-08-05 2013-12-04 西北工业大学 铌酸锶钾无铅致密织构陶瓷及其制备方法
CN105731806A (zh) * 2016-01-18 2016-07-06 同济大学 高储能密度铌酸钾锶基玻璃陶储能材料及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244939A (zh) * 2008-03-18 2008-08-20 中国科学院上海硅酸盐研究所 气氛热压烧结制备大尺寸压电陶瓷的方法
CN102616852A (zh) * 2012-03-21 2012-08-01 西北工业大学 一种针状铌酸锶钾微晶粉体的制备方法
LV14533A (lv) * 2012-04-12 2012-05-20 Rīgas Tehniskā Universitāte Bezsvina segnetoelektriska keramika uz sārmu metālu niobātu bāzes un tās izgatavošanas paņēmiens
CN103420673A (zh) * 2013-08-05 2013-12-04 西北工业大学 铌酸锶钾无铅致密织构陶瓷及其制备方法
CN105731806A (zh) * 2016-01-18 2016-07-06 同济大学 高储能密度铌酸钾锶基玻璃陶储能材料及其制备和应用

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
CIHANGIR DURAN: "Processing and ferroelectric behavior of textured KSr2Nb5O15 ceramics", 《JOURNAL OF MATERIALS SCIENCE》 *
GUOXIN HU ET AL.: "Microstructure and dielectric behavior of Bi2O3-doped KSr2Nb5O15 ceramics", 《IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL》 *
JONG-JIN CHOI ET AL.: "Microstructural evolution of transparent PLZT ceramics sintered in air and oxygen atmospheres", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
LIANGLIANG LIU ET AL.: "Dense KSr2Nb5O15 ceramics with uniform grain size prepared by molten salt synthesis", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
LIANGLIANG LIU ET AL.: "Fabrication of grain-oriented KSr2Nb5O15 ceramics by a brush technique", 《MATERIALS LETTERS》 *
LILI ZHAO ET AL.: "Molten salt synthesis of anisometric KSr2Nb5O15 particles", 《JOURNAL OF CRYSTAL GROWTH》 *
LILI ZHAO ET AL.: "Preparation of SrNb2O6 and KSr2Nb5O15 particles with anisometric morphology", 《JOURNAL OF ELECTROCERAMICS》 *
Y.IWAI: "Effect of mechanical milling treatment on the pressureless sintering of KSr2Nb5O15", 《IOP CONFERENCE SERIES-MATERIALS SCIENCE AND ENGINEERING》 *
刘颖等: "《工程材料及成形技术基础》", 31 July 2009, 北京理工大学出版社 *
曲远方: "《现代陶瓷材料及技术》", 31 May 2008, 华东理工大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109502646A (zh) * 2018-12-17 2019-03-22 太原理工大学 一种制备化学计量比铌酸锶钾针状微晶粉体的方法
CN109534812A (zh) * 2018-12-17 2019-03-29 太原理工大学 一种具有微米管的铌酸锶钾微晶粉体的制备方法
CN109502646B (zh) * 2018-12-17 2021-01-15 太原理工大学 一种制备化学计量比铌酸锶钾针状微晶粉体的方法
CN109534812B (zh) * 2018-12-17 2021-06-08 太原理工大学 一种具有微米管的铌酸锶钾微晶粉体的制备方法
CN109704765A (zh) * 2019-03-07 2019-05-03 哈尔滨工业大学 具有准同型晶相结构的高致密化铁电陶瓷及其制备方法
CN116813345A (zh) * 2023-07-14 2023-09-29 西安科技大学 一种高热电性能的铌酸锶钾陶瓷及其构建方法

Also Published As

Publication number Publication date
CN108585848B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN108585848A (zh) 一种KSr2Nb5O15透明铁电陶瓷的制备方法
CN102924073B (zh) 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法
CN101224974A (zh) 钇铝系小晶粒透明陶瓷材料及制备方法
CN104557013B (zh) 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法
CN107285745A (zh) 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN102311258B (zh) 激活离子受控掺杂的钇铝石榴石基激光透明陶瓷材料及其制备方法
CN101928145A (zh) 一种超细、高纯γ-AlON透明陶瓷粉末的制备方法
CN102432062B (zh) 一种高介电常数类钙钛矿型压敏陶瓷材料CaCu3Ti4O12的制备方法
JP2013507526A (ja) 酸化スズセラミックスパッタリングターゲットおよびその製造方法
CN102311266A (zh) 一种铌酸钾钠无铅压电陶瓷材料的制备方法
CN108585847A (zh) 一种铌酸钾钠基陶瓷的制备方法
CN102060519A (zh) 一种通过喷雾造粒改性粉体制备稀土掺杂钇铝石榴石透明陶瓷的方法
CN111786014A (zh) 一种超细粒度的石榴石型固体电解质粉体及其制备方法
CN109180180A (zh) 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
CN107828384A (zh) 一种用于高温相变储热材料抗熔盐挥发的芯‑壳结构
CN104803670B (zh) 双层探测器用闪烁陶瓷及其制备方法
CN108911738A (zh) 多孔钛酸钡压电陶瓷及其制备方法
CN103482970B (zh) 一种激光透明陶瓷及其制备方法
CN100584796C (zh) 一种Y2O3-TiO2系微波介质陶瓷及其制备方法
CN102503399B (zh) 一种具有择优取向的多晶钇铝石榴石透明陶瓷的制备方法
CN104387081A (zh) 透明氮氧化铝(AlON)陶瓷的低温制备方法
CN101891475A (zh) 铌酸钠钾-钛酸铋钾纳米陶瓷的制备方法
CN107903060A (zh) 一种电子束物理气相沉积用锆酸镧基陶瓷靶材及其制备方法
CN110372380A (zh) 一种基于流延法制备钬/锂/铋改性铌酸钾钠发光透明陶瓷的方法
CN105110792A (zh) 一种高均匀yag透明陶瓷粉体的球磨制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant