CN108428737A - 具有叉指型电极的半导体器件 - Google Patents

具有叉指型电极的半导体器件 Download PDF

Info

Publication number
CN108428737A
CN108428737A CN201710975501.5A CN201710975501A CN108428737A CN 108428737 A CN108428737 A CN 108428737A CN 201710975501 A CN201710975501 A CN 201710975501A CN 108428737 A CN108428737 A CN 108428737A
Authority
CN
China
Prior art keywords
interdigitated electrodes
semiconductor devices
interdigital
electrode
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710975501.5A
Other languages
English (en)
Other versions
CN108428737B (zh
Inventor
李湛明
傅玥
吴卫东
刘雁飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Liangxin Microelectronics Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN108428737A publication Critical patent/CN108428737A/zh
Application granted granted Critical
Publication of CN108428737B publication Critical patent/CN108428737B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

公开了具有叉指型电极的半导体器件,该半导体器件包括漏级、源极以及多个叉指型电极,多个叉指型电极中的每一个叉指型电极具有分别连接到漏级基底和源极基底的两个交叉的叉指,多个叉指型电极中的任意两个叉指型电极之间具有至少一个半导体导电区域,其中,叉指型是非对称形状并且叉指型的指尖是非直线形状。采用本发明的叉指电极能够使得电流或功率在整个芯片表面均匀分布,并且本发明的叉指电极具有宽度可变的电极基底,从而实现了有效控制金属上的流量分布并能够很好的控制芯片规模。

Description

具有叉指型电极的半导体器件
技术领域
本发明涉及一种半导体器件,特别涉及一种具有叉指型电极的半导体器件。
背景技术
近些年来,随着半导体技术的发展,第三代半导体材料如GaN、AlGaN等新型材料逐渐受到人们的广泛关注。由于这些新型半导体材料具有较宽的禁带宽度,并且能够在AlGaN/GaN异质结界面处形成二维电子气(2DEG),它们已被普遍用来制造高电子迁移率晶体管(HEMT),极大地提高了器件的转换和导电效率。这些器件是典型的横向器件,电流能够在接近表面的地方流动。
为了实现多种功率电子应用,一般来说,要求半导体器件要能够达到1到100安培的电流输入。在横向半导体功率器件中,比如GaN HEMT,电流的大小取决于电流流经路径的宽度(从漏极到源极,反之亦然)。然而,根据目前的半导体制造技术和组装标准,把这个路径宽度转换为器件内部一个非常窄的条状结构是非常不现实的。因此,人们设计出了叉指型电极,用于提高器件的电流输入叉指型电极用于半导体电子和光电子器件具有有效利用晶片面积和降低整体接触电阻的优点。一个普通的叉指型电极包括连接到两个电极基底(electrode base)上的长方形交叉的叉指,漏极11(drain)和源极12(source),如图1所示。所有的金属膜都是长方形的且在排版和制造过程中很容易付诸实施。
叉指型电极已经普遍用于光电探测器(PD)和传感器的阳极和阴极(现有技术文献1:J.Phys.D:Appl.Phys.44(2011)375104(5pp),doi:10.1088/0022-3727/44/37/375104,Highly sensitive fast-response UV photodetectors based on epitaxialTiO2films。现有技术文献2:Diamond and Related Materials,Volume 18,Issues 5-8,May-August 2009,Pages 860C864,“Recent developments of wide-bandgapsemiconductor based UV sensors”。现有技术文献3:US7520173B2),以及场效应晶体管(FET)的源极和漏极(现有技术文献4:Digests of CSMANTECH 2015,papers 17.4,“Micromachined p-GaN Gate Normally off Power HEMT with an Optimized.Air-bridge Matrix Layout Design.”Chih-Wei Yang et al.现有技术文献5:US7417257B2)。
由于要把导线准确地键合到电极的基底上,使用叉指型电极进行版面设计与后续的封装有很大关系。为了减小电阻,电流从导线到叉指的流经路径分布必须要考虑进来。对于FET,根据上述文献4长方形叉指的指尖可以做成半圆形状,以减小角落效应。根据上述文献5叉指的形状也可以做成梯形,用于减小电流拥堵效应(以及热效应)。对于PD和传感器,在优化电极几何形状方面包括:1)根据上述文献1采用半圆形指叉电极减小电容,增加速度;2)根据上述文献2采用曲线型叉指与星型电极基底结合的方式,减小电极遮蔽效应,进而增加光探测的敏感性;3)根据上述文献3采用对称的圆形和多边形叉指用于圆形声学器件以及便于加工。文献5的结果显示采用梯形叉指能够提高电流流动分布,减小电阻。然而,我们将会表明这种设计存在诸多限制,比如在角落处有高电场存在,而且高电场不能延伸到叉指的其他部分。此外,由于不均匀的电流或电场分布,现存的电极版面设计基本上都潜在地存在着高导通电阻或低击穿电压的缺陷。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种具有叉指型电极的半导体器件,从而克服现有技术的缺点。
为实现上述目的,本发明提供了一种具有叉指型电极的半导体器件,半导体器件包括漏级、源极以及多个叉指型电极,多个叉指型电极中的每一个叉指型电极具有分别连接到漏级基底和源极基底的两个交叉的叉指,多个叉指型电极中的任意两个叉指型电极之间具有至少一个半导体导电区域,其中,叉指型是非对称形状并且叉指型的指尖是非直线形状。
优选地,上述技术方案中,非直线形状是椭圆形、圆形或者由指数小于2的幂函数确定的形状。
优选地,上述技术方案中,相邻两个叉指型电极之间的宽度与另外的相邻两个叉指型电极之间的宽度是相同的。
优选地,上述技术方案中,相邻两个叉指型电极之间的宽度与另外的相邻两个叉指型电极之间的宽度是不相同的。
优选地,上述技术方案中,半导体器件还包括至少一个控制电极,控制电极连接导电沟道,控制电极能够开启或者断开导电沟道。
优选地,上述技术方案中,相邻两个叉指型电极之间的宽度是由从一个叉指型电极到另一个叉指型电极的电流的流量比率确定的。
优选地,上述技术方案中,叉指型的指尖连线与源极或者漏级的基底形成一直角三角形,直角三角形具有固定角度θ,相邻两个叉指型电极之间的宽度是由固定角度θ确定的。
优选地,上述技术方案中,叉指型的指尖连线与源极或者漏级的基底形成一直角三角形,并且在直角三角形的两个或三个角上存在叉指型电极。
与现有技术相比,本发明具有如下有益效果:1、本发明提供了几种新型叉指电极版面形状,目的是使电流或功率能够在整个芯片表面(包括半导体和金属电极)均匀分布,同时将芯片的使用最大化。2、本发明中,叉指电极有宽度可变的电极基底。基底的几何形状采用两种方法设计,即流量比率方面和固定角度方法。流量比率方法通过控制基底宽度以使与叉指宽度成正比的一个固定百分比的流量被转移到一个具体的叉指。这种方法能够有效控制金属上的流量分布。固定角度方法强迫基底有一个直的基底线,因而,在器件排版中,芯片规模就能够得到很好的控制。
附图说明
图1为现有技术中的叉指电极的示意图。
图2是根据本发明的实施例的金属电极非对称形状的示意图。
图3(a)-图3(c)是根据本发明的三种叉指形状的示意图。
图4(a)是梯形叉指对应的2维电场分布。
图4(b)是幂函数叉指对应的2维电场分布。
图5是几种叉指电极指尖角落处一维电场强度的比较。
图6为本发明中具有不同锥形角度和金属电极和半导体电阻之比(RR)的器件的单位电导。
图7是根据本发明的具有不同锥形角度和RR的GaN HEMT金属电极的电流阻塞参数。
图8是根据本发明的电极基底形状分析图。
图9(a)-图9(b)分别为基底几何比率GR=0.8和GR=1.0时的电流密度分布。
图10(a)-图10(b)分别为本发明中不同GR和RR时的单位电导图。
图11(a)-图11(b)分别为本发明中不同GR和RR时的最大电流密度。
图12为单位晶元面积上栅极宽度随GR的变化关系。
图13为包含2个三角形叉指电极区域的器件。
图14为包含8个三角形叉指电极区域的器件。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
图1为现有技术中的叉指电极的示意图。其中在半导体器件中包括漏级(D)、源极(S)、漏级电极基底11以及源极电极基底12,漏级和源极之间设置有叉指电极。从图中可见,现有技术中的叉指电极均是规则的矩形叉指,并且两叉指之间的距离是相同的。
图2是根据本发明的实施例的金属电极非对称形状的示意图。本发明的实施例的半导体器件包括D、S级,漏级电极基底21,源极电极基底25,漏级电极叉指23,源极电极叉指24,叉指型的指尖连线与源极或者漏级的基底形成一直角三角形,直角三角形具有固定角度22(θ),偏移角26(α)。其中将图2的水平轴定义为x轴,垂直轴定义为y轴,从图中可以明显看出,叉指型的指尖连线与源极或者漏级的基底形成一直角三角形,直角三角形具有固定角度θ,相邻两个叉指型电极之间的宽度可以由固定角度θ确定。在本发明的一个实施例中,为了保证上下指尖采用圆形或椭圆形的通用性,将上部叉指设为圆形,下部叉指设为椭圆形,并且y与x轴的比率为ryx。本发明中的叉指形状可用如下公式来确定多边形的左边边长(Ll)和右边边长(Lr):
其中,Rbp为连接非对称多边形的椭圆形的半径,可由下式确定:
图3(a)-图3(c)是根据本发明的三种叉指形状的示意图。图3(a)和3(b)分别给出了采用上述公式1-3确定的带有漏极31a、31b和源极32a、32b电极基底的圆形和椭圆形叉指电极。图3(a)同时也对比了现有技术文献5中梯形指尖的叉指电极。图3(c)给出了采用上述公式1-3确定的带有漏极31c和源极32c电极基底的幂函数叉指电极。幂函数通常用来确定上部叉指的形状,其公式可表示为:
其中,yh为叉指高度一半时的y轴坐;Wh为叉指在yh时的半宽度;Hh为半指高度;γ为幂函数的指数。研究发现,当γ等于或大于2时,叉指的形状会更加光滑,并且能够有效延伸对器件反向击穿电压有重要影响的高电场。
为了说明本发明的优点,采用数值模拟方法对漏极和栅极都为叉指电极的GaNHEMT进行了模拟计算,其中,设置半导体材料的电阻率比金属电极的电阻率高三个数量级,并且栅极的长度为固定常数。为了更简单化,在不影响器件物理趋势的情况下,删掉了栅极。虽然这里只是对GaN HEMT器件进行了数值模拟,但从中得到的结论适合于所有采用叉指电极的半导体器件。
图4(a)是梯形叉指对应的2维电场分布。图4(b)是幂函数叉指对应的2维电场分布。其中图4(b)中的幂函数的指数为5。对比图4(a)和图4(b)可以明显看到,幂函数形叉指可以有效地将电场延伸到整个叉指,而不是集中在指尖附近。
图5比较了本发明的实施例中提出的三种叉指形状指尖角落处的一维电场分布。可以看到,本发明的实施例中提出的这三种叉指对应的曲线高度更低,曲线宽度更大,说明这三种叉指对应的电场分布更为均匀,也即本发明的实施例提出的三种叉指相对于传统叉指具有明显更优的电场分布。
图6为本发明中具有不同锥形角度θ和金属电极和半导体电阻之比RR(从0.0001到1)的器件的单位电导(CD)。如图6所示,当RR等于或小于0.001时,随着锥形角度和RR的增加,单位电导基本保持不变。而当RR大于0.001时,随着锥形角度的增加,单位电导也逐渐增加。
图7为本发明中具有不同锥形角度和RR的金属电极的电流阻塞参数。如图7所示,当RR等于或小于0.1时,随着锥形角度的增加,参数Jmax(最大电流密度)快速下降,说明电流分布更加均匀,减小了电流阻塞效应。
可以采用流量比率方法设计电极基底。图8显示了对本发明中的电极基底形状的分析。如图8所示,宽箭头表示了金属基底中功率流动的方向;w(i)为第i个叉指下的电极基底宽度,s(i)为第i个叉指连接基底端且比较宽的那端的尺寸。类似地,w(i+1)为第(i+1)个金属叉指下面基底的宽度。为了描述方便,设定参数GR=(w(i)-s(i))/(w(i+1)),称为几何比率,这个参数可以解释为:假定沿着基底流动的电流,在第i个叉指处,一部分电流会流入叉指s(i),剩下的电流(w(i)-s(i))将会进行流入下一个叉指下面的基底w(i+1)。在一个均匀的流动中,剩余的电流将会完全地进入w(i+1),GR就会为1。在很多设计中,由于面积限制,这种完全匹配地现象是不可能发生地,少量的剩余电流还会继续流动,引起电流分布的不均匀性。
在版面设计中,既要控制上下电极基底的宽度以获得相同的比率,又要将整个器件嵌入一个长方形区域以便于最大化地利用晶片面积和激光切片,这是非常困难的。本发明提供了一种方法可以将一对具有n个叉指的电极完美地嵌入一个长方形芯片。假定我们要在一个芯片Hc上设置N对叉指。在给定锥形角度,圆形指尖半径R,S/D间距Lsd和期望的流量比率GR(GR)的情况下,可以用如下线性公式去求解每个叉指的尺寸并将它们完美地嵌入到一个长方形区域中:
Hc-2R-2Lsd=h(i)+wb(i)+[wt(i)+wt(i-1)]/2
wb(i)=GRwb(i+1)+2R+2h(i)tan(α)
wt(i)=GRwt(i-1)+2R+2h(i)tan(α)
其中,未知数h(i)、wb(i)、wt(i)分别为第i个叉指的高度,第i个叉指下基底的宽度和第i个叉指上基底的宽度。它们构成3N组线性方程,可以通过多种数学软件求解。
图9(a)和9(b)显示了GR不同时上述版面几何形状的结果。其中图9(a)中的条件为GR=0.8,RR=0.0001。图9(a)中的条件为GR=1.0,RR=0.0001。可以看到,当GR=1时,剩余电流完美地流入下一个叉指并在源极和漏极之间形成一个线性的基底电极。在GR=1时,到达叉指的电流密度比GR=0.8时更加均匀。
还可以采用固定角度法设计电极基底。由于不需要解任何数学方程,固定角度的设计方法相对比较简单。一旦给定了基底角度θ,就可以根据上述与公式1和2相关的方法确定叉指形状。固定角度方法会形成一个右角三角形的基底形状,而这种形状相对容易进行排版。
为了进行更多的定量分析,图10(a)、10(b)、11(a)和11(b)显示了不同条件下的单位电导CD和最大电流密度参数MCCD。
图10(a)显示了本发明中不同RR对应的单位电导图。我们可以看到,RR和GR越高,电导率也越高。高电阻率有利于降低功率损失和提高电流分布。图10(b)显示了不同RR时,单位电导随GR的变化。可以看到,除了RR=0.0001,在其它情况下,GR和RR越高,电导越高。图11(a)和11(b)分别为本发明中不同GR和RR时金属电极附近最大电流密度。与图10(a)和10(b)相似,如图11(a)和11(b)所示,GR和RR越大,电流阻塞或热效应越不显著。在电流阻塞效应改善方面,如图8和图11(b)所示,采用锥形叉指和叉指阵列倾斜能够将电流阻塞效应分别改善16倍和25倍。如果能够将局域热效应的改善也考虑进去,电流阻塞效应的改善将能够提高16×25。虽然较大的GR能够通过减少器件电阻和功率损失热来提高器件性能,但是,较大的GR值会造成晶片面积的浪费,进而增加器件生产成本。图12显示了为单位晶元面积上栅极宽度随几何比率(GR)的变化关系。根据图12所示,在实际的器件设计和制造中,器件性能的提高要与生产成本的增加对应起来。
本发明提出的非对称叉指的可变基底宽度可以作为高电流大尺寸器件的构建。采用直角三角形作为叉指对的边界框,较大的长方形版面面积能减小导线键合,进而增加单个器件的输入电流。图13和图14显示了两个这样的例子。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (8)

1.一种具有叉指型电极的半导体器件,其特征在于:所述半导体器件包括漏级、源极以及多个叉指型电极,所述多个叉指型电极中的每一个叉指型电极具有分别连接到漏级基底和源极基底的两个交叉的叉指,所述多个叉指型电极中的任意两个叉指型电极之间具有至少一个半导体导电区域,其中,所述叉指型是非对称形状并且所述叉指型的指尖是非直线形状。
2.根据权利要求1所述的半导体器件,其特征在于:所述非直线形状是椭圆形、圆形或者由指数小于2的幂函数确定的形状。
3.根据权利要求1所述的半导体器件,其特征在于:相邻两个叉指型电极之间的宽度与另外的相邻两个叉指型电极之间的宽度是相同的。
4.根据权利要求1所述的半导体器件,其特征在于:相邻两个叉指型电极之间的宽度与另外的相邻两个叉指型电极之间的宽度是不相同的。
5.根据权利要求1-4之一所述的半导体器件,其特征在于:半导体器件还包括至少一个控制电极,所述控制电极连接导电沟道,所述控制电极能够开启或者断开所述导电沟道。
6.根据权利要求3-4之一所述的半导体器件,其特征在于:所述相邻两个叉指型电极之间的所述宽度是由从一个所述叉指型电极到另一个所述叉指型电极的电流的流量比率确定的。
7.根据权利要求3-4之一所述的半导体器件,其特征在于:所述叉指型的指尖连线与源极或者漏级的基底形成一右角三角形,所述右角三角形具有固定角度θ,所述相邻两个叉指型电极之间的所述宽度是由所述固定角度θ确定的。
8.根据权利要求1-4之一所述的半导体器件,其特征在于:所述叉指型的指尖连线与源极或者漏级的基底形成一右角三角形,并且在所述右角三角形的两个或三个角上存在所述叉指型电极。
CN201710975501.5A 2016-10-17 2017-10-16 具有叉指型电极的半导体器件 Active CN108428737B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662409188P 2016-10-17 2016-10-17
US62/409,188 2016-10-17

Publications (2)

Publication Number Publication Date
CN108428737A true CN108428737A (zh) 2018-08-21
CN108428737B CN108428737B (zh) 2022-06-21

Family

ID=61902895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710975501.5A Active CN108428737B (zh) 2016-10-17 2017-10-16 具有叉指型电极的半导体器件

Country Status (3)

Country Link
US (1) US10388743B2 (zh)
CN (1) CN108428737B (zh)
CA (1) CA2982580A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220767A (zh) * 2018-11-23 2020-06-02 京元电子股份有限公司 用于生物芯片测试的弹性缓冲座及其测试模块与测试设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820784B (zh) * 2020-11-24 2022-11-25 上海航天电子通讯设备研究所 一种垂直背入射同面电极高功率光导开关

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156902A (ja) * 2004-12-01 2006-06-15 Mitsubishi Electric Corp 高周波用半導体装置
US20110057235A1 (en) * 2009-09-08 2011-03-10 Kabushiki Kaisha Toshiba Semiconductor device
CN102013437A (zh) * 2009-09-07 2011-04-13 西安捷威半导体有限公司 半导体器件及其制造方法
CN102269724A (zh) * 2011-06-23 2011-12-07 西安交通大学 半导体气敏传感器的定向纳米纤维化三维立体叉指电极的制作方法
TW201203540A (en) * 2010-07-02 2012-01-16 Win Semiconductors Corp Multi-gate semiconductor devices
JP2013098222A (ja) * 2011-10-28 2013-05-20 Sanken Electric Co Ltd 窒化物半導体装置
CN104347579A (zh) * 2013-07-31 2015-02-11 瑞萨电子株式会社 半导体装置
WO2015101973A1 (en) * 2013-12-30 2015-07-09 Visic Technologies Ltd. Semiconductor device
US20160079444A1 (en) * 2014-09-12 2016-03-17 Triquint Semiconductor, Inc. Compound varactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170104064A1 (en) * 2015-10-09 2017-04-13 Sanken Electric Co., Ltd. Nitride semiconductor device with asymmetric electrode tips

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156902A (ja) * 2004-12-01 2006-06-15 Mitsubishi Electric Corp 高周波用半導体装置
CN102013437A (zh) * 2009-09-07 2011-04-13 西安捷威半导体有限公司 半导体器件及其制造方法
US20110057235A1 (en) * 2009-09-08 2011-03-10 Kabushiki Kaisha Toshiba Semiconductor device
TW201203540A (en) * 2010-07-02 2012-01-16 Win Semiconductors Corp Multi-gate semiconductor devices
CN102269724A (zh) * 2011-06-23 2011-12-07 西安交通大学 半导体气敏传感器的定向纳米纤维化三维立体叉指电极的制作方法
JP2013098222A (ja) * 2011-10-28 2013-05-20 Sanken Electric Co Ltd 窒化物半導体装置
CN104347579A (zh) * 2013-07-31 2015-02-11 瑞萨电子株式会社 半导体装置
WO2015101973A1 (en) * 2013-12-30 2015-07-09 Visic Technologies Ltd. Semiconductor device
US20160079444A1 (en) * 2014-09-12 2016-03-17 Triquint Semiconductor, Inc. Compound varactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220767A (zh) * 2018-11-23 2020-06-02 京元电子股份有限公司 用于生物芯片测试的弹性缓冲座及其测试模块与测试设备

Also Published As

Publication number Publication date
US20180108743A1 (en) 2018-04-19
CN108428737B (zh) 2022-06-21
US10388743B2 (en) 2019-08-20
CA2982580A1 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
US8399937B2 (en) Semiconductor body and method for the design of a semiconductor body with a connecting line
US20080197406A1 (en) Sensing FET integrated with a high-voltage vertical transistor
US9970978B1 (en) TFT device for measuring contact resistance and measurement method for contact resistance
CN104157691B (zh) 一种半导体器件及其制造方法
CN103579313A (zh) 提高高压ldmos器件击穿电压的结构
CN103681852A (zh) 电力半导体元件
CN108428737A (zh) 具有叉指型电极的半导体器件
CN103730501B (zh) 介电终止的超结fet
CN105762147B (zh) 一种半导体功率器件版图
CN103094253A (zh) 一种栅极氧化层测试结构
CN101989594B (zh) 半导体器件的测试结构和测试方法
JP5412873B2 (ja) 半導体装置及び半導体装置の電流測定方法
CN104637940B (zh) 半导体器件和用于形成半导体器件的方法
CN102157557B (zh) 一种基于纳米线器件的耐高压横向双向扩散晶体管
US9905652B2 (en) Semiconductor device having varying wiring resistance
CN103325768B (zh) 有电流测量单元的集成功率晶体管电路装置及其制造方法
CN104299993B (zh) 高压场效应晶体管器件
CN208062057U (zh) 一种鳍式沟道的氧化镓基垂直场效应晶体管
CN104316771B (zh) 碳化硅器件的欧姆接触测试方法
CN203800048U (zh) 基于二维电子气的氢气传感器芯片
Nigar et al. A uni-gate vertical power MOSFET with improved figure of merits: design and analysis
CN100370624C (zh) 增益可调制的半导体器件及具备它的逻辑电路
CN206672934U (zh) 集成肖特基二极管的SiCJFET器件
CN203690304U (zh) 纵向超结金属氧化物场效应晶体管
CN103579228B (zh) 基于二维电子气的氢气传感器芯片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210729

Address after: 215125 room f405, No. 388 Ruoshui Road, Suzhou Industrial Park, Suzhou area, China (Jiangsu) pilot Free Trade Zone, Suzhou, Jiangsu

Applicant after: Suzhou Quantum Semiconductor Co.,Ltd.

Address before: Room 2, No. A19, Jiahua property, No. 3333, Hongmei Road, Minhang District, Shanghai 201103

Applicant before: Li Zhanming

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240523

Address after: Room 601-2, Building 1, Suzhou Nanocity, No. 99 Jinjihu Avenue, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone, Suzhou City, Jiangsu Province, 215000

Patentee after: Suzhou Liangxin Microelectronics Co.,Ltd.

Country or region after: China

Address before: 215125 room f405, No. 388 Ruoshui Road, Suzhou Industrial Park, Suzhou area, China (Jiangsu) pilot Free Trade Zone, Suzhou, Jiangsu

Patentee before: Suzhou Quantum Semiconductor Co.,Ltd.

Country or region before: China