CN108579784A - 一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法 - Google Patents

一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法 Download PDF

Info

Publication number
CN108579784A
CN108579784A CN201810325390.8A CN201810325390A CN108579784A CN 108579784 A CN108579784 A CN 108579784A CN 201810325390 A CN201810325390 A CN 201810325390A CN 108579784 A CN108579784 A CN 108579784A
Authority
CN
China
Prior art keywords
catalyst
carbonitride
honeycomb
sepiolite
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810325390.8A
Other languages
English (en)
Inventor
赵才贤
李靖娥
陈烽
兰富军
张成花
焦培鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201810325390.8A priority Critical patent/CN108579784A/zh
Publication of CN108579784A publication Critical patent/CN108579784A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法,其特征在于制备过程包括以下步骤:a)制备助催化剂负载的海泡石;b)聚多巴胺包覆改性助催化剂负载的海泡石;c)将上步产物与氮化碳前驱体混匀,经高温焙烧后,去除模板,即制得助催化剂高度分散于蜂巢状氮化碳空腔内部的光催化剂。本发明采用价格低廉、来源广泛的海泡石作为蜂巢状氮化碳制备的硬模板和助催化剂负载载体,不仅可以减少大比表面积氮化碳的制备成本,同时也能有效减小助催化剂的粒径,并保证助催化剂均匀分散在氮化碳的空腔内部,防止助催化剂流失,从而有效地提高了光催化剂的活性和稳定性,因此具有较好应用前景。

Description

一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法
技术领域
本发明涉及一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法,属于光催化技术领域。
背景技术
氢能是公认的洁净能源。自1972年日本科学家Fujishima和Honda首次报道光照TiO2电极分解水以来,由于原料为用之不竭的太阳能和水,半导体光解水产氢作为人类社会获取氢能的理想技术,引起了人们的广泛兴趣。半导体光催化制氢技术是利用半导体光催化剂独特的能带结构,吸收光能后,激发半导体产生光生-电子空穴对,分离并迁移到表面的光生电子参与还原反应,从而实现裂解水制氢。
有机半导体石墨相氮化碳具有原材料来源广、制备过程简单、价格低廉、可见光吸收好等优势,是近年光催化研究的热点之一。然而,通过热解缩合方法制得的石墨相氮化碳通常比表面积较小(10-20m2·g-1),存在活性位点少、光生载流子传输速率慢等问题,因此其光催化活性较低。增大石墨相氮化碳的比表面积是提高其光催化活性的有效方法之一,这主要是因为:增大比表面积不仅可以为光催化反应提供更多的活性位点,同时也能缩短光生电荷传输到表面活性的迁移距离,有效地抑制了光生载流子的复合。在各种具有大比表积的石墨相氮化碳光催化材料中,具有中空空腔结构的氮化碳光催化材料如氮化碳纳米管(专利:105217584A)、氮化碳空心球(专利:103801354B)、蜂巢状氮化碳(专利申请号:201810013728.6)等,引起了人们的极大兴趣,其原因主要在于:(1)中空结构可以有效增大氮化碳的比表面积;(2)中空结构可以使入射光在空腔内部形成多重反射与折射,提高了对入射光能的吸收和利用。
光生电荷的转移效率也是影响光催化,尤其是光解水活性的重要因素。研究表明,通过负载助催化剂,如Pt、Au、Pd、Ag等,不仅可以有效促进光生电荷的分离,更为重要的是,还能大大降低表面催化反应的活化能,如析氢反应的活化能,从而有效提高光催化效率。但是,通过常规化学还原或光沉积方法负载助催化剂,往往存在金属助催化剂颗粒较大、分散性较差、助催化粒子易流失等问题,因此光催化活性及稳定性提高有限,无法充分发挥助催化剂的全部功能。通过将助催化剂均匀负载在氮化碳的空腔内部,不仅可以缩短光生电荷的传输距离,减少光生载流子的复合,同时也能有效防止助催化剂纳米粒子的流失,从而提高氮化碳的光催化活性。因此,采用低成本的原材料,通过简易方法制备出助催化剂均匀地分散在大比表面积的氮化碳空腔内的光催化材料,对其实际应用有着重要的意义。
发明内容
本发明的目的在于针对现有技术的不足,提供一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法。
一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法,其特征在于制备过程包括以下步骤:
a)制备助催化剂负载的海泡石;
b)聚多巴胺包覆改性助催化剂负载的海泡石;
c)将聚多巴胺包覆改性助催化剂负载的海泡石与氮化碳前驱体混合均匀,高温焙烧后去除模板,即制得助催化剂高度分散于蜂巢状氮化碳空腔内部的光催化剂。
所述制备海泡石负载助催化剂是指通过常压浸渍或者真空灌注方法,使金属盐水溶液进入海泡石孔道内部,然后采用还原剂还原。所述常压浸渍方法是指在大气压下将海泡石浸渍在金属盐水溶液中;所述真空浸渍方法是指将海泡石抽真空后,再用金属盐水溶液浸渍;所述金属盐是指氯铂酸、氯铂酸钠、氯金酸、硝酸银、氯化钯、硝酸钯之任意一种;所述还原剂是指硼氢化钠或柠檬酸钠之任一种。所述金属盐水溶液的浓度为0.1~50mg/ml。所述还原剂的浓度为1~100mg/ml。所述聚多巴胺包覆改性助催化剂负载的海泡石是指将金属助催化剂负载的海泡石与盐酸多巴胺在缓冲溶液中反应;所述去除模板是指将聚多巴胺包覆改性助催化剂负载的海泡石与氮化碳前驱体高温焙烧后的产物与刻蚀剂反应。所述缓冲溶液的PH值为8~9;所述盐酸多巴胺的浓度为1~5mg/ml。所述刻蚀剂是氢氟酸或氟化铵之任一种。所述氮化碳前驱体是指三聚氰胺、尿素、单氰胺之任意一种。所述海泡石模板与前驱体的质量比为1:0.5~5。所述高温焙烧是在空气氛围中,焙烧温度为500~600℃,焙烧时间为1~5h。
本发明具有实质性特点和显著进步:1)本发明采用价格低廉、来源广泛的海泡石作为蜂巢状氮化碳制备的硬模板和助催化剂负载载体,有效降低了大比表面积中空氮化碳的制备成本;2)采用本发明所述方法制备的助催化剂高度分散于蜂巢状氮化碳光催化剂,不仅存在大量的空腔、具有较大的比表面积(389.2m2·g-1),同时金属助催化剂的粒径也较小(2~5nm),并且助催化剂均匀分散在氮化碳空腔内部,大大地缩短了光生电子传输至助催化剂上的距离,提高了其光生电荷的分离效率和转移速率,因而具有优异的太阳能驱动光催化活性和良好的稳定性。测试结果表明,在可见光(λ≥400nm)照射下本发明制备的氮化碳光催化剂,光解水产氢速率可达2270.35umol·g-1·h-1(实施例3),约为体相氮化碳(151.24umol·g-1·h-1)的15倍,是通过光沉积法负载同样量的助催化剂在蜂巢状氮化碳光解水产氢速率的2.2倍(对比例2)。
附图说明
图1为对比例1制备的体相氮化碳的透射电子显微镜图(TEM);
图2为对比例2制备的蜂巢状氮化碳的透射电子显微镜图(TEM);
图3为实施例1制备的助催化剂铂高度分散于蜂巢状氮化碳空腔内部的光催化剂的透射电子显微镜图(TEM);
图4为实施例3制备的助催化剂铂高度分散于蜂巢状氮化碳空腔内部的光催化剂的透射电子显微镜图(TEM);
图5为对比例2制备的光沉积铂负载的蜂巢状氮化碳的透射电子显微镜(TEM);
图6为实施例3中制备的助催化剂铂高度分散于蜂巢状氮化碳空腔内部的光催化剂的高倍透射电子显微镜图(HRTEM);
图7为在可见光下(λ≥400nm)辐照下,实施例3制备的助催化剂高度分散于蜂巢状氮化碳空腔内部的光催化剂、对比例1及对比例2制备的样品的光解水产氢性能图。
图8为实施例3制备的助催化剂铂高度分散于蜂巢状氮化碳空腔内部的光催化剂的可见光驱动光解水产氢循环性能图。
具体实施方式
以下通过具体的实施例对发明的技术方案作进一步描述。
实施例1:
(a)称取3g海泡石浸渍在10ml的5mg/ml的Na2PtCl6溶液,搅拌浸渍30min,离心后分散在20ml 10mg/ml的硼氢化钠溶液,25℃左右还原2h,水洗离心重复多次;(b)将上述固相物质分散在50ml的pH=8的H3BO3-NaOH缓冲液中,加入50mg的盐酸多巴胺,氧化聚合12h,离心水洗多次,干燥;(c)称取2g上述聚多巴胺改性的海泡石和4g单氰胺混合充分后,置于管式炉中,在空气氛围下,2℃/min升温至500℃,恒温5h,待自然冷却后,得到淡黄色粉末。将热处理得到的淡黄色粉末用质量分数为5%的HF水溶液刻蚀,去除海泡石模板,多次水洗后干燥,即可得到助催化剂铂高度分散于蜂巢状氮化碳的光催化材料。
实施例2:
(a)称取3g海泡石置于锥形瓶中,锥形瓶上端用恒压滴液漏斗密封,抽真空,通过恒压滴液漏斗滴入10ml的0.1mg/ml的HAuCl4溶液,搅拌浸渍30min,离心后固体再次置于锥形瓶中,抽真空,滴加20ml 100mg/ml的柠檬酸钠溶液后,100℃加热回流2h,还原结束后,水洗离心多次;(b)将上述固相物质分散在50ml的pH=8.5的H3BO3-NaOH缓冲液中,加入100mg的盐酸多巴胺,氧化聚合12h,离心水洗多次,干燥;(c)称取2g上述聚多巴胺改性的海泡石和2g三聚氰胺混合充分后,置于管式炉中,在空气氛围下,以2℃/min升温至600℃,恒温1h,待自然冷却后,得到淡黄色粉末。将热处理得到的淡黄色粉末用质量分数为5%的HF水溶液刻蚀,去除海泡石模板,多次水洗后干燥,即可得到助催化剂金高度分散于蜂巢状氮化碳的光催化材料。
实施例3:
(a)称取3g海泡石置于锥形瓶中,锥形瓶上端用恒压滴液漏斗密封,抽真空,通过恒压滴液漏斗滴入10ml的30mg/ml的H2PtCl6溶液,搅拌浸渍30min,离心后固体再次置于锥形瓶中,抽真空,滴加20ml 30mg/ml的硼氢化钠溶液,室温还原2h,水洗多次;(b)将上述固相物质分散在50ml的pH=9的H3BO3-NaOH缓冲液中,加入250mg的盐酸多巴胺,氧化聚合12h,离心水洗多次,干燥;(c)称取2g上述聚多巴胺改性的海泡石和1g三聚氰胺混合充分后,置于管式炉中,在空气氛围下,以2℃/min升温至550℃,恒温2h,待自然冷却后,得到淡黄色粉末。将热处理得到的淡黄色粉末用质量分数为5%的HF水溶液刻蚀,去除海泡石模板,多次水洗后干燥,即可得到助催化剂铂高度分散于蜂巢状氮化碳的光催化材料。
实施例4:
(a)称取3g海泡石置于锥形瓶中,锥形瓶上端用恒压滴液漏斗密封,抽真空,通过恒压滴液漏斗滴入10ml的50mg/ml的Ag(NO3)2溶液,搅拌浸渍30min,离心后固体再次置于锥形瓶中,抽真空,滴加20ml 50mg/ml的硼氢化钠溶液,25℃还原2h,水洗多次;(b)将上述固相物质分散在50ml的pH=8.5的H3BO3-NaOH缓冲液中,加入50mg的盐酸多巴胺,氧化聚合12h,离心水洗多次,干燥;(c)称取2g上述聚多巴胺改性的海泡石和10g尿素置于研钵中,充分研磨后,置于管式炉中,在空气氛围下,以2℃/min升温至550℃,恒温2h,待自然冷却后,得到淡黄色粉末。将热处理得到的淡黄色粉末用质量分数为的5%的NH4F水溶液刻蚀,去除海泡石模板,水洗多次后,即可得到助催化剂高度分散于蜂巢状氮化碳材料。
实施例5:
(a)称取3g海泡石浸渍在10ml的5mg/ml的PdCl2溶液,搅拌浸渍30min,离心后分散在20ml 1mg/ml的硼氢化钠溶液,25℃左右还原2h,水洗离心重复多次;(b)将上述固相物质分散在50ml的pH=9的H3BO3-NaOH缓冲液中,加入100mg的盐酸多巴胺,氧化聚合12h,离心水洗多次,干燥;(c)称取2g上述聚多巴胺改性的海泡石和6g双氰胺,充分混合后,置于管式炉中,在空气氛围下,以2℃/min升温至600℃,恒温2h,待自然冷却后,得到淡黄色粉末。将热处理得到的淡黄色粉末用质量分数为的5%的NH4F水溶液刻蚀,去除海泡石模板,水洗多次后,即可得到助催化剂高度分散于蜂巢状氮化碳材料。
实施例6:
(a)称取3g海泡石置于锥形瓶中,锥形瓶上端用恒压滴液漏斗密封,抽真空,通过恒压滴液漏斗滴入10ml的10mg/ml的Pd(NO3)2溶液,搅拌浸渍30min,离心后固体再次置于锥形瓶中,抽真空,滴加20ml 50mg/ml的硼氢化钠溶液,25℃还原2h,水洗多次;(b)将上述固相物质分散在50ml的pH=9的H3BO3-NaOH缓冲液中,加入50mg的盐酸多巴胺,氧化聚合12h,离心水洗多次,干燥;(c)称取2g上述聚多巴胺改性的海泡石和10g双氰胺,充分混合后,置于管式炉中,在空气氛围下,以2℃/min升温至500℃,恒温2h,待自然冷却后,得到淡黄色粉末。将热处理得到的淡黄色粉末用质量分数为的5%的NH4F水溶液刻蚀,去除海泡石模板,水洗多次后,即可得到助催化剂高度分散于蜂巢状氮化碳材料。
对比例1:
称取1g三聚氰胺,置于管式炉中,空气氛围下,以2℃/min的升温速率升温至到550℃,恒温2h,待自然冷却后,得到体相氮化碳(bulk g-C3N4),其比面积面积约为19.14m2·g-1。将制得的体相氮化碳加入与实施例3吸附的铂离子相同量的氯铂酸,通过300W氙灯光沉积2h,制得光沉积铂的体相氮化碳。
对比例2:
取2g海泡石超声分散在50ml的pH=9的H3BO3-NaOH缓冲液中,加入250mg的盐酸多巴胺,氧化聚合12h,离心水洗多次。干燥后与1g三聚氰胺混合充分后,置于管式炉,在空气氛围下,2℃/min升温至550℃,恒温2h,待自然冷却后,得到淡黄色粉末。将热处理得到的淡黄色粉末用质量分数为5%的HF水溶液刻蚀,去除海泡石模板,水洗多次后干燥,得到蜂巢状氮化碳,其比面积面积约为389.2m2·g-1。将制得的蜂巢状氮化碳加入与实施例3吸附的铂离子相同量的氯铂酸,通过300W氙灯光沉积2h,制得光沉积铂的蜂巢氮化碳。
图1为对比例1制备的体相氮化碳的透射电子显微镜图(TEM)。从图可见,由三聚氰胺直接热缩聚得到的氮化碳由大量表面致密的片层堆积而成。
图2为对比例2制备的蜂巢状氮化碳的透射电子显微镜图(TEM)。从图可见,通过海泡石模板改性后的氮化碳的形貌发生了较大的变化,存在大量的空腔结构,形成类蜂巢状中空氮化碳。
图3为实施例1制备的助催化剂铂高度分散于蜂巢状氮化碳空腔内部的光催化剂的透射电子显微镜图(TEM);可以清晰的看到金属助催化剂颗粒均匀的分散在氮化碳的空腔内表面。
图4为实施例3制备的助催化剂铂高度分散于蜂巢状氮化碳空腔内部的光催化剂的透射电子显微镜图(TEM);氮化碳呈现类似蜂巢的形貌,助催化剂铂粒子均匀的分散在氮化碳的空腔内,铂粒子的粒径大小约为2~5nm
图5为对比例2制备的光沉积铂负载的蜂巢状氮化碳的透射电子显微镜(TEM);由图可知,通过光沉积法负载的铂粒子团聚严重,粒径约为8~12nm,并且分布在蜂巢状氮化碳颗粒的的边缘。蜂巢状氮化碳的空腔内部几乎没有助催化剂分布。
图6为实施例3中制备的助催化剂铂高度分散于蜂巢状氮化碳空腔内部的光催化剂的高倍透射电子显微镜图(HRTEM)图中的铂粒子晶格条纹为0.227nm,归属于金属铂的(100)晶面。
图7为在可见光下(λ≥400nm)辐照下,实施例3制备的助催化剂高度分散于蜂巢状氮化碳空腔内部的光催化剂、对比例1及对比例2制备的样品的光解水产氢性能图。从图可知,光沉积铂的蜂巢状氮化碳样品,其光解水产氢速率为1061.87umol·g-1·h-1,约为对比例1制备的体相氮化碳(151.24umol·g-1·h-1)的7倍,这表明通过采用聚多巴胺改性海泡石为模板制备出大比表面积的氮化碳,可显著提高光解水产氢活性。然而,采用本发明制备的助催化剂高度分散于蜂巢状氮化碳材料的光解水产氢速率高达2270.35umol·g-1·h-1,约为对比例2的2.2倍。这表明助催化剂高度分散于蜂巢状氮化碳空腔内部,可以缩小光生电子的传输距离,提高其光生电荷的分离效率,使得助催化剂的作用得到充分发挥。
图8为实施例3制备的助催化剂铂高度分散于蜂巢状氮化碳空腔内部的光催化剂在可见光照射下的光解水产氢循环性能。由图可知,光催化材料循环四次后,该催化剂的产氢速率并没有明显的下降。这是由于助催化剂均匀分散在氮化碳的空腔内部,可以有效防止助催化剂的流失,从而提高了氮化碳光催化剂的稳定性。

Claims (8)

1.一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法,其特征在于制备过程包括以下步骤:
a)制备助催化剂负载的海泡石;
b)聚多巴胺包覆改性助催化剂负载的海泡石;
c)将聚多巴胺包覆改性助催化剂负载的海泡石与氮化碳前驱体混合均匀,高温焙烧后去除模板,即制得助催化剂高度分散于蜂巢状氮化碳空腔内部的光催化剂。
2.如权利要求1所述一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法,其特征在于:所述制备海泡石负载助催化剂是指通过常压浸渍或者真空灌注方法,使金属盐水溶液进入海泡石孔道内部,然后采用还原剂还原。
3.如权利要求1,2所述一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法,其特征在于:所述常压浸渍方法是指在大气压下将海泡石浸渍在金属盐水溶液中;所述真空浸渍方法是指将海泡石抽真空,再用金属盐水溶液浸渍;所述金属盐是指氯铂酸、氯铂酸钠、氯金酸、硝酸银、氯化钯、硝酸钯之任意一种;所述还原剂是指硼氢化钠或柠檬酸钠之任一种。
4.如权利要求1,2,3所述一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法,其特征在于:所述金属盐水溶液的浓度为0.1~50mg/ml。所述还原剂的浓度为1~100mg/ml。
5.如权利要求1所述一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法,其特征在于:所述聚多巴胺包覆改性助催化剂负载的海泡石是指将金属助催化剂负载的海泡石与盐酸多巴胺在缓冲溶液中反应;所述去除模板是指将聚多巴胺包覆改性助催化剂负载的海泡石与氮化碳前驱体高温焙烧后的产物与刻蚀剂反应。
6.如权利要求1,5所述一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法,其特征在于:所述缓冲溶液的PH值为8~9;所述盐酸多巴胺的浓度为1~5mg/ml。所述刻蚀剂是氢氟酸或氟化铵之任一种。
7.如权利要求1,5所述一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法,其特征在于:所述氮化碳前驱体是指三聚氰胺、尿素、双氰胺、单氰胺之任意一种。所述海泡石模板与前驱体的质量比为1:0.5~5。
8.如权利要求1,5所述一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法,其特征在于:所述高温焙烧是在空气氛围中,焙烧温度为500~600℃,焙烧时间为1~5小时。
CN201810325390.8A 2018-04-12 2018-04-12 一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法 Pending CN108579784A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810325390.8A CN108579784A (zh) 2018-04-12 2018-04-12 一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810325390.8A CN108579784A (zh) 2018-04-12 2018-04-12 一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法

Publications (1)

Publication Number Publication Date
CN108579784A true CN108579784A (zh) 2018-09-28

Family

ID=63622098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810325390.8A Pending CN108579784A (zh) 2018-04-12 2018-04-12 一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法

Country Status (1)

Country Link
CN (1) CN108579784A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112675895A (zh) * 2021-01-11 2021-04-20 湘潭大学 一种酸改性硅酸盐矿物负载石墨相氮化碳光催化剂的制备方法
CN115228502A (zh) * 2022-08-24 2022-10-25 江苏金聚合金材料有限公司 一种co偶联合成草酸二甲酯的钯基催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103623856A (zh) * 2013-12-10 2014-03-12 福州大学 一种多级纳米结构的球状介孔氮化碳光催化剂
CN104607231A (zh) * 2015-02-16 2015-05-13 江苏理工学院 具有三维有序大孔结构的氮化碳光催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103623856A (zh) * 2013-12-10 2014-03-12 福州大学 一种多级纳米结构的球状介孔氮化碳光催化剂
CN104607231A (zh) * 2015-02-16 2015-05-13 江苏理工学院 具有三维有序大孔结构的氮化碳光催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112675895A (zh) * 2021-01-11 2021-04-20 湘潭大学 一种酸改性硅酸盐矿物负载石墨相氮化碳光催化剂的制备方法
CN115228502A (zh) * 2022-08-24 2022-10-25 江苏金聚合金材料有限公司 一种co偶联合成草酸二甲酯的钯基催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106914264B (zh) 复合可见光催化剂的制备方法
CN112169819A (zh) 一种g-C3N4 (101)-(001)-TiO2复合材料的制备方法和应用
CN105498821A (zh) 一种用于催化降解氮氧化物的复合材料及其制备方法和用途
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
CN105396606A (zh) 一种氧化铈/石墨烯量子点/类石墨烯相氮化碳复合光催化材料及其制备方法
CN103990474A (zh) 3d形貌银/溴化银/二氧化钛催化剂的制备方法
CN106744742A (zh) 多壳层石墨相氮化碳空心纳米球及其合成方法和应用
CN106732712A (zh) 具有多层级结构的石墨相氮化碳同型异质结光催化材料的合成方法及应用
CN107020142A (zh) 泡沫镍负载碳氮/还原石墨烯光催化剂的制备方法
CN102824921A (zh) 一种Ag2S/Ag3PO4复合光催化剂的制备方法
CN108435228A (zh) 一种基于硬模板法制备g-C3N4纳米管的工艺
CN109126853A (zh) 一种具有碳缺陷的反蛋白石g-C3N4光催化剂的制备方法
CN104084215B (zh) 一种制备三维有序大孔BiVO4负载的Fe2O3和贵金属光催化剂及制备方法
CN108435229A (zh) 一种磷掺杂多级孔道氮化碳纳米片及其制备方法
Zhang et al. Solar light photocatalysis using Bi 2 O 3/Bi 2 SiO 5 nanoheterostructures formed in mesoporous SiO 2 microspheres
CN104383910A (zh) 一种颗粒大小可控的钒酸铋/石墨烯复合光催化剂的制法
CN108325555A (zh) 氮自掺杂石墨化氮化碳纳米片光催化剂及其制备方法和应用
CN103861630A (zh) 一种共聚合改性的石墨相氮化碳空心球可见光催化剂
CN106902890A (zh) 一种Cu‑BTC/钒酸铋/SWCNTs三元异质结构光催化剂及制备方法和应用
CN103846086A (zh) 一种用于氨气催化氧化制备氮氧化物的催化剂
CN108786891A (zh) 一种氮化碳基全光谱复合光催化剂的制备方法
CN108620096A (zh) 一种可见光响应Ag/Bi3O4Cl复合材料及制备方法和用途
CN106006582A (zh) 六方棒状Mo2N的制备和六方棒状Mo2N及应用
CN111330615A (zh) 一种纳米氯氧化铋/氮化碳复合材料及其制备方法和应用
CN108579784A (zh) 一种助催化剂高度分散于蜂巢状氮化碳空腔内的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180928