CN108470823A - 一种用于高分子薄膜的高压电极化系统 - Google Patents

一种用于高分子薄膜的高压电极化系统 Download PDF

Info

Publication number
CN108470823A
CN108470823A CN201810327626.1A CN201810327626A CN108470823A CN 108470823 A CN108470823 A CN 108470823A CN 201810327626 A CN201810327626 A CN 201810327626A CN 108470823 A CN108470823 A CN 108470823A
Authority
CN
China
Prior art keywords
polarization
silicon chip
electrode
tablet
macromolecule membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810327626.1A
Other languages
English (en)
Other versions
CN108470823B (zh
Inventor
孙权
张旭
覃双
崔洪亮
刘兴宇
徐兴烨
邵志强
张鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 49 Research Institute
Original Assignee
CETC 49 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 49 Research Institute filed Critical CETC 49 Research Institute
Priority to CN201810327626.1A priority Critical patent/CN108470823B/zh
Publication of CN108470823A publication Critical patent/CN108470823A/zh
Application granted granted Critical
Publication of CN108470823B publication Critical patent/CN108470823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals

Abstract

一种用于高分子薄膜的高压电极化系统,本发明属于高分子压电材料有序取向领域,具体涉及一种用于高分子薄膜的高压电极化系统。本发明有效保证待极化样品极化后β向晶体方向性一致性均匀分布、样品极化区域形态多样化、且避免单点电晕极化存在的单一场强过大使得样品被击穿导致成品率下降,从而有效提高了极化的成品率。该极化系统由高压极化电源、高压电极、极化电场组件、薄膜极化组件和加热装置组成;所述极化电场组件由极化平板上电极和极化平板下电极组成;所述薄膜极化组件由主极化硅片和底板极化硅片组成。本发明用于生产高分子极化薄膜。

Description

一种用于高分子薄膜的高压电极化系统
技术领域
本发明属于高分子压电材料有序取向领域,具体涉及一种用于高分子薄膜的高压电极化系统。
背景技术
高分子压电材料在航天、电子、医疗等领域得到广泛的应用,与传统压电材料相比,高分子压电材料属于柔性材料,可以随应用需要可以制作成不同形态,因材受到人们的广泛重视。
由于高分子压电材料大多数晶区的极化方向是随机的,所以就薄膜整体而言不具有自发极性。因此,将其极化处理,使整个薄膜具有自发极化性,才能使薄膜在承受一定方向的外力或变形时,产生压电效应,所以提高薄膜内部β型晶体的含量是其具有高压电性的关键。
极化方法很多种,常用的有高温热极化法、电晕极化法两种。其中高温热极化方法设备简单、操作容易,且极化较为彻底,极化后的材料后期稳定性好。缺点是容易造成材料的击穿,所施加的电场相对较低,从而造成了极化效率不高,耗时,难以实现连续性生产;而电晕极化是目前应用最为广泛的一种极化方法,一般在室温下进行,室温下电晕极化的聚合物材料,深阱浅阱均有捕获电荷,浅阱中捕获的电荷容易越出陷阱,衰减较快。为了排除浅阱的捕获,适当的高温极化有明显效果。电晕极化的优点一是不易发生由于样品膜的缺陷而造成的破坏性击穿;二是设备简单,使用方便,可以大规模连续操作。
在高压极化过程中,有多种内外界因素影响着最终的极化效果,其中极化电极的选择尤为重要。目前国内外使用的极化电极一般为平板-探针型,即下电极为一金属平板,在极化过程中起到承载薄膜的作用,上电极为针尖电极,但此种方法极化效率比较低,电场强度分布不均匀,而且极化时膜片被击穿破损率比较低,会存在β向晶体方向性不一致等问题,最终会影响薄膜的压电参数。
传统极化方法存在极化方法生产合格率较低,基本不能大规模生产的弊端,本发明提供一种用于高分子薄膜的高压电极化系统可以解决传统极化的弊端。
发明内容
本发明目的是提供一种用于高分子薄膜的高压电极化系统,其中的薄膜极化组件具有表面平整度高,极化场强均匀分布待极化样品表面、极化区域大、极化区域变化灵活等特点,有效保证待极化样品极化后β向晶体方向性一致性均匀分布、样品极化区域形态多样化、且避免单点电晕极化存在的单一场强过大使得样品被击穿导致成品率下降,从而有效提高了极化的成品率。
一种用于高分子薄膜的高压电极化系统由高压极化电源、高压电极、极化电场组件、薄膜极化组件和加热装置组成;所述极化电场组件由极化平板上电极和极化平板下电极组成;所述高压极化电源上外接有高压电极,所述薄膜极化组件由主极化硅片和底板极化硅片组成;所述高压电极位于极化平板上电极的上方,所述极化平板上电极的下方依次设置主极化硅片、底板极化硅片、极化平板下电极和加热装置,所述主极化硅片和底板极化硅片之间设置待极化样品;所述极化平板上电极、主极化硅片、待极化样品、底板极化硅片、极化平板下电极和加热装置的几何中心位于高压电极的中轴上。
本发明的有益效果:
本发明所涉及的高分子薄膜高压电极化系统,通过高压极化电源和高压电极将高压电场加载到高压极化电场组件表面,并通过薄膜极化组件将电场均匀加载到待极化样品表面,使待极化样品具有有序一致性。
薄膜极化组件可以保护高分子膜在极化过程中表面极化均匀且不易被高压击穿,同时可以通过对薄膜极化组件的特殊处理,实现具有特殊图形的极化区域;该极化系统结构简单,高分子薄膜极化系统的生产合格率较高,且能实现大规模生产。
附图说明
图1为一种用于高分子薄膜的高压电极化系统的结构示意图。
具体实施方式
具体实施方式一:本实施方式一种用于高分子薄膜的高压电极化系统由高压极化电源1、高压电极2、极化电场组件、薄膜极化组件和加热装置8组成;所述极化电场组件由极化平板上电极3和极化平板下电极7组成;所述高压极化电源1上外接有高压电极2,所述薄膜极化组件由主极化硅片4和底板极化硅片6组成;所述高压电极2位于极化平板上电极3的上方,所述极化平板上电极3的下方依次设置主极化硅片4、底板极化硅片6、极化平板下电极7和加热装置8,所述主极化硅片4和底板极化硅片6之间设置待极化样品5;所述极化平板上电极3、主极化硅片4、待极化样品5、底板极化硅片6、极化平板下电极7和加热装置8的几何中心位于高压电极2的中轴上;所述主极化硅片4和底板极化硅片6的材质均为工业级抛光的重掺杂硅片。
本实施方式所述底板极化硅片6采用未刻蚀加工完整的硅片以保证平整度。
本实施方式加热装置8可以为待极化样品5提供热能,从0℃开始可控加热。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述主极化硅片4根据极化区域形状进行选择。其他与具体实施方式一相同。
所述主极化硅片4通过光刻加工,将主极化硅片的极化区域加工成不同的形状,可以实现样品的极化区域图形化。
所述光刻加工是在设计好的极化区域外进行刻蚀。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:所述高压极化电源1为可调节的0~5000V直流电压。其他与具体实施方式一或二相同。
所述导电金属平板的材质为任意材料。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:所述极化平板上电极3和极化平板下电极7为导电金属平板。其他与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:所述待极化样品5为压电陶瓷、高分子薄膜或生物薄膜。其他与具体实施方式一至四之一相同。
采用以下实施例验证本发明的有益效果:
实施例一:一种用于高分子薄膜的高压电极化系统由高压极化电源1、高压电极2、极化电场组件、薄膜极化组件和加热装置8组成;所述极化电场组件由极化平板上电极3和极化平板下电极7组成;所述高压极化电源1上外接有高压电极2,所述薄膜极化组件由主极化硅片4和底板极化硅片6组成;所述高压电极2位于极化平板上电极3的上方,所述极化平板上电极3的下方依次设置主极化硅片4、底板极化硅片6、极化平板下电极7和加热装置8,所述主极化硅片4和底板极化硅片6之间设置待极化样品5;所述极化平板上电极3、主极化硅片4、待极化样品5、底板极化硅片6、极化平板下电极7和加热装置8的几何中心位于高压电极2的中轴上;所述主极化硅片4和底板极化硅片6的材质均为工业级抛光的重掺杂硅片。
本实施例的具体实施方法如下:按照待极化样品5确定的极化大小和极化区域对极化区域外的主极化硅片4进行刻蚀;对主极化硅片4刻蚀过程中,首先用纯净水清洗硅片表面,然后将待刻蚀表涂抹光刻胶,进行前烘、曝光、后烘、显影处理,然后进行刻蚀;
按照主极化硅片4的外围尺寸对底板极化硅片6进行划片,保证薄膜极化组件形成的高压电场能够足够覆盖需要极化区域;
极化过程前,需将主极化硅片4、底板极化硅片6、待极化样品5,分别用酒精和去离子水进行超声清洗后,将待极化样品5夹在主极化硅片4、底板极化硅片6中间,同时需确认主极化硅片4、底板极化硅片6无直接接触;
极化过程中首先将极化设备抽真空,控制加热装置8待极化样品5加热到需要极化的温度,当真空达到极化要求时,通高压进行极化。极化后待样品冷却取出样品。
以PVDF(聚偏氟乙二烯)为例,待极化样品5厚度为30μm;极化电压1500V;极化温度:90℃;极化时间30分钟;极化真空度2.5×10-4Pa。

Claims (5)

1.一种用于高分子薄膜的高压电极化系统,其特征在于用于高分子薄膜的高压电极化系统由高压极化电源(1)、高压电极(2)、极化电场组件、薄膜极化组件和加热装置(8)组成;所述极化电场组件由极化平板上电极(3)和极化平板下电极(7)组成;所述高压极化电源(1)上外接有高压电极(2),所述薄膜极化组件由主极化硅片(4)和底板极化硅片(6)组成;所述高压电极(2)位于极化平板上电极(3)的上方,所述极化平板上电极(3)的下方依次设置主极化硅片(4)、底板极化硅片(6)、极化平板下电极(7)和加热装置(8),所述主极化硅片(4)和底板极化硅片(6)之间设置待极化样品(5);所述极化平板上电极(3)、主极化硅片(4)、待极化样品(5)、底板极化硅片(6)、极化平板下电极(7)和加热装置(8)的几何中心位于高压电极(2)的中轴上;所述主极化硅片(4)和底板极化硅片(6)的材质均为工业级抛光的重掺杂硅片。
2.根据权利要求1所述的一种用于高分子薄膜的高压电极化系统,其特征在于所述主极化硅片(4)根据极化区域形状进行选择。
3.根据权利要求1所述的一种用于高分子薄膜的高压电极化系统,其特征在于所述高压极化电源(1)为可调节的0~5000V直流电压。
4.根据权利要求1所述的一种用于高分子薄膜的高压电极化系统,其特征在于所述极化平板上电极(3)和极化平板下电极(7)为导电金属平板。
5.根据权利要求1所述的一种用于高分子薄膜的高压电极化系统,其特征在于所述待极化样品(5)为压电陶瓷、高分子薄膜或生物薄膜。
CN201810327626.1A 2018-04-12 2018-04-12 一种用于高分子薄膜的高压电极化系统 Active CN108470823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810327626.1A CN108470823B (zh) 2018-04-12 2018-04-12 一种用于高分子薄膜的高压电极化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810327626.1A CN108470823B (zh) 2018-04-12 2018-04-12 一种用于高分子薄膜的高压电极化系统

Publications (2)

Publication Number Publication Date
CN108470823A true CN108470823A (zh) 2018-08-31
CN108470823B CN108470823B (zh) 2021-09-07

Family

ID=63262891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810327626.1A Active CN108470823B (zh) 2018-04-12 2018-04-12 一种用于高分子薄膜的高压电极化系统

Country Status (1)

Country Link
CN (1) CN108470823B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112606509A (zh) * 2020-12-16 2021-04-06 昆山微电子技术研究院 一种自极化复合驻极体-压电薄膜、其制备方法及压电薄膜传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072204A (ja) * 2002-08-02 2004-03-04 Hitachi Ltd 窒化アルミニウム圧電薄膜を用いた高周波弾性波素子
CN101192644A (zh) * 2006-11-30 2008-06-04 中国科学院声学研究所 一种包含两种极化方向压电薄膜的传感振动膜
CN101691202A (zh) * 2009-08-11 2010-04-07 西安交通大学 一种具有微结构的聚偏氟乙烯压电薄膜的制备方法
CN107706302A (zh) * 2017-09-05 2018-02-16 王开安 高分子薄膜极化方法、承载组件和高分子薄膜极化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072204A (ja) * 2002-08-02 2004-03-04 Hitachi Ltd 窒化アルミニウム圧電薄膜を用いた高周波弾性波素子
CN101192644A (zh) * 2006-11-30 2008-06-04 中国科学院声学研究所 一种包含两种极化方向压电薄膜的传感振动膜
CN101691202A (zh) * 2009-08-11 2010-04-07 西安交通大学 一种具有微结构的聚偏氟乙烯压电薄膜的制备方法
CN107706302A (zh) * 2017-09-05 2018-02-16 王开安 高分子薄膜极化方法、承载组件和高分子薄膜极化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112606509A (zh) * 2020-12-16 2021-04-06 昆山微电子技术研究院 一种自极化复合驻极体-压电薄膜、其制备方法及压电薄膜传感器
CN112606509B (zh) * 2020-12-16 2023-06-27 昆山微电子技术研究院 一种自极化复合驻极体-压电薄膜、其制备方法及压电薄膜传感器

Also Published As

Publication number Publication date
CN108470823B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN112870391A (zh) 一种铁电抗菌材料及其制备方法和应用
WO2020147443A1 (zh) 湿气发电方法及装置
CN107698252B (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
WO2017118093A1 (zh) 碳纳米管薄膜晶体管及其制备方法
CN104480428A (zh) 一种离子束溅射二氧化硅光学薄膜应力的调控方法
WO2014040451A1 (zh) 压电驻极体薄膜及其制备方法
CN105968392B (zh) 一种高含量聚偏氟乙烯压电β相的制备方法
CN108948390A (zh) 一种pvdf基聚合物薄膜的一步流延制备方法
CN105220214B (zh) 一种石墨烯薄膜的制备方法
CN111326650B (zh) 一种多功能pvdf薄膜极化装置、极化方法及其应用
CN103682083A (zh) 一种压电驻极体薄膜及其制备方法
CN109942997A (zh) 一种氧化石墨烯-钛酸钡介电复合薄膜及其制备方法
CN108470823A (zh) 一种用于高分子薄膜的高压电极化系统
CN104037320A (zh) 一种大面积氧化锌纳微发电机的制造方法
CN212669562U (zh) 一种电场取向玻璃鳞片的装置
WO2021093785A1 (zh) 一种具有二氧化钛纳米管阵列的结构件及其制备方法和应用
CN108531857A (zh) 利用弯曲形变调控钛酸钡单晶薄膜剩余极化与矫顽场的方法
CN109553415B (zh) 具有高电热效应的硅掺杂锆钛酸铅非取向薄膜的制备方法
RU2572128C1 (ru) Способ получения порошков пористого кремния
WO2013104138A1 (zh) 石墨烯晶片的制备方法
EP3220414B1 (en) Method for polycrystalline oxide thin-film transistor array substrate
CN108069389B (zh) 一种磁控定向快速移动的微纳米机器人的制备方法
CN106756835A (zh) 一种石墨烯透明电极薄膜的制备方法
JP3615188B2 (ja) 半導体装置の製造方法
CN203434206U (zh) 生物医用压电材料极化装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant