CN108538726B - 半导体芯片的制造方法 - Google Patents

半导体芯片的制造方法 Download PDF

Info

Publication number
CN108538726B
CN108538726B CN201810172586.8A CN201810172586A CN108538726B CN 108538726 B CN108538726 B CN 108538726B CN 201810172586 A CN201810172586 A CN 201810172586A CN 108538726 B CN108538726 B CN 108538726B
Authority
CN
China
Prior art keywords
micro
semiconductor chip
protrusions
applying member
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810172586.8A
Other languages
English (en)
Other versions
CN108538726A (zh
Inventor
折笠诚
清家英之
堀川雄平
阿部寿之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/449,074 external-priority patent/US9818736B1/en
Priority claimed from US15/449,361 external-priority patent/US10163847B2/en
Application filed by TDK Corp filed Critical TDK Corp
Publication of CN108538726A publication Critical patent/CN108538726A/zh
Application granted granted Critical
Publication of CN108538726B publication Critical patent/CN108538726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67121Apparatus for making assemblies not otherwise provided for, e.g. package constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1705Shape
    • H01L2224/17051Bump connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/8103Reshaping the bump connector in the bonding apparatus, e.g. flattening the bump connector
    • H01L2224/81047Reshaping the bump connector in the bonding apparatus, e.g. flattening the bump connector by mechanical means, e.g. severing, pressing, stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

本发明提供一种半导体芯片的制造方法,该半导体芯片具有基板、形成于基板上的导电部、形成于导电部的微凸起,其中,该制造方法具备在微凸起上形成平滑面的平滑面形成工序,平滑面形成工序具备对配置有半导体芯片的空间在惰性气氛内使还原性气体流入,并以微凸起的融点以上的温度进行加热的加热工序,在加热工序中,在微凸起上载置压力赋予部件,压力赋予部件的主面中与微凸起相接的主面为平面。

Description

半导体芯片的制造方法
技术领域
本发明涉及一种半导体芯片的制造方法。
背景技术
一直以来,在半导体封装件的三维安装中,使用引线接合(wire bonding)进行半导体芯片和半导体芯片、或插入件的连接。替代该引线接合,开发了经由贯通电极和凸起将半导体芯片彼此连接的三维安装技术。贯通电极要求标准上为短的连接线长(例如50μm),且将电极间相连的凸起也要求微细的凸起。与这种低于50μm的凸起间距相对应的技术被称作微凸起。如美国专利第9136159号说明书,通过将半导体芯片和半导体芯片用贯通电极和微凸起连接,能够极大地缩短半导体芯片间的配线长度。因此,能够降低伴随微细化而增大的配线延迟时间。
发明内容
在此,半导体芯片和半导体芯片的叠层通过倒装片安装来进行。但是,在将半导体芯片和半导体芯片叠层多片来进行接合时,产生半导体芯片间的错位等问题。另外,在对半导体芯片安装其它电子部件等时,也要求更适宜地进行接合。
本发明是鉴于这样的情况而完成的,其目的在于,提供一种能够适宜地进行半导体芯片和对象部件的接合的半导体芯片的制造方法。
本发明的一个方面提供一种半导体封装件的制造方法,该半导体芯片具有基板、形成于基板上的导电部和形成于导电部的微凸起,其中,该制造方法具备在微凸起上形成平滑面的平滑面形成工序,平滑面形成工序具备对配置有半导体芯片的空间在惰性气氛内使还原性气体流入,并以微凸起的融点以上的温度进行加热的加热工序,在加热工序中,在微凸起上载置压力赋予部件,压力赋予部件的主面中与微凸起相接的主面为平面。
该半导体芯片的制造方法具备在微凸起上形成平滑面的平滑面形成工序。在平滑面形成工序具备的加热工序中,对配置有半导体芯片的空间在惰性气氛内使还原性气体流入而进行加热。由此,形成于微凸起的表面的氧化膜被还原而被除去。另外,在加热工序中,通过以微凸起的融点以上的温度进行加热,微凸起熔融而具有流动性。在此,在加热工序中,在微凸起上载置有压力赋予部件。因此,伴随微凸起熔融而具有流动性,微凸起以通过压力赋予部件的压力而被压溃的方式变形。压力赋予部件的主面中与微凸起相接的主面为平面。因此,熔融的微凸起内、被压力赋予部件按压的部分伴随该压力赋予部件的平面的形状而作为平滑面形成。在将半导体芯片和对象部件接合时,可以使用微凸起的平滑面进行接合,因此,能够进行适宜的接合。
也可以是,在加热工序中,在多个微凸起上载置压力赋予部件,压力赋予部件的主面中与多个微凸起相接的主面为平面。由此,压力赋予部件能够以相对于多个微凸起与同一平面接触的状态一并赋予压力。在该情况下,多个微凸起的平滑面与压力赋予部件的平面一起构成同一平面。因此,能够降低多个微凸起的平滑面之间的高度的偏差。
作为还原性气体,也可以应用羧酸。由此,能够良好地除去微凸起表面的氧化膜。
压力赋予部件的重量也可以为,每单位所述微凸起的截面积为 0.0005μg/μm2以上且0.1μg/μm2以下。由此,压力赋予部件能够对微凸起赋予用于除去空隙的适宜的压力。
也可以在基板上配置具有一定厚度的衬垫,压力赋予部件可以被压入至与衬垫接触。由此,因为利用衬垫止挡压力赋予部件,所以能够防止微凸起被过量压溃。
根据本发明,能够提供能够适宜地进行与对象部件的接合的半导体芯片的制造方法。
附图说明
图1是表示半导体封装件的一个实施方式的概略截面图。
图2是表示半导体封装件的制造方法的步骤的流程图。
图3A及图3B是表示叠层有半导体芯片的情况的概略截面图。
图4A是表示叠层有半导体芯片的情况的概略截面图,图4B是表示将半导体芯片彼此接合的情况的概略截面图。
图5是表示实行平滑面形成工序之前的微凸起、及实行平滑面形成工序之后的微凸起的概略截面图。
图6是表示平滑面形成工序(空隙除去工序)的步骤的流程图。
图7A~图7G是表示平滑面形成工序(空隙除去工序)的步骤的概略截面图。
图8A~图8G是表示变形例的平滑面形成工序(空隙除去工序) 的步骤的概略截面图。
图9是表示加热炉内的温度和压力的曲线图的图表。
图10A~图10C是表示平滑面形成工序(空隙除去工序)的步骤的概略截面图。
图11A~图11B是表示平滑面形成工序(空隙除去工序)的步骤的概略截面图。
图12A及图12B是表示发光元件的排列的概略图。
图13A~图13C是表示形成微凸起的步骤的概略图。
图14A~图14C是表示在半导体芯片上安装发光元件的步骤的概略图。
图15A及图15B是表示在半导体芯片上安装发光元件时的技术问题的概略图。
图16是表示发光元件的导电部及镀敷膜的材料、及半导体芯片的导电部及镀敷膜的材料的组合的表。
图17是表示实施例及比较例的试验结果的表。
图18是表示实施例及比较例的试验结果的表。
符号说明
1……半导体芯片、2……叠层体、11……基板、12……导电部、13……微凸起、13a……平滑面、21……压力赋予部件、22……空隙、 23……氧化膜、26……衬垫。
具体实施方式
以下,参照附图详细说明本发明的一个方面的半导体封装件的制造方法的优选实施方式。此外,在以下的说明中,对同一要素或具有同一功能的要素使用同一符号,并省略重复的说明。
图1是表示半导体封装件的一个实施方式的概略截面图。如图1 所示,半导体封装件100具备将三片以上(在此为三片)的半导体芯片1叠层而构成的叠层体2、经由焊锡球3与叠层体2电连接的有机基板4、通过由模制树脂覆盖安装于有机基板4上的叠层体2而形成的模制部6。此外,模制部6的内部空间以填埋叠层体2的半导体芯片1 之间的方式被填充有底部填充材料7。在本实施方式中,叠层体2通过将半导体芯片1A、半导体芯片1B、及半导体芯片1C在上下方向上叠层而构成。半导体芯片1A和半导体芯片1B经由通过使微凸起熔融而接合的接合部8进行接合。半导体芯片1C和半导体芯片1B经由通过使微凸起熔融而接合的接合部8进行接合。
例如,如图4A所示,接合前的半导体芯片1具有基板11、形成于基板11上的导电部12、形成于导电部12的微凸起13。基板11由例如硅(Si)芯片等半导体芯片、硅(Si)插入件等构成。此外,在半导体芯片1A及半导体芯片1C上,仅在一个主面上形成有导电部12。在半导体芯片1B上,在两个主面上形成有导电部12。另外,形成于半导体芯片1B的两个主面上的导电部12经由沿基板11的厚度方向延伸的通孔电极19而相互连接。
导电部12在基板11的主面上形成有多个。导电部12以规定的间距在基板11的主面上排列。导电部12具备形成于基板11的主面上的电极焊盘14、和形成于电极焊盘14的上表面的势垒金属层16。此外,基板11的主面中、未形成导电部12的部分由绝缘层17覆盖(参照图 5)。作为势垒金属层16的构成材料,可使用例如Ni及Ni化合物(例如NiP)等。作为绝缘层17的构成材料,可使用例如SiO、SiN、聚酰亚胺等。
微凸起13形成于导电部12的势垒金属层16上。微凸起13可以含有Sn、Ag、Cu、Ag-Cu、Bi、In等作为构成材料,也可以使用这些中的任意两个以上的材料得到的合金。特别是,微凸起13也可以含有 Sn作为主成分。微凸起13例如也可以通过镀敷法来形成。或者,微凸起13可以通过使用由焊锡合金构成的微小球而形成,也可以印刷膏体而形成。此外,将从上观察时的直径小于50μm的凸起称作微凸起。
如图5所示,微凸起13在刚刚形成于基板11上之后具有球面。通过对这种微凸起13实施规定的处理,从而在微凸起13上形成平滑面13a。平滑面13a由在微凸起13的上端部沿水平方向扩展的平面构成。此外,后面会叙述作为用于形成平滑面13a的处理内容的一例。微凸起13的高度、即平滑面13a和导电部12的上表面之间的尺寸可以在5~50μm的范围内设定。
接着,参照图2~图9说明本实施方式的半导体封装件100的制造方法。
如图2所示,首先,实行通过在基板11上形成微凸起13而准备半导体芯片1的半导体芯片准备工序(步骤S1)。由此,准备半导体芯片1A、1B、1C。但是,在该阶段,在微凸起13上未形成平滑面13a。
接下来,实行在微凸起13上形成平滑面13a的平滑面形成工序(步骤S2)。另外,平滑面形成工序S2也相当于从微凸起13的内部除去空隙22的空隙除去工序。
在此,参照图6说明平滑面形成工序(空隙除去工序)S2的详细的内容。
如图6及图7A所示,实行相对于微凸起13设置压力赋予部件21 的压力赋予部件设置工序(步骤S20)。这样,在载置了压力赋予部件 21的状态下,将半导体芯片1配置到加热炉的内部。此外,在以后的说明中,适宜参照图9所示的加热炉内的温度和压力的曲线图进行说明。此外,图9中,实线表示加热炉内的温度,虚线表示加热炉内的压力。
如图10A所示,在压力赋予部件设置工序S20中,也可以在多个微凸起13上载置压力赋予部件21。此时,压力赋予部件21的主面的中与多个微凸起13相接的主面21a为平面。即,构成同一平面的主面 21a遍及多个微凸起13接触。此外,微凸起13在图10A的纸面的左右方向及纸面的前后方向排列有多个。因此,压力赋予部件21载置于在纸面的左右方向及纸面的前后方向上排列有多个的微凸起13上。压力赋予部件21相对于一个半导体芯片1可以使用一个也可以使用多个。即,压力赋予部件21也可以相对于半导体芯片1内的所有的微凸起13载置。或者,也可以是,半导体芯片1被分成多个区划,压力赋予部件21相对于各区划每个载置一片。但是,压力赋予部件21也可以相对于一个微凸起13每个载置一个。
作为载置于微凸起13上的压力赋予部件21的构成材料,优选采用不与微凸起13发生反应的材料。例如,作为压力赋予部件21的构成材料,可采用Si、SiO2、SiN等。另外,压力赋予部件21的主面中、与微凸起13相接的主面21a优选作为平面构成。例如,在主面21a上形成有突起等的情况下,因为与微凸起13钩挂,所以在除去压力赋予部件21时不易脱落。压力赋予部件21对微凸起13赋予的压力优选仅为压力赋予部件21自身的自重。具体而言,压力优选为每单位微凸起的截面积为0.0005μg/μm2以上且0.1μg/μm2以下。例如,如果通过倒装片安装那样的方法来控制压力赋予部件21产生的压力、或高度,则在微凸起13从固体向液体变化时(从图7B向图7C变化时)作用于压力赋予部件21的压力降低,因此,在压力赋予部件21的位置产生错位。会对如微凸起13那样小的凸起以极小的错位过剩地作用压力。
接下来,实行将配置了半导体芯片1的加热炉的空间减压的减压工序(步骤S21)。在减压工序S21中,将加热炉内抽真空,形成减压气氛。残留于加热炉内的氧成为使微凸起13氧化的原因。因此,优选将加热炉内排气至大气压状态(1.01×105Pa~1×103Pa以下,特别是5Pa 以下)的减压状态。由此,加热炉内的压力降低(参照图9的图表P1 的部分)。向这种减压气氛的加热炉内导入惰性气体。由此,加热炉内的压力上升(参照图9的图表P2的部分)。惰性气体在使加热炉内上升至微凸起13的熔融温度以上(熔点以上)的温度域时,防止微凸起 13表面的进一步的氧化,并实现微凸起13的熔融,作为加热炉内的热媒介起作用。作为这种惰性气体,可以使用例如氮(N2)气或氩(Ar) 气等。
接下来,实行在惰性气氛内对加热炉流入还原性气体,并以微凸起13的熔点以上的温度加热的加热工序(步骤S22)。加热工序S22 是在向加热炉内导入了惰性气体之后、或者与导入惰性气体大致同时实行。在加热工序S22中,以规定的升温速度(例如35~45℃/分钟) 将加热炉内升温,使导入了惰性气体的状态的加热炉内的温度上升至微凸起13的熔点以上的温度域。例如,在由Sn-Ag-Cu合金构成凸起的情况下,熔点虽然根据合金的组成而不同,但大致为220~230℃,因此,使加热炉内的温度上升至这种温度以上的温度域。
还原性气体的导入优选在氧化膜23开始还原反应的温度的前后实施。一边将加热炉内的温度(图9的温度T1)维持在开始还原反应的温度以上,一边继续供给适宜的温度和流量的还原性气体。由此,能够将存在于微凸起13的表面的氧化膜23还原除去。作为还原性气体,例如可以应用羧酸(甲酸)。作为羧酸的例子,可举出甲酸、乙酸、丙烯酸、丙酸等低级羧酸。在使用甲酸作为还原气体的情况下,优选在加热炉内的温度成为110℃左右时导入甲酸。即使在开始还原反应的温度以下导入甲酸,反应也不进行,而如果温度过高,由于是在残留着表面的氧化膜23的状态下加热微凸起13,因此,空隙22内部的压力上升。当在空隙22的内部的压力过量提高的状态下除去氧化膜23时,空隙22的压力被一次性释放,液化了的微凸起13也可能会飞散。因此,也可以在开始还原反应的温度T1下维持规定时间,在氧化膜23 被充分除去的阶段将加热炉的温度维持在微凸起13的熔点以上的温度 T2(参照图9)。
一旦微凸起13熔融,空隙22被除去,并形成了平滑面13a,则实行将加热炉的温度降温的降温工序(步骤S23)。具体而言,在被维持在微凸起13的熔融温度以上的温度T2的加热炉内将微凸起13暴露在甲酸中规定时间(例如0.5~3分钟)后,将导入到加热炉内的甲酸抽真空排出。在将加热炉内的甲酸排气后、或者进行甲酸的排气的同时,以规定的降温速度(例如-5~-40℃/分钟)将加热炉内降温。此外,图 9中,在加热炉的温度下降之前进行抽真空。但是,即使加热炉内的温度降温至熔融的凸起以某种程度固化的温度域,也可以向加热炉内导入氮气或氩气等惰性气体而恢复至大气压。
通过实行上述那样的加热工序S22及降温工序S23,如图7B~图 7G所示,能从微凸起13中除去空隙22,并在微凸起13上形成平滑面 13a。即,通过在还原性气体的气氛内进行加热,从而可将形成于微凸起13的表面的氧化膜23还原而除去(参照图7B)。而且,通过以微凸起13的熔点以上的温度进行加热,微凸起13会熔融。由此,通过压力赋予部件21的压力,微凸起13以压溃的方式变形。由此,根据压力赋予部件21的主面21a的形状,在微凸起13形成与平滑面13a 相对应的形状(参照图7C~图7F)。另外,通过将熔融的微凸起13向压力赋予部件21按压而流动,从而微凸起13内的空隙22上升,被排出到外部(参照图7C~图7F)。通过加热炉的温度恢复,微凸起13被冷却而固化。由此,在微凸起13上形成平滑面13a(参照图7G)。
如图10所示,在加热工序S22中,成为在多个微凸起13上载置有压力赋予部件21的状态。如图10B所示,压力赋予部件21以相对于多个微凸起13接触同一平面的状态一并赋予压力。由此,多个微凸起13以被压力赋予部件21一并压溃的方式变形。由此,根据压力赋予部件21的主面21a的形状,在多个微凸起13上形成与平滑面13a 相对应的形状。通过加热炉的温度恢复,微凸起13被冷却而固化。由此,在多个微凸起13上形成平滑面13a。之后,如图10C所示,从多个微凸起13除去压力赋予部件21。
返回图2,对于各半导体芯片1的平滑面形成工序S2结束后,实行在一个半导体芯片1的微凸起13上重叠另一个半导体芯片1的微凸起13,由此能够实行叠层三片以上的半导体芯片1的叠层工序(步骤 S3)。在本实施方式中,在叠层工序S3中,在一个半导体芯片1和另一个半导体芯片1的微凸起13上形成有平滑面13a。而且,一个半导体芯片1的微凸起13以平滑面13a与另一微凸起13相接触。在叠层工序S3中,对于所有的半导体芯片1,以彼此的微凸起13不接合的状态进行重合。
具体而言,如图3A及图3B所示,在最下的半导体芯片1C的微凸起13上重叠半导体芯片1B的微凸起13。此时,在半导体芯片1C 的微凸起13的平滑面13a上载置半导体芯片1B的微凸起13的平滑面 13a。另外,半导体芯片1C的微凸起13和半导体芯片1B的微凸起13 为彼此不接合而只是简单接触的状态。
接下来,如图3B及图4A所示,在从下数第二个半导体芯片1B 的微凸起13上重叠最上的半导体芯片1C的微凸起13。此时,在半导体芯片1B的微凸起13的平滑面13a上载置半导体芯片1C的微凸起 13的平滑面13a。另外,半导体芯片1B的微凸起13和半导体芯片1C 的微凸起13为彼此不接合而只是简单接触的状态。
叠层工序S3结束后,实行通过加热微凸起13使其熔融,经由该微凸起13将半导体芯片1彼此接合的接合工序(步骤S4)。在接合工序S4中,通过一次的加热将所有的微凸起13一并熔融,将所有的半导体芯片1一并接合。另外,在接合工序S4中,在还原气氛内使各半导体芯片1的微凸起13熔融。
具体而言,如图4A所示,将经由微凸起13叠层了半导体芯片1A、 1B、1C的状态的叠层体配置于加热炉内。然后,通过用加热炉加热该叠层体,叠层体内的所有的微凸起13熔融,并且彼此接触的微凸起13 被一并接合。由此,如图4B所示,半导体芯片1A、1B、1C经由两个微凸起13熔融而相互结合的接合部8接合。
在接合工序S4结束后,实行制作半导体封装件100的半导体封装件制作工序(步骤S5)。在半导体封装件制作工序S5中,将在接合工序S5得到的叠层体2与有机基板4连接,同时,由模制部6覆盖叠层体2。如上,完成半导体封装件100,图2所示的制造方法结束。
接着,对本实施方式的半导体封装件100的制造方法的作用及效果进行说明。
半导体芯片1的制造方法具备在微凸起13上形成平滑面13a的平滑面形成工序S2。在平滑面形成工序S2具备的加热工序S22中,在惰性气氛内向配置有半导体芯片1的空间流入还原性气体而进行加热。由此,形成于微凸起13的表面的氧化膜23被还原而除去。另外,在加热工序S22中,通过以微凸起13的融点以上的温度进行加热,微凸起13熔融而具有流动性。在此,在加热工序S22中,在微凸起13上载置有压力赋予部件21。因此,伴随微凸起13熔融而具有流动性,微凸起13因压力赋予部件21的压力而以压溃的方式变形。压力赋予部件21的主面21a中与微凸起13相接的主面21a为平面。因此,熔融的微凸起13内、被压力赋予部件21按压的部分伴随该压力赋予部件 21的平面的形状而作为平滑面13a形成。在将半导体芯片1和对象部件接合时,能够使用微凸起13的平滑面13a进行接合,因此,能够进行适宜的接合。
在加热工序S22中,在多个微凸起13上载置压力赋予部件21,压力赋予部件21的主面中与多个微凸起13相接的主面21a为平面。由此,压力赋予部件21能够以相对于多个微凸起13接触同一平面的状态一并赋予压力。该情况下,多个微凸起13的平滑面13a与压力赋予部件21的平面一起相互构成同一平面。因此,能够降低多个微凸起13 的平滑面13a之间的高度的偏差。
在通过研磨形成平滑面13a的情况下,可能因在微凸起13及导电部12上作用力而产生损伤。另一方面,如上述的实施方式,在使用压力赋予部件21形成平滑面13a的情况下,能够抑制对微凸起13及导电部12的损伤。
在半导体封装件100的制造方法中,在加热工序S22中,在惰性气氛内使还原性气体流入配置有半导体芯片1的空间而进行加热。由此,形成于微凸起13的表面的氧化膜23被还原而除去。另外,通过以微凸起13的熔点以上的温度进行加热,微凸起13熔融,由此具有流动性。在此,在加热工序S22中,在微凸起13上载置压力赋予部件 21。因此,伴随微凸起13熔融而具有流动性,微凸起13因压力赋予部件21的压力而以压溃的方式变形。通过该变形,在微凸起13内产生流动,空隙22在微凸起13内流动。由此,在微凸起13内流动的空隙22从该微凸起13内排出到外部而被除去。如上,能够容易地除去微凸起13内的空隙22。
作为还原性气体,也可以应用羧酸。由此,能够良好地除去微凸起13表面的氧化膜23。
就压力赋予部件21的重量而言,在微凸起13的每单位截面积,也可以为0.0005μg/μm2以上且0.1μg/μm2以下。由此,压力赋予部件 21能够对微凸起13赋予用于除去空隙22的适宜的压力。
在半导体封装件100的制造方法中,在叠层工序S3中,在一个半导体芯片1和另一个半导体芯片1中的至少一个微凸起13上形成平滑面13a,一个微凸起13以平滑面13a与另一个微凸起13接触。这样,通过利用平滑面13a使相互的微凸起13重合,从而能够将一个半导体芯片1和另一个半导体芯片1位置高精度地叠层。由此,即使在将三片以上的多个半导体芯片1叠层的情况下,也能够以相互的半导体芯片1之间的位置精度高的状态进行叠层。通过在这样的状态下实行接合工序S4,能够将半导体芯片1和半导体芯片1位置精度高地接合。
在叠层工序S3中,对于所有的半导体芯片1,将相互的微凸起13 以不接合的状态重合,在接合工序S4中,也可以通过一次的加热使所有的微凸起13一并熔融,将所有的半导体芯片1一并接合。由此,能够防止微凸起13一次熔融而接合的接合部8被重复加热。因此,能够防止接合部8的强度降低。
一个半导体芯片1的微凸起13、及另一个半导体芯片1的微凸起 13均含有Sn,在接合工序S4中,也可以在还原气氛内使一个半导体芯片1的微凸起13、及另一个半导体芯片1的微凸起13熔融。由此,形成于相互的微凸起13的表面的氧化膜23被还原而除去。另外,因为相互的微凸起13含有Sn,所以伴随熔融而相互混合并一体化。随之,通过液化的微凸起13的表面张力的作用,修正一个半导体芯片1和另一个半导体芯片1之间的错位(自调整效果)。
本发明不限于上述的实施方式。
例如,如图8所示,在基板11上配置具有一定厚度的衬垫26,压力赋予部件21也可以被压入至与衬垫26接触。由此,因为通过衬垫 26止挡压力赋予部件21,所以能够防止微凸起13过度压溃。例如,在加热前,在微凸起13的两侧配置衬垫26,在微凸起13上载置压力赋予部件21(参照图8A)。在该状态下用还原气氛加热,除去氧化膜 (参照图8B)。而且,当使微凸起13熔融时,压力赋予部件21下降,与衬垫26的上表面接触(参照图8C)。由此,压力赋予部件21被衬垫26支撑,不会进一步下降。另一方面,在熔融的微凸起13内,因压力赋予部件21的影响而产生流动,空隙22上升而被除去(参照图 8D~图8G)。
如图11A所示,在多个微凸起13上载置压力赋予部件21的情况下,衬垫26也可以仅配置在与压力赋予部件21的边缘部相对应的位置。或者,如图11B所示,也可以在各微凸起13间的间隙配置衬垫 26。此外,如图11B,即使不在所有的间隙配置衬垫26,也能够在一部分间隙配置衬垫26。
另外,在上述的实施方式中,下侧的半导体芯片1的微凸起13具有平滑面13a,上侧的半导体芯片1的微凸起13具有平滑面13a。因此,在下侧的微凸起13的平滑面13a上载置上侧的微凸起13的平滑面13a。但是,也可以仅在上侧的微凸起13和下侧的微凸起13的任一方形成平滑面13a,而在另一方不形成平滑面13a。
在上述的实施方式中,半导体芯片的接合的对象部件为其它半导体芯片。代替其,作为接合的对象部件,也可以采用其它部件。例如,作为接合的对象部件,也可以采用电子部件。作为电子部件,也可以采用发光元件。
通过在半导体芯片上接合多个发光元件,可以构成LED显示器的部件。例如,如LCD(液晶显示器),相对于通过透射型液晶控制背光源的光的方法,LED(发光元件显示器)由作为自然发光元件的发光元件构成像素。由此,LED显示器具有高亮度、高寿命、高视角这种特征。在这种LED显示器中,为了提高像素数,只要减小发光元件自身即可。在半导体芯片上安装发光元件时,采用了逐一安装发光元件的方法。但是,在该方法中,越是减小发光元件,安装的准备周期越长。因此,探讨了一并安装发光元件的方法。
具体而言,如图12所示,多个发光元件50以所希望的排列固定在固定夹具51的上表面。在固定夹具51上,以预定的排列图案固定红色的发光元件50A、绿色的发光元件50B、蓝色的发光元件50C。发光元件50具备导电部53和形成于导电部53上的镀敷膜52。固定夹具51例如由在固定面上具备UV剥离片的玻璃板等构成。由此,在将发光元件50安装于半导体芯片上后,通过对固定夹具51照射UV,从而能够从固定夹具51上剥离发光元件。
对于数十μm的微细的发光元件的安装而言,现有的焊锡膏的印刷是困难的。因此,采用通过镀敷法在半导体芯片的导电部上形成镀敷,经由该镀敷将半导体芯片和发光元件接合的方法。具体而言,如图13A 所示,准备在基板61上形成有导电部62的半导体芯片60。接着,如图13B所示,在导电部62上形成镀敷膜63。之后,将半导体芯片60 在还原气氛下进行加热,由此使镀敷膜63熔融。由此,如图13C所示,形成作为接合电极的多个微凸起64。
在此,如图15A所示,多个微凸起64的厚度存在偏差。在相对于这种微凸起64一并安装发光元件50的情况下,如图15B所示,一部分发光元件50与厚度厚的微凸起64接合,另一方面,产生相对于厚度薄的微凸起64不能接合的发光元件50。
与之相对,半导体芯片60的制造方法具备与上述的半导体芯片1 的制造方法相同含义的平滑面形成工序。在平滑面形成工序所具备的加热工序中,在惰性气氛内对配置有半导体芯片60的空间流入还原性气体而进行加热。由此,形成于微凸起64的表面的氧化膜被还原而除去。另外,在加热工序中,通过以微凸起64的融点以上的温度进行加热,微凸起64熔融而具有流动性。在此,在加热工序中,如图14A所示,在微凸起64上载置有压力赋予部件70。因此,伴随微凸起64熔融而具有流动性,微凸起64因压力赋予部件70的压力而以压溃的方式变形。压力赋予部件70的主面中与微凸起64相接的主面70a为平面。因此,熔融的微凸起64内、被压力赋予部件70按压的部分伴随该压力赋予部件70的平面的形状而作为平滑面64a形成。如图14B、 14C所示,在将半导体芯片60和发光元件50一并接合时,能够使用微凸起64的平滑面64a进行接合,因此,能够进行适宜的接合。
另外,在加热工序中,在多个微凸起64上载置压力赋予部件70,压力赋予部件70的主面中与多个微凸起64相接的主面70a为平面。由此,压力赋予部件70能够以相对于多个微凸起64接触同一平面的状态一并赋予压力。该情况下,多个微凸起64的平滑面64a与压力赋予部件70的平面一起相互构成同一平面。因此,能够降低多个微凸起 64的平滑面64a之间的高度的偏差。由此,如图14C所示,在将多个发光元件50一并与半导体芯片60接合时,能够防止相对于发光元件 50产生未连接的微凸起64。另外,通过在还原气氛内进行加热,微凸起64熔融。由此,能够以低加重形成微凸起64的平滑面。
图16是表示发光元件50的导电部53及镀敷膜52的材料、以及半导体芯片60的导电部62及镀敷膜63的材料的组合的表。在得到了良好的连接性的情况下标注“○”。如图16所示,在发光元件50的镀敷膜52含有Sn的情况下,半导体芯片60的镀敷膜63不取决于材料而能够提高发光元件50和半导体芯片60的连接性。另外,在半导体芯片60的镀敷膜63含有Sn的情况下,发光元件50的镀敷膜52不取决于材料而能够提高发光元件50和半导体芯片60的连接性。
[实施例]
接下来,对本发明的实施例进行说明。但是,本发明不限于以下的实施例。
(实施例1~7)
作为实施例1,制造了具有如下微凸起的半导体芯片。首先,通过电解镀敷法对基板进行了镀Cu、镀Ni、及镀Sn。将其配置于加热炉内之后,调整加热炉内的气氛压,调整向加热炉供给的氮或甲酸气的浓度及流量。由此,镀膜熔融,并制作了形成有微凸起的半导体芯片的样品。镀Cu层的高度为17μm,镀Ni层的高度为3μm,微凸起的高度为15μm,微凸起的直径为35μm。利用透射X射线观察该样品,结果在微凸起内观察到空隙。准备该样品和压力赋予部件。压力赋予部件是具有SiO2膜的Si晶片。以SiO2面与凸起相接的方式将Si晶片载置于微凸起上。就压力赋予部件的重量而言,每单位微凸起的截面积为0.0005μg/μm2。此外,未设置图8所示的那种衬垫。在将载置有压力赋予部件的状态的半导体芯片配置于加热炉内后,将加热炉内抽真空至5Pa以下。调整之后的加热炉内的气氛压,调整向加热炉供给的氮或甲酸气的浓度及流量。具体而言,以升温速度45℃/min、预热195 ℃(6分钟)、最大260℃(1分钟)这样条件进行加热。微凸起对压力赋予部件赋予压力,形成了平滑面。这样,得到了实施例1的微凸起。
将使用每单位微凸起的截面积为0.002μg/μm2的压力赋予部件形成的微凸起作为实施例2。将使用每单位微凸起的截面积为 0.003μg/μm2的压力赋予部件形成的微凸起作为实施例3。将使用每单位微凸起的截面积为0.01μg/μm2的压力赋予部件而形成的微凸起作为实施例4。将使用每单位微凸起的截面积为0.03μg/μm2的压力赋予部件形成的微凸起作为实施例5。将使用每单位微凸起的截面积为 0.06μg/μm2的压力赋予部件形成的微凸起作为实施例6。实施例2~6 的其它条件与实施例1完全相同。另外,以将30μm的SUS316制衬垫插入压力赋予部件和基板之间而形成的微凸起作为实施例7。在实施例 7中,使用了每单位微凸起的截面积为0.03μg/μm2的压力赋予部件。实施例7的其它条件与实施例1完全相同。
(比较例1~7)
通过在大气中进行加热,形成比较例1~7的微凸起。在比较例1 中,使用每单位微凸起的截面积为0.001μg/μm2的压力赋予部件。在比较例2中,使用每单位微凸起的截面积为0.002μg/μm2的压力赋予部件。在比较例3中,使用每单位微凸起的截面积为0.003μg/μm2的压力赋予部件。在比较例4中,使用每单位微凸起的截面积为0.010μg/μm2的压力赋予部件。在比较例5中,使用每单位微凸起的截面积为0.03μg/μm2的压力赋予部件。在比较例6中,使用每单位微凸起的截面积为 0.06g/μm2的压力赋予部件。在比较例7中,使用每单位微凸起的截面积为0.10μg/μm2的压力赋予部件。比较例1~7的其它条件与实施例1 完全相同。
(评价)
将各实施例及各比较例的微凸起的高度示于图17的“微凸起高度 (μm)”。另外,针对各实施例及各比较例中、回流后空隙减少的情况,在图10的“空隙”上表示“○”,对于空隙未减少的情况,在图10的“空隙”上表示“×”。对于各实施例及各比较例中、回流后将压力赋予部件从微凸起卸下,微凸起不倾倒的情况,在图10的“电极的倾倒”上表示“○”,对于微凸起倾倒的情况,在图10的“电极的倾倒”上表示“×”。
如图17所示,在实施例1~6中,确认空隙减少的效果,且微凸起也未倾倒。但是,在实施例6中,因为熔融的Sn流入电极焊盘,所以设为“Δ”。在实施例7中,通过加入衬垫,凸起的高度与衬垫的厚度相同,因此,具有防止被过剩地按压的效果。因此,实施例7与实施例6相比,能够确认熔融的Sn流入到电极焊盘。另一方面,在比较例1~6中,确认到不能得到空隙减少的效果。这推测是因为,由于微凸起的表面的形成的氧化膜的影响,微凸起不易变形、以及表面硬的氧化膜阻碍内部的流动性。另外,在比较例7中,由于压力赋予部件的重量过剩,从而确认到微凸起的倾倒。
(实施例8~11)
作为实施例8,制造了具有如下微凸起的半导体芯片。首先,通过电解镀敷法对基板进行了镀Cu、镀Ni、及镀Sn。将其配置于加热炉内之后,调整加热炉内的气氛压,调整向加热炉供给的氮或甲酸气的浓度及流量。由此,镀膜熔融,并制作了形成有微凸起的半导体芯片的样品。镀Cu层的高度为17μm,镀Ni层的高度为3μm,微凸起的高度为15μm,微凸起的直径为35μm。准备了该样品和压力赋予部件。压力赋予部件是具有SiO2膜的Si晶片。以SiO2面与微凸起相接的方式将Si晶片载置于微凸起上。就压力赋予部件的重量而言,每单位微凸起的截面积为0.0005μg/μm2。此外,未设置图8所示的那种衬垫。在将载置有压力赋予部件的状态的半导体芯片配置于加热炉内后,将加热炉内抽真空至5Pa以下。调整之后的加热炉内的气氛压,调整向加热炉供给的氮或甲酸气的浓度、及流量。具体而言,以升温速度45 ℃/min、预热195℃(6分钟)、最大260℃(1分钟)的条件进行了加热。微凸起对压力赋予部件赋予压力,形成了平滑面。准备具有这种微凸起的半导体芯片,将三片半导体芯片叠层并相互接合。此外,接合时的回流次数设为1次,在大气中进行了回流。以这样得到的半导体芯片的叠层体作为实施例8。
在将半导体芯片彼此接合时,以在氮及甲酸的气氛中进行了回流的情况作为实施例9。以将半导体芯片的叠层片数设为5片的情况作为实施例10。以将半导体芯片的叠层片数设为5片,并将半导体芯片彼此接合时,在氮及甲酸的气氛中进行回流的情况作为实施例11。实施例9~11的其它条件与实施例8完全相同。
(比较例8、9)
以将未形成平滑面的微凸起重合的情况作为比较例8。以将半导体芯片的叠层片数设为5片,将未形成平滑面的微凸起重合的情况作为比较例9。比较例8、9的其它条件与实施例8完全相同。
(评价)
为了评价微凸起的搭载精度,在将第三片半导体芯片重叠时,测定了第一片和第二片半导体芯片的微凸起的中心的错位。对于实施例 8~11及比较例8、9中的、错位小于5μm的情况,在图18的“叠层精度”上表示“○”,对于错位为5μm以上的情况,在图18的“叠层精度”上表示“×”。为了测定微凸起的剥离模式,将接合后的基板和基板剥离。对于实施例8~11及比较例8、9中的、在微凸起的内部破断的情况,在图18的“凸起剥离模式”上表示“○”,对于在微凸起和镀Ni层的界面剥离、或产生裂纹的情况,在图18的“凸起剥离模式”上表示“×”。为了进行接合精度的评价,测定熔融接合后的微凸起的中心的偏移。对于实施例8~11及比较例8、9中的、偏移小于5μm的情况,在图18的“接合精度”上表示“○”,对于偏移为5μm以上且 10μm以下的情况,在图18的“接合精度”上表示“Δ”,对于偏移大于10μm的情况,在图18的“接合精度”上表示“×”。
比较例8中,在将第三片芯片重叠时,之下的芯片会偏移。即,确认到比较例8中叠层精度低,因此接合精度也降低。在比较例9中,通过一片一片地接合,叠层的精度、接合精度也提高。但是,在比较例9中确认到,通过重复回流,Ni和Sn的合金层生长,接合部的强度会降低。在实施例8中确认到,因为微凸起具有平滑面,所以在重叠时偏移少,接合精度也得以提高。在实施例9中确认到,通过在还原气氛内进行回流,将氧化膜除去,并通过熔融的Sn的表面张力带来的自调整的效果,接合精度进一步提高。在实施例10、11中,因为将回流次数进行一次,所以接合部的强度降低少。

Claims (7)

1.一种半导体芯片的制造方法,其中,
所述半导体芯片具有基板、形成于所述基板上的导电部和形成于所述导电部的微凸起,
所述制造方法具备在所述微凸起上形成平滑面的平滑面形成工序,
所述平滑面形成工序具备对配置有所述半导体芯片的空间在惰性气氛内使还原性气体流入,并以所述微凸起的融点以上的温度进行加热的加热工序,
在所述加热工序中,在开始还原反应的温度T1下维持规定时间,在存在于所述微凸起的表面的氧化膜被除去后的阶段,维持于所述微凸起的融点以上的温度T2,
在所述加热工序中,在所述微凸起上载置仅以自身的自重赋予压力的压力赋予部件,
所述压力赋予部件的主面中与微凸起相接的主面为平面,
在所述平滑面形成工序中,在将所述压力赋予部件载置于所述微凸起上之后,以所述微凸起的融点以上的温度进行加热。
2.根据权利要求1所述的半导体芯片的制造方法,其中,
在所述加热工序中,在多个所述微凸起上载置压力赋予部件,
所述压力赋予部件的主面中与多个微凸起相接的主面为平面。
3.根据权利要求1所述的半导体芯片的制造方法,其中,
作为所述还原性气体,应用羧酸。
4.根据权利要求2所述的半导体芯片的制造方法,其中,
作为所述还原性气体,应用羧酸。
5.根据权利要求1~4中任一项所述的半导体芯片的制造方法,其中,
所述压力赋予部件的重量为,每单位所述微凸起的截面积为0.0005μg/μm2以上且0.1μg/μm2以下。
6.根据权利要求1~4中任一项所述的半导体芯片的制造方法,其中,
在所述基板上配置具有一定厚度的衬垫,所述压力赋予部件被压入至与所述衬垫接触。
7.根据权利要求5所述的半导体芯片的制造方法,其中,
在所述基板上配置具有一定厚度的衬垫,所述压力赋予部件被压入至与所述衬垫接触。
CN201810172586.8A 2017-03-03 2018-03-01 半导体芯片的制造方法 Active CN108538726B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/449074 2017-03-03
US15/449,074 US9818736B1 (en) 2017-03-03 2017-03-03 Method for producing semiconductor package
US15/449361 2017-03-03
US15/449,361 US10163847B2 (en) 2017-03-03 2017-03-03 Method for producing semiconductor package

Publications (2)

Publication Number Publication Date
CN108538726A CN108538726A (zh) 2018-09-14
CN108538726B true CN108538726B (zh) 2022-08-26

Family

ID=63486251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810172586.8A Active CN108538726B (zh) 2017-03-03 2018-03-01 半导体芯片的制造方法

Country Status (3)

Country Link
KR (1) KR102110754B1 (zh)
CN (1) CN108538726B (zh)
TW (1) TWI669792B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150202A (ja) * 2019-03-15 2020-09-17 キオクシア株式会社 半導体装置の製造方法
CN111390319B (zh) * 2020-04-23 2021-04-16 大连优迅科技股份有限公司 一种芯片共晶焊接设备
KR102461313B1 (ko) 2020-05-19 2022-11-01 엠케이전자 주식회사 리버스 리플로우용 심재를 이용한 반도체 패키지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0962969A3 (en) * 1998-05-29 2001-01-10 Hitachi, Ltd. Method for forming bumps
US6660944B1 (en) * 1996-03-29 2003-12-09 Ngk Spark Plug Co., Ltd. Circuit board having solder bumps
CN1738042A (zh) * 2004-08-20 2006-02-22 国际商业机器公司 集成电路结构及其形成方法
WO2016143687A1 (ja) * 2015-03-06 2016-09-15 三菱重工業株式会社 接合方法、および、接合体
CN106471612A (zh) * 2014-06-27 2017-03-01 索尼公司 半导体器件及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666173A1 (fr) * 1990-08-21 1992-02-28 Thomson Csf Structure hybride d'interconnexion de circuits integres et procede de fabrication.
JP3407275B2 (ja) * 1998-10-28 2003-05-19 インターナショナル・ビジネス・マシーンズ・コーポレーション バンプ及びその形成方法
JPWO2003012863A1 (ja) * 2001-07-31 2004-12-09 株式会社ルネサステクノロジ 半導体装置及びその製造方法
JP4709563B2 (ja) * 2005-03-31 2011-06-22 株式会社東芝 半導体装置の製造方法
KR20060134603A (ko) * 2005-06-23 2006-12-28 삼성전자주식회사 볼 범프를 평탄화한 적층 패키지 제조 방법
JP4156637B2 (ja) * 2006-07-31 2008-09-24 シャープ株式会社 半導体装置、電子回路の製造方法および電子回路の製造装置
US7713782B2 (en) * 2006-09-22 2010-05-11 Stats Chippac, Inc. Fusible I/O interconnection systems and methods for flip-chip packaging involving substrate-mounted stud-bumps
US20080164300A1 (en) * 2007-01-08 2008-07-10 Endicott Interconnect Technologies, Inc. Method of making circuitized substrate with solder balls having roughened surfaces, method of making electrical assembly including said circuitized substrate, and method of making multiple circuitized substrate assembly
JP2010062256A (ja) * 2008-09-02 2010-03-18 Asahi Kasei E-Materials Corp バンプ付き半導体チップの製造方法
JP4901933B2 (ja) * 2009-09-29 2012-03-21 株式会社東芝 半導体装置の製造方法
TWI536471B (zh) * 2012-01-17 2016-06-01 萬國半導體股份有限公司 利用熱壓焊球在晶圓級塑封工藝中實現超薄晶片的方法
JP5923725B2 (ja) * 2012-05-15 2016-05-25 パナソニックIpマネジメント株式会社 電子部品の実装構造体
JP2014060241A (ja) * 2012-09-18 2014-04-03 Toray Ind Inc 半導体装置の製造方法
TWI529894B (zh) * 2014-04-02 2016-04-11 萬國半導體股份有限公司 功率半導體器件及製備方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660944B1 (en) * 1996-03-29 2003-12-09 Ngk Spark Plug Co., Ltd. Circuit board having solder bumps
EP0962969A3 (en) * 1998-05-29 2001-01-10 Hitachi, Ltd. Method for forming bumps
CN1738042A (zh) * 2004-08-20 2006-02-22 国际商业机器公司 集成电路结构及其形成方法
CN106471612A (zh) * 2014-06-27 2017-03-01 索尼公司 半导体器件及其制造方法
WO2016143687A1 (ja) * 2015-03-06 2016-09-15 三菱重工業株式会社 接合方法、および、接合体

Also Published As

Publication number Publication date
TW201839933A (zh) 2018-11-01
CN108538726A (zh) 2018-09-14
KR102110754B1 (ko) 2020-05-14
KR20180101254A (ko) 2018-09-12
TWI669792B (zh) 2019-08-21

Similar Documents

Publication Publication Date Title
KR102121176B1 (ko) 반도체 패키지의 제조 방법
WO2018047861A1 (ja) 配線基板及び配線基板の製造方法
JP5807221B2 (ja) 接合構造体製造方法および加熱溶融処理方法ならびにこれらのシステム
JP4983181B2 (ja) 半導体装置の製造方法
TWI607514B (zh) Semiconductor device manufacturing method
JP4752586B2 (ja) 半導体装置の製造方法
US7875496B2 (en) Flip chip mounting method, flip chip mounting apparatus and flip chip mounting body
US7026188B2 (en) Electronic device and method for manufacturing the same
KR20020036669A (ko) 반도체 장치의 플립 칩 실장 구조 및 실장 방법
CN108538726B (zh) 半导体芯片的制造方法
US20110076801A1 (en) Method for manufacturing semiconductor device
JPWO2008078478A1 (ja) 導電性バンプとその形成方法および半導体装置とその製造方法
KR100843632B1 (ko) 플립칩 실장형 범프, 그 제조방법, 및 비전도성 접착제를이용한 플립칩 접합방법
JP5919641B2 (ja) 半導体装置およびその製造方法並びに電子装置
CN108538824B (zh) 半导体芯片的制造方法
JP4200090B2 (ja) 半導体装置の製造方法
JP2013251350A (ja) 電子部品の実装構造体およびその製造方法
JP2008091650A (ja) フリップチップ実装方法、および半導体パッケージ
WO2024070369A1 (ja) 接続構造体
WO2022176563A1 (ja) 電子機器
US10236267B2 (en) Methods of forming flip chip systems
JP2005174981A (ja) 電子部品の製造方法及び電子部品
KR20110045163A (ko) 칩 온 필름 패키지 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant