CN108455996B - 一种纳米铝陶瓷的制备方法 - Google Patents

一种纳米铝陶瓷的制备方法 Download PDF

Info

Publication number
CN108455996B
CN108455996B CN201810008460.7A CN201810008460A CN108455996B CN 108455996 B CN108455996 B CN 108455996B CN 201810008460 A CN201810008460 A CN 201810008460A CN 108455996 B CN108455996 B CN 108455996B
Authority
CN
China
Prior art keywords
sintering
rare earth
powder
steps
following
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810008460.7A
Other languages
English (en)
Other versions
CN108455996A (zh
Inventor
万玉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANCHANG LITONG GEOTECHNICAL ENGINEERING EQUIPMENT Co.,Ltd.
Original Assignee
梅文婕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 梅文婕 filed Critical 梅文婕
Priority to CN201810008460.7A priority Critical patent/CN108455996B/zh
Publication of CN108455996A publication Critical patent/CN108455996A/zh
Application granted granted Critical
Publication of CN108455996B publication Critical patent/CN108455996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • C04B35/803
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明提供了一种纳米铝陶瓷的制备方法,包括以下步骤:(1)通过电弧等离子体蒸发法或原位聚合法制备稀土包覆氧化铝,再将制备的稀土包覆氧化铝球磨;(2)首先将氮化物和碳化物混合粉末在有机溶液超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛;(3)将步骤(2)混合粉体加入增强无机晶须、表面活性剂、稀土包覆氧化铝和有机粘合剂,混合均匀后进行冷压成型,形成烧结试样;(4)将烧结试样逐步升温烧结;(5)将步骤(4)制得的烧结试样再微波烧结,即可。本发明的纳米陶瓷铝合金具有高刚度、高强度、高密度等特点,突破了外加陶瓷铝基复合材料塑性低、加工难等应用瓶颈。

Description

一种纳米铝陶瓷的制备方法
技术领域
本发明涉及高性能陶瓷材料,具体涉及一种纳米铝陶瓷的制备方法。
背景技术
随着科学技术的发展,对材料的性能要求也越来越高。颗粒增强铝基复合材料因其高的比强度、比模量、高耐磨、高耐热、低热膨胀等优良性能以及良好的成型加工性能,而成为一种新的高性能结构材料,在航空、航天、电子封装及交通运输等领域具有广泛的应用。制备颗粒增强铝基复合材料有多种工艺手段,传统的制备方法中增强体多采用外加的方法,如粉末冶金法、模压铸造法及复合铸造法等,其中外加增强体尺寸一般较大(微米级),且在高温合成过程中易于与基体之间形成脆性相而不能充分发挥增强体的强化作用。而原位铝基复合材料的增强体是从基体内部直接形核长大的热力学稳定相,相较于外加增强相,具有颗粒尺寸更细小、颗粒表面洁净无污染及与基体界面相容性好等优点,成为新型高性能金属基复合材料的研究热点。尤其是当增强体的尺寸细化至纳米级时,能在显著提高复合材料强度的同时保持较好的塑性,且高温性能的提高尤为显著。因此铝基纳米复合材料成为目前的研究热点。
发明内容
要解决的技术问题:本发明的目的是提供纳米铝陶瓷的制备方法,制备得到的纳米陶瓷铝合金具有高刚度、高强度、高密度等特点,突破了外加陶瓷铝基复合材料塑性低、加工难等应用瓶颈。
技术方案:一种纳米铝陶瓷的制备方法,包括以下步骤:
(1)通过电弧等离子体蒸发法或原位聚合法制备稀土包覆氧化铝,再将制备的稀土包覆氧化铝球磨;
(2)首先将氮化物和碳化物混合粉末在有机溶液超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛;
(3)将步骤(2)混合粉体加入增强无机晶须、表面活性剂、稀土包覆氧化铝和有机粘合剂,混合均匀后进行冷压成型,形成烧结试样;
(4)将烧结试样逐步升温烧结;
(5)将步骤(4)制得的烧结试样再微波烧结,即可。
进一步的,所述步骤(1)中稀土为烘干的Y2O3、Sm2O3、Nd2O3、CeO2中的任意一种。
进一步的,所述步骤(1)中电弧等离子体蒸发法为将微纳米级氧化铝粉和稀土氧化物粉体按质量比均匀混合,压制成块体靶材作为阳极,以钨棒作为阴极,在惰性气体气氛下进行电弧放电,块体靶材被蒸发和冷凝后,得到沉积纳米粉体,经过钝化工艺,收集粉体产物。
进一步的,所述步骤(1)中原位聚合法为将稀土氧化物粉体去离子水中搅拌并加热,将微纳米级氧化铝加入稀土氧化物溶液中调节溶液的pH值至8-10,将混合液烘干,得到烘干粉体,将烘干粉体进行烧结得到稀土包覆改性氧化铝粉体,烧结温度为1200-1500℃,时间为0.5-20h。
进一步的,所述步骤(2)中有机溶剂为无水乙醇、甲醇、乙酸或甲酸中一种或几种的混合物。
进一步的,所述步骤(3)的增强无机晶须包括针状硅灰石纤维、钛酸钾晶须、四针状ZnO晶须中的一种或几种。
进一步的,所述步骤(3)中的有机粘合剂为树脂,树脂为酚醛树脂、聚酯树脂、乙烯-醋酸乙烯共聚物、聚乙烯接枝马来酸酐、聚醋酸乙烯酯。
进一步的,所述步骤(4)中升温区间的设定为70-90℃烧结10-30min,100-135℃烧结20-30min,150-170℃烧结10-20min,220-250℃烧结5-10min。
进一步的,所述步骤(4)中微波烧结为初始微波功率设定为50W,微波输功率平均每1-1.5min升高50W,当微波功率为700-800W时烧结温度为1500-1700℃,保温40min,然后每2min将微波输出功率降低100W。
进一步的,所述步骤(2)中氮化物为Si3N4,AlN或TiAlN中的一种或两种以上的混合物,碳化物SiC,TiC,TiSiC2或ZrC中的一种或两种以上的混合物。
进一步的,所述步骤(3)中表面活性剂为烷基苯酚聚氧乙烯醚、PEO、聚氧乙烯山梨醇酐单油酸脂、双(二甲基十二烷基)乙撑双季铵盐。
有益效果:本发明具有以下优点:
(1)采用稀土包覆氧化铝可以降低氧化铝的表面能态,消除氧化铝的表面电荷,增加氧化铝的稳定性及其与其他界面的结合能力,明显改善其相容性;
(2)本发明以增强无机晶须作为无机高温粘结剂,少量树脂和橡胶作为有机中低温辅助粘结剂,无机高温粘合剂和有机粘合剂相结合,使得本发明中成分的相容性更好;
(3)本发明采用逐渐升温的预烧结,使陶瓷前驱体团粒形成连续空间网络结构,发挥陶瓷基体的综合性能优势,提升陶瓷的性能,进一步降低摩擦材料中的有机组分,改善摩擦材料微观结构,降低陶瓷材料受热膨胀量;同时能够使陶瓷材料的初始表面炭化;
(4)本发明中晶须、碳化物、氮化物以及稀土包裹氧化铝之间的胶体特性不同,表面活性剂的添加可以使得以上几种物质之间有相近的胶体特性,有利于制备出高固相含量、高均匀性的烧结浆料,有利于烧结出性格更高的陶瓷;
(5)本发明使用微波烧结可以减小陶瓷的气孔,提高陶瓷材料的致密性;
(6)本发明制备纳米铝陶瓷热膨胀系数低,在未来的发展中,在陶瓷成分中添加钨、钼、钽等金属成分进行掺杂,这类陶瓷材料有望达到耐超高温陶瓷所需要的2500-3000度以上的高温,在超音速飞机及飞行器等航空航天领域有着广阔的应用前景。
具体实施方式
实施例1
(1)将微纳米级氧化铝粉和Sm2O3粉体按质量比1:1均匀混合,压制成块体靶材作为阳极,以钨棒作为阴极,在惰性气体气氛下进行电弧放电,块体靶材被蒸发和冷凝后,得到沉积纳米粉体,经过钝化工艺,收集粉体产物,再将制备的稀土包覆氧化铝球磨;
(2)首先将氮化物和碳化物混合粉末在无水乙醇中超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛,其中氮化物为Si3N4,碳化物为TiSiC2,氮化物和碳化物的质量比1:2;
(3)将步骤(2)混合粉体加入针状硅灰石纤维、钛酸钾晶须和双(二甲基十二烷基)乙撑双季铵盐,混合均匀后加入步骤(1)制备的稀土包覆氧化铝和酚醛树脂,混合均匀后进行冷压成型,形成烧结试样,其中针状硅灰石纤维、钛酸钾晶须、双(二甲基十二烷基)乙撑双季铵盐、稀土包覆氧化铝和酚醛树脂的质量比为1:1:0.05:2:0.25;
(4)将烧结试样逐步升温烧结,升温区间的设定为70℃烧结30min,100℃烧结30min,150℃烧结10min,250℃烧结10min;
(5)将步骤(4)制得的烧结试样再微波烧结,初始微波功率设定为50W,微波输功率平均每1min升高50W,当微波功率为700W时烧结温度为1500℃,保温40min,然后每2min将微波输出功率降低100W,即可。
实施例2
(1)将微纳米级氧化铝粉和Y2O3粉体按质量比2:1均匀混合,压制成块体靶材作为阳极,以钨棒作为阴极,在惰性气体气氛下进行电弧放电,块体靶材被蒸发和冷凝后,得到沉积纳米粉体,经过钝化工艺,收集粉体产物,再将制备的稀土包覆氧化铝球磨;
(2)首先将氮化物和碳化物混合粉末在无水乙醇中超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛,其中氮化物为AlN,碳化物为ZrC和TiSiC2质量比为1:1的混合物,氮化物和碳化物的质量比1:1;
(3)将步骤(2)混合粉体加入四针状ZnO晶须和聚氧乙烯山梨醇酐单油酸脂,混合均匀后加入步骤(1)制备的稀土包覆氧化铝和酚醛树脂,混合均匀后进行冷压成型,形成烧结试样,其中四针状ZnO晶须、聚氧乙烯山梨醇酐单油酸脂、稀土包覆氧化铝和酚醛树脂的质量比为1.5:0.5:0.05:0.05:2:0.2;
(4)将烧结试样逐步升温烧结,升温区间的设定为90℃烧结10min,100℃烧结30min,150℃烧结20min,220℃烧结10min;
(5)将步骤(4)制得的烧结试样再微波烧结,初始微波功率设定为50W,微波输功率平均每1.5min升高50W,当微波功率为800W时烧结温度为1700℃,保温40min,然后每2min将微波输出功率降低100W,即可。
实施例3
(1)将Sm2O3粉体去离子水中搅拌并加热至40℃,将微纳米级氧化铝加入Sm2O3溶液中调节溶液的pH值至8,球磨4h,其中Sm2O3微纳米级氧化铝的质量比为1:1,球磨后,将混合液烘干,得到烘干粉体,将烘干粉体进行烧结得到稀土包覆改性氧化铝粉体,烧结温度为1500℃,时间为7.5h;
(2)首先将氮化物和碳化物混合粉末在甲醇中超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛,其中氮化物为TiAlN,碳化物为ZrC和TiSiC2质量比为1:1的混合物,氮化物和碳化物的质量比1:2;
(3)将步骤(2)混合粉体加入针状硅灰石纤维、四针状ZnO晶须、烷基苯酚聚氧乙烯醚和PEO,混合均匀后加入步骤(1)制备的稀土包覆氧化铝和酚醛树脂,混合均匀后进行冷压成型,形成烧结试样,其中针状硅灰石纤维、四针状ZnO晶须、烷基苯酚聚氧乙烯醚、PEO、稀土包覆氧化铝和聚乙烯接枝马来酸酐的质量比为1.5:0.8:2:0.4;
(4)将烧结试样逐步升温烧结,升温区间的设定为75℃烧结20min,115℃烧结25min,150℃烧结15min,250℃烧结5min;
(5)将步骤(4)制得的烧结试样再微波烧结,初始微波功率设定为50W,微波输功率平均每1min升高50W,当微波功率为780W时烧结温度为1650℃,保温40min,然后每2min将微波输出功率降低100W,即可。
实施例4
(1)将Nd2O3粉体去离子水中搅拌并加热至60℃,将微纳米级氧化铝加入Nd2O3溶液中调节溶液的pH值至10,球磨6h,其中Nd2O3微纳米级氧化铝的质量比为1:1.5,球磨后,将混合液烘干,得到烘干粉体,将烘干粉体进行烧结得到稀土包覆改性氧化铝粉体,烧结温度为1200℃,时间为10h;
(2)首先将氮化物和碳化物混合粉末在乙酸中超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛,其中氮化物为AlN,碳化物为SiC和TiC质量比为0.5:1的混合物,氮化物和碳化物的质量比1:1;
(3)将步骤(2)混合粉体加入针状硅灰石纤维、烷基苯酚聚氧乙烯醚,混合均匀后加入步骤(1)制备的稀土包覆氧化铝和聚醋酸乙烯酯,混合均匀后进行冷压成型,形成烧结试样,其中针状硅灰石纤维、烷基苯酚聚氧乙烯醚、稀土包覆氧化铝和聚醋酸乙烯酯的质量比为1.5:0.2:2.5:0.2;
(4)将烧结试样逐步升温烧结,升温区间的设定为80℃烧结15min,125℃烧结30min,160℃烧结15min,240℃烧结8min;
(5)将步骤(4)制得的烧结试样再微波烧结,初始微波功率设定为50W,微波输功率平均每1.2min升高50W,当微波功率为800W时烧结温度为1700℃,保温40min,然后每2min将微波输出功率降低100W,即可。
实施例5
(1)将CeO2粉体去离子水中搅拌并加热至55℃,将微纳米级氧化铝加入CeO2溶液中调节溶液的pH值至9,球磨4h,其中CeO2微纳米级氧化铝的质量比为1:4,球磨后,将混合液烘干,得到烘干粉体,将烘干粉体进行烧结得到稀土包覆改性氧化铝粉体,烧结温度为1350℃,时间为5h;
(2)首先将氮化物和碳化物混合粉末在甲醇中超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛,其中氮化物为Si3N4和AlN质量比为1:3的混合物,碳化物为TiSiC2和ZrC质量比为1:0.3的混合物,氮化物和碳化物的质量比3:2;
(3)将步骤(2)混合粉体加入钛酸钾晶须、双(二甲基十二烷基)乙撑双季铵盐和PEO,混合均匀后加入步骤(1)制备的稀土包覆氧化铝和乙烯-醋酸乙烯共聚物,混合均匀后进行冷压成型,形成烧结试样,其中钛酸钾晶须、双(二甲基十二烷基)乙撑双季铵盐、PEO、稀土包覆氧化铝和乙烯-醋酸乙烯共聚物的质量比为1.8:0.8:0.3:2.5:0.3;
(4)将烧结试样逐步升温烧结,升温区间的设定为85℃烧结15min,125℃烧结25min,160℃烧结10min,250℃烧结5min;
(5)将步骤(4)制得的烧结试样再微波烧结,初始微波功率设定为50W,微波输功率平均每1min升高50W,当微波功率为800W时烧结温度为1600℃,保温40min,然后每2min将微波输出功率降低100W,即可。
实施例6
(1)将Sm2O3粉体去离子水中搅拌并加热至60℃,将微纳米级氧化铝加入Sm2O3溶液中调节溶液的pH值至10,球磨6h,其中Sm2O3微纳米级氧化铝的质量比为1:2,球磨后,将混合液烘干,得到烘干粉体,将烘干粉体进行烧结得到稀土包覆改性氧化铝粉体,烧结温度为1400℃,时间为8h;
(2)首先将氮化物和碳化物混合粉末在体积比为1:1甲酸和乙醇的混合溶液中超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛,其中氮化物为TiAlN,碳化物为SiC、ZrC和TiC质量比为0.5:0.5:1的混合物,氮化物和碳化物的质量比1:2;
(3)将步骤(2)混合粉体加入四针状ZnO晶须、烷基苯酚聚氧乙烯醚和聚氧乙烯山梨醇酐单油酸脂,混合均匀后加入步骤(1)制备的稀土包覆氧化铝和聚酯树脂,混合均匀后进行冷压成型,形成烧结试样,其中四针状ZnO晶须、烷基苯酚聚氧乙烯醚、聚氧乙烯山梨醇酐单油酸脂、稀土包覆氧化铝和聚酯树脂的质量比为1.5:0.5:0.5:2.5:0.2;
(4)将烧结试样逐步升温烧结,升温区间的设定为80℃烧结15min,125℃烧结30min,160℃烧结15min,230℃烧结8min;
(5)将步骤(4)制得的烧结试样再微波烧结,初始微波功率设定为50W,微波输功率平均每1min升高50W,当微波功率为800W时烧结温度为1550℃,保温40min,然后每2min将微波输出功率降低100W,即可。
对比例1
(1)首先将氮化物和碳化物混合粉末在无水乙醇中超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛,其中氮化物为Si3N4,碳化物为TiSiC2,氮化物和碳化物的质量比1:2;
(2)将步骤(1)混合粉体加入针状硅灰石纤维、钛酸钾晶须和双(二甲基十二烷基)乙撑双季铵盐,混合均匀后加入微纳米级氧化铝和酚醛树脂,混合均匀后进行冷压成型,形成烧结试样,其中针状硅灰石纤维、钛酸钾晶须、双(二甲基十二烷基)乙撑双季铵盐、微纳米级氧化铝和酚醛树脂的质量比为1:1:0.05:2:0.25;
(3)将烧结试样逐步升温烧结,升温区间的设定为70℃烧结30min,100℃烧结30min,150℃烧结10min,250℃烧结10min;
(4)将步骤(3)制得的烧结试样再微波烧结,初始微波功率设定为50W,微波输功率平均每1min升高50W,当微波功率为700W时烧结温度为1500℃,保温40min,然后每2min将微波输出功率降低100W,即可。
对比例2
(1)将微纳米级氧化铝粉和Y2O3粉体按质量比2:1均匀混合,压制成块体靶材作为阳极,以钨棒作为阴极,在惰性气体气氛下进行电弧放电,块体靶材被蒸发和冷凝后,得到沉积纳米粉体,经过钝化工艺,收集粉体产物,再将制备的稀土包覆氧化铝球磨;
(2)首先将氮化物和碳化物混合粉末在无水乙醇中超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛,其中氮化物为AlN,碳化物为ZrC和TiSiC2质量比为1:1的混合物,氮化物和碳化物的质量比1:1;
(3)将步骤(2)混合粉体加入聚氧乙烯山梨醇酐单油酸脂,混合均匀后加入步骤(1)制备的稀土包覆氧化铝和酚醛树脂,混合均匀后进行冷压成型,形成烧结试样,其中聚氧乙烯山梨醇酐单油酸脂、稀土包覆氧化铝和酚醛树脂的质量比为0.5:0.05:0.05:2:0.2;
(4)将烧结试样逐步升温烧结,升温区间的设定为90℃烧结10min,100℃烧结30min,150℃烧结20min,220℃烧结10min;
(5)将步骤(4)制得的烧结试样再微波烧结,初始微波功率设定为50W,微波输功率平均每1.5min升高50W,当微波功率为800W时烧结温度为1700℃,保温40min,然后每2min将微波输出功率降低100W,即可。
对比例3
(1)将Sm2O3粉体去离子水中搅拌并加热至40℃,将微纳米级氧化铝加入Sm2O3溶液中调节溶液的pH值至8,球磨4h,其中Sm2O3微纳米级氧化铝的质量比为1:1,球磨后,将混合液烘干,得到烘干粉体,将烘干粉体进行烧结得到稀土包覆改性氧化铝粉体,烧结温度为1500℃,时间为7.5h;
(2)首先将氮化物和碳化物混合粉末在甲醇中超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛,其中氮化物为TiAlN,碳化物为ZrC和TiSiC2质量比为1:1的混合物,氮化物和碳化物的质量比1:2;
(3)将步骤(2)混合粉体加入针状硅灰石纤维、四针状ZnO晶须、烷基苯酚聚氧乙烯醚和PEO,混合均匀后加入步骤(1)制备的稀土包覆氧化铝和酚醛树脂,混合均匀后进行冷压成型,形成烧结试样,其中针状硅灰石纤维、四针状ZnO晶须、烷基苯酚聚氧乙烯醚、PEO、稀土包覆氧化铝和聚乙烯接枝马来酸酐的质量比为1.5:0.8:2:0.4;
(4)将步骤(3)制得的烧结试样再微波烧结,初始微波功率设定为50W,微波输功率平均每1min升高50W,当微波功率为780W时烧结温度为1650℃,保温40min,然后每2min将微波输出功率降低100W,即可。
对比例4
(1)将Nd2O3粉体去离子水中搅拌并加热至60℃,将微纳米级氧化铝加入Nd2O3溶液中调节溶液的pH值至10,球磨6h,其中Nd2O3微纳米级氧化铝的质量比为1:1.5,球磨后,将混合液烘干,得到烘干粉体,将烘干粉体进行烧结得到稀土包覆改性氧化铝粉体,烧结温度为1200℃,时间为10h;
(2)首先将氮化物和碳化物混合粉末在乙酸中超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛,其中氮化物为AlN,碳化物为SiC和TiC质量比为0.5:1的混合物,氮化物和碳化物的质量比1:1;
(3)将步骤(2)混合粉体加入针状硅灰石纤维、四针状ZnO晶须、烷基苯酚聚氧乙烯醚和PEO,混合均匀后加入步骤(1)制备的稀土包覆氧化铝和酚醛树脂,混合均匀后进行冷压成型,形成烧结试样,其中针状硅灰石纤维、烷基苯酚聚氧乙烯醚、稀土包覆氧化铝和聚醋酸乙烯酯的质量比为1.5:0.2:2.5:0.2;
(4)将烧结试样逐步升温烧结,升温区间的设定为80℃烧结15min,125℃烧结30min,160℃烧结15min,240℃烧结8min;
(5)将步骤(4)制得的烧结试样再烧结,初始烧结温度200℃,升温速率为2℃/min,升温至烧结温度为1600℃,保温80min,逐渐降温至常温,即可。
将烧结而成的纳米铝陶瓷制成标准样品,采用三点弯曲法在CMT5105 型电子万能试验机上测量样品的抗弯强度,跨距30 mm,加载速率0.5 mm/min;用HV-120 型维氏硬度计测量样品的显微硬度,载荷98 N,保压15 s。
表1 本发明纳米铝陶瓷的各项性能指标
Figure DEST_PATH_IMAGE002

Claims (9)

1.一种纳米铝陶瓷的制备方法,其特征在于,包括以下步骤:
(1)通过电弧等离子体蒸发法或原位聚合法制备稀土包覆氧化铝,再将制备的稀土包覆氧化铝球磨;
(2)首先将氮化物和碳化物混合粉末在有机溶液超声分散,接着烘干、过筛,然后在去离子水中用刚玉球球磨,再烘干、过筛;
(3)将步骤(2)混合粉体加入增强无机晶须、表面活性剂、步骤(1)制得的球磨后的稀土包覆氧化铝和有机粘合剂,混合均匀后进行冷压成型,形成烧结试样;
(4)将烧结试样逐步升温烧结;
(5)将步骤(4)制得的烧结试样再微波烧结,即可。
2.根据权利要求1所述的一种纳米铝陶瓷的制备方法,其特征在于:所述步骤(1)中稀土为烘干的Y2O3、Sm2O3、Nd2O3、CeO2中的任意一种。
3.根据权利要求1所述的一种纳米铝陶瓷的制备方法,其特征在于:所述步骤(1)中电弧等离子体蒸发法为将微纳米级氧化铝粉和稀土氧化物粉体按质量比均匀混合,压制成块体靶材作为阳极,以钨棒作为阴极,在惰性气体气氛下进行电弧放电,块体靶材被蒸发和冷凝后,得到沉积纳米粉体,经过钝化工艺,收集粉体产物。
4.根据权利要求1所述的一种纳米铝陶瓷的制备方法,其特征在于:所述步骤(1)中原位聚合法为将稀土氧化物粉体去离子水中搅拌并加热,将微纳米级氧化铝加入稀土氧化物溶液中调节溶液的pH值至8-10,将混合液烘干,得到烘干粉体,将烘干粉体进行烧结得到稀土包覆改性氧化铝粉体,烧结温度为1200-1500℃,时间为0.5-20h。
5.根据权利要求1所述的一种纳米铝陶瓷的制备方法,其特征在于:所述步骤(2)中有机溶剂为无水乙醇、甲醇、乙酸或甲酸中一种或几种的混合物。
6.根据权利要求1所述的一种纳米铝陶瓷的制备方法,其特征在于:所述步骤(3)的增强无机晶须包括针状硅灰石纤维、钛酸钾晶须、四针状ZnO晶须中的一种或几种。
7.根据权利要求1所述的一种纳米铝陶瓷的制备方法,其特征在于:所述步骤(3)中的有机粘合剂为树脂。
8.根据权利要求1所述的一种纳米铝陶瓷的制备方法,其特征在于:所述步骤(4)中升温区间的设定为70-90℃烧结10-30min,100-135℃烧结20-30min,150-170℃烧结10-20min,220-250℃烧结5-10min。
9.根据权利要求1所述的一种纳米铝陶瓷的制备方法,其特征在于:所述步骤(5)中微波烧结为初始微波功率设定为50W,微波输功率平均每1-1.5min升高50W,当微波功率为700-800W时烧结温度为1500-1700℃,保温40min,然后每2min将微波输出功率降低100W。
CN201810008460.7A 2018-01-04 2018-01-04 一种纳米铝陶瓷的制备方法 Active CN108455996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810008460.7A CN108455996B (zh) 2018-01-04 2018-01-04 一种纳米铝陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810008460.7A CN108455996B (zh) 2018-01-04 2018-01-04 一种纳米铝陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN108455996A CN108455996A (zh) 2018-08-28
CN108455996B true CN108455996B (zh) 2021-06-01

Family

ID=63221213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810008460.7A Active CN108455996B (zh) 2018-01-04 2018-01-04 一种纳米铝陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN108455996B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437885A (zh) * 2018-11-14 2019-03-08 芜湖市元奎新材料科技有限公司 一种高强度无机陶瓷制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129965A1 (en) * 2005-05-30 2006-12-07 Dynamaterials Co., Inc Method for manufacturing high strength ultra-fine/nano-structured al /aln or al alloy/aln composite materials
WO2008063708A2 (en) * 2006-10-27 2008-05-29 Metamic, Llc Atomized picoscale composite aluminum alloy and method therefor
CN101362200A (zh) * 2008-09-20 2009-02-11 大连理工大学 金属氧化物包覆异质金属“核/壳”型纳米粒子的合成方法
CN104072112A (zh) * 2014-05-24 2014-10-01 芜湖浙鑫新能源有限公司 一种稀土包覆氧化铝基陶瓷型芯
CN105839035A (zh) * 2016-04-08 2016-08-10 苏州捷德瑞精密机械有限公司 一种纳米氧化铝基金属陶瓷模具材料及其制备方法
CN106498365A (zh) * 2016-11-30 2017-03-15 华中科技大学 一种氧化锆包覆铝粉实现铝粉钝化的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129965A1 (en) * 2005-05-30 2006-12-07 Dynamaterials Co., Inc Method for manufacturing high strength ultra-fine/nano-structured al /aln or al alloy/aln composite materials
WO2008063708A2 (en) * 2006-10-27 2008-05-29 Metamic, Llc Atomized picoscale composite aluminum alloy and method therefor
CN101362200A (zh) * 2008-09-20 2009-02-11 大连理工大学 金属氧化物包覆异质金属“核/壳”型纳米粒子的合成方法
CN104072112A (zh) * 2014-05-24 2014-10-01 芜湖浙鑫新能源有限公司 一种稀土包覆氧化铝基陶瓷型芯
CN105839035A (zh) * 2016-04-08 2016-08-10 苏州捷德瑞精密机械有限公司 一种纳米氧化铝基金属陶瓷模具材料及其制备方法
CN106498365A (zh) * 2016-11-30 2017-03-15 华中科技大学 一种氧化锆包覆铝粉实现铝粉钝化的方法

Also Published As

Publication number Publication date
CN108455996A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN103145422B (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
CN109608203B (zh) 高熵二硅化物及其制备方法
CN114262230B (zh) 一种氮化硅-碳化硅多孔陶瓷吸波材料及其制备方法
CN108950280B (zh) 一种石墨烯/碳化硅增强铝基复合材料及其制备方法
CN104150940B (zh) 氮化硅与碳化硅复相多孔陶瓷及其制备方法
CN108203300B (zh) 一种高韧性、高电阻率碳化硅陶瓷的制备方法
CN114853500B (zh) 一种氮化硅结合碳化硅复相陶瓷及其制备方法与应用
CN113045332A (zh) 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法
CN104045350B (zh) 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法
WO2006005267A1 (fr) Materiau composite ceramique en ti2aln renforce a durcissement par phase dispersee de al2o3
CN104926309B (zh) 一种无硼或稀土元素的致密碳化硅陶瓷的制备方法
CN109320259A (zh) 一种氮化硅基金刚石复合材料及其制备方法
CN107365155B (zh) 一种氮化铝陶瓷的低温烧结助剂体系
CN109251033A (zh) 一种微波合成Ti2AlC块体材料的方法
CN109180161B (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
CN113698209A (zh) 一种高熵二硼化物-碳化硅复相陶瓷、制备方法及其应用
CN105838920A (zh) 一种Ti/AlN金属陶瓷复合材料及其制备方法
CN108455996B (zh) 一种纳米铝陶瓷的制备方法
CN104628392A (zh) 一种致密氮化铝-氮化硼复合材料的制备方法
CN113416077B (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN109592983A (zh) 一种高热导液相烧结碳化硅陶瓷及其制备方法
CN115259859B (zh) 一种碳化硼防弹陶瓷材料及其制备方法
CN115073186A (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN115073183A (zh) 一种高熵硼化物纳米粉体及其溶胶-凝胶制备方法
CN106591747A (zh) 一种β‑Si3N4晶须和Ni3Al粘结相协同增韧的WC复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210425

Address after: 330000 room 701, unit 3, 208 SUPU Road, Donghu District, Nanchang City, Jiangxi Province

Applicant after: Zheng Honghui

Address before: 330000 room 603, office building, B District, Central Plaza, Nanchang, Jiangxi.

Applicant before: JIANGXI LINGHANGYUZHOU CERAMICS Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210513

Address after: 330038 room 503, building 23, No. 1188, Lingkou Road, Honggutan New District, Nanchang City, Jiangxi Province

Applicant after: Mei Wenjie

Address before: 330000 room 701, unit 3, 208 SUPU Road, Donghu District, Nanchang City, Jiangxi Province

Applicant before: Zheng Honghui

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210806

Address after: 330103 No. 299, Wuhua Road, Wangcheng new area, Xinjian District, Nanchang City, Jiangxi Province

Patentee after: NANCHANG LITONG GEOTECHNICAL ENGINEERING EQUIPMENT Co.,Ltd.

Address before: 330038 room 503, building 23, No. 1188, Lingkou Road, Honggutan New District, Nanchang City, Jiangxi Province

Patentee before: Mei Wenjie

TR01 Transfer of patent right