CN108424122A - 一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法 - Google Patents

一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法 Download PDF

Info

Publication number
CN108424122A
CN108424122A CN201810231029.9A CN201810231029A CN108424122A CN 108424122 A CN108424122 A CN 108424122A CN 201810231029 A CN201810231029 A CN 201810231029A CN 108424122 A CN108424122 A CN 108424122A
Authority
CN
China
Prior art keywords
temperature
energy storage
storage density
ceramic material
high energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810231029.9A
Other languages
English (en)
Other versions
CN108424122B (zh
Inventor
徐卓
田野
魏晓勇
靳立
李晶
庄永勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201810231029.9A priority Critical patent/CN108424122B/zh
Publication of CN108424122A publication Critical patent/CN108424122A/zh
Application granted granted Critical
Publication of CN108424122B publication Critical patent/CN108424122B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,称取氧化银、五氧化二铌和五氧化二钽混合后一次球磨,然后依次进行烘干、研磨、过筛;然后进行预烧,结束后自然冷却到室温;然后二次球磨并烘干得到预制粉料;将预制粉料研磨并过筛,加入聚乙烯醇溶液,混合均匀;将造粒后的粉料静置,然后放入模具中,压成坯件;将坯件在纯氧条件下进行一次烧结,然后冷却出炉;然后在纯氧条件下进行二次烧结,然后冷却出炉;打磨后晾干,在其上下表面涂覆银浆,然后煅烧,煅烧后冷却,即得到高储能密度无铅反铁电陶瓷材料。本发明易于操作、重复性好,可以应用于对温度稳定性有高要求的高功率脉冲电容器上,具有重大的经济价值。

Description

一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备 方法
技术领域
本发明涉及高储能密度无铅反铁电陶瓷材料领域,具体涉及一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法。
背景技术
电容器是一种简单、便利的电能存储技术。该存储技术具有高的功率密度(~GW/kg)、非常长的循环次数(>106)、以及充电和放电速度快(~ns)的特点。特别适合作为需求高功率的脉冲电子器件,进而应用于军事装备如:电热激发炮、轨道炮、高能护盾、激光聚变系统等,医疗设备如:心脏除颤器、激光手术等。近年来,电容器在光缆损伤探测、电动汽车、石油天然气勘探等领域也显示出广阔的应用。然而,基于对电子储能装置体积小型化的需求。人们迫切期望找到一种展现高存储密度的介电材料。反铁电材料因其电场诱导的可逆的反铁电与铁电相变行为,因而有望突破当前商用的一些聚合物电容器的储能瓶颈。并且为应对全球日益剧增的大气污染状况和人类健康所面临的潜在威胁。这种材料“绿色环保”。与此同时,温度稳定性也是对材料行那个评估的一个重要指标,储能性能随温度表现出很大的波动,对于应用而言是难以接受的。因此具有宽温度稳定性和高储能密度的材料在实际应用中具有重要的价值。
发明内容
本发明的目的在于提供一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,以克服上述现有技术存在的缺陷,本发明的成分及工艺步骤简单、易于操作、重复性好,可以应用于对温度稳定性有高要求的高功率脉冲电容器上,具有重大的经济价值。
为达到上述目的,本发明采用如下技术方案:
一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,包括以下步骤:
步骤一:按照摩尔比例5:4:1称取Ag2O、Nb2O5和Ta2O5,将称取的原料混合后一次球磨,将球磨得到的混合料依次进行烘干、研磨、过筛;然后将过筛后的混合料进行预烧,预烧结束后自然冷却到室温;然后二次球磨并烘干得到预制粉料;
步骤二:将步骤一得到的预制粉料研磨并过筛得到筛选粉料,然后向筛选粉料中加入聚乙烯醇溶液,混合均匀得到造粒后的粉料;
步骤三:将步骤二得到的造粒后的粉料静置,然后放入模具中,压成坯件;
步骤四:将步骤三得到的坯件在纯氧条件下进行一次烧结,一次烧结结束后冷却,出炉得到一次烧结陶瓷片;
步骤五:将步骤四得到的一次烧结陶瓷片在纯氧条件下进行二次烧结,二次烧结结束后冷却,出炉得到二次烧结陶瓷片;
步骤六:将步骤五得到的二次烧结陶瓷片打磨后晾干,在其上下表面涂覆银浆,然后煅烧,煅烧后冷却,即得到高储能密度无铅反铁电陶瓷材料Ag(Nb0.8Ta0.2)O3
进一步地,步骤一中球磨溶剂采用异丙醇,球磨介质采用氧化锆球,球磨转速为350转/分,一次球磨时间为12小时,二次球磨时间为4小时;步骤一中过筛筛网为80目,一次球磨和二次球磨后烘干温度均为80℃。
进一步地,步骤一中预烧具体为在纯氧条件下,在800~950℃的温度下保温6小时。
进一步地,步骤二中过筛取60~100目之间的粉料。
进一步地,步骤二中聚乙烯醇溶液的加入质量为筛选粉料质量的5%,且聚乙烯醇溶液的质量浓度为5%。
进一步地,步骤三中将造粒后的粉料静置24小时,再将粉料放入直径为10mm的不锈钢模具中,在300-700MPa压力下压成圆片状坯件。
进一步地,步骤四中将坯件放入Al2O3瓷舟中,将瓷舟放入管式气氛炉中通入流动的纯氧,温度升至600℃,保温2小时之后,进一步升温到1080-1100℃并保温6小时,冷却到500℃后,然后自然冷却到室温,出炉得到一次烧结陶瓷片。
进一步地,步骤五中将一次烧结陶瓷片放入Al2O3瓷舟中,将瓷舟放入管式气氛炉中之后,通入流动的纯氧,升温至1090-1110℃进行二次烧结,保温6小时,冷却到500℃后,自然冷却到室温,出炉得到二次烧结陶瓷片。
进一步地,步骤六中将二次烧结陶瓷片打磨至厚度为0.3~0.4mm,自然晾干,在其上下表面涂覆银浆。
进一步地,步骤六中煅烧具体为将上下表面涂覆银浆的二次烧结陶瓷片置于炉中升温至600℃,保温20min,然后自然冷却至室温。
与现有技术相比,本发明具有以下有益的技术效果:
本发明方法制备的陶瓷材料的化学组成为Ag(Nb0.8Ta0.2)O3,该材料组成可以在较低的温度下采用固相反应法制备合成,并得到一种高致密度和高绝缘性的无铅反铁电陶瓷材料。在270kV/cm电场强度下,该陶瓷最高有效储能密度J高达3.7J/cm2。在30℃到100℃之间,该陶瓷样品在220kV/cm的测试电场强度下,有效储能密度维持在3J/cm2左右,变化率小于10%。本发明的成分及工艺步骤简单、易于操作、重复性好。可以应用于对温度稳定性有高要求的高功率脉冲电容器上,具有重大的经济价值。
附图说明
图1为本发明实施例1的ANT20样品在室温环境下随着测试电场升高的电极化曲线图,测试频率10Hz;
图2为本发明实施例1的ANT20样品在室温环境下计算的储能密度Wstore、Wrec和能量有效性h随测试电场的变化曲线;
图3为本发明实施例1的ANT20样品在25-125℃范围内,在220kV/cm测试电场强度下,不同温度下的电极化响应曲线;
图4为本发明实施例1的ANT20样品在25-125℃范围内,在220kV/cm测试电场强度下,不同温度下根据图3计算出的储能特性。
具体实施方式
下面对本发明的实施方式做进一步详细描述:
一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,包括以下步骤:
步骤一:按照摩尔比例5:4:1称取Ag2O、Nb2O5和Ta2O5,将称取的原料混合后放入球磨罐中,加入球磨溶剂异丙醇和氧化锆球,球磨12小时,球磨转速为350转/分,再将混合料放入烘箱内80℃烘干,在放入研钵内研磨,过80目筛;在管式气氛炉中,通入流动的纯氧并在800~950℃进行预烧,保温6小时,自然冷却到室温,出炉;再次球磨4小时,取出粉料并放入烘箱内80℃烘干;
步骤二:将步骤一烘干的粉料在研钵中研细,过筛,加入质量百分比为5%的聚乙烯醇(PVA)溶液,该溶液浓度为5%,混合均匀,过筛指取60~100目之间的粉料;
步骤三:将步骤二中造粒后的粉料静置24小时,再将粉料放入直径为10mm的不锈钢模具中,在300-700MPa压力下压成圆片状坯件;
步骤四:将步骤三中的坯体放入Al2O3瓷舟中,放入管式气氛炉中通入流动的纯氧,温度升至600℃,保温2小时之后,进一步升温到1080-1100℃并保温6小时,冷却到500℃后,然后自然冷却到室温,出炉;
步骤五:将步骤四中陶瓷片放入Al2O3瓷舟中,将瓷舟放入管式气氛炉中之后,通入流动的氧气,升温至1090-1110℃进行二次烧结,保温6小时,冷却到500℃后,自然冷却到室温,出炉;
步骤六:将步骤五中烧好的陶瓷片打磨至厚度为0.3~0.4mm,自然晾干,在其上下表面涂覆银浆,置于炉中升温至600℃,保温20min,自然冷却至室温,即得到高储能密度无铅反铁电陶瓷材料Ag(Nb0.8Ta0.2)O3(简写为ANT20)。
下面结合实施例对本发明做进一步详细描述:
实施例1
步骤一:按照摩尔比例5:4:1称取Ag2O、Nb2O5和Ta2O5,将称取的原料混合后放入球磨罐中,加入球磨溶剂异丙醇和氧化锆球,球磨12小时,球磨转速为350转/分,再将混合料放入烘箱内80℃烘干,在放入研钵内研磨,过80目筛;在管式气氛炉中,通入流动的纯氧并在850℃进行预烧,保温6小时,自然冷却到室温,出炉;再次球磨4小时,取出粉料并放入烘箱内80℃烘干;
步骤二:将步骤一烘干的粉料在研钵中研细,过筛,加入质量百分比为5%的聚乙烯醇(PVA)溶液,该溶液浓度为5%,混合均匀,过筛指取60~100目之间的粉料;
步骤三:将步骤二中造粒后的粉料静置24小时,再将粉料放入直径为10mm的不锈钢模具中,在500MPa压力下压成圆片状坯件;
步骤四:将步骤三中的坯体放入Al2O3瓷舟中,放入管式气氛炉中通入流动的纯氧,温度升至600℃,保温2小时之后,进一步升温到1090℃并保温6小时,冷却到500℃后,然后自然冷却到室温,出炉;
步骤五:将步骤四中陶瓷片放入Al2O3瓷舟中,将瓷舟放入管式气氛炉中之后,通入流动的氧气,升温至1100℃进行二次烧结,保温6小时,冷却到500℃后,自然冷却到室温,出炉;
步骤六:将步骤五中烧好的陶瓷片打磨至厚度为0.35mm,自然晾干,在其上下表面涂覆银浆,置于炉中升温至600℃,保温20min,自然冷却至室温,即得到高储能密度无铅反铁电陶瓷材料Ag(Nb0.8Ta0.2)O3
测试本实施例得到的样品的电位移随电场变化的性能,然后通过公式(1)、(2)和(3)分别计算其储能密度Wstore、有效储能密度Wrec以及能量有效性η。
式中:Wstore—总共储能密度;Wrec—有效储能密度;E—电场强度;P—极化强度;Pmax—最大极化强度;Pr—剩余极化强度。
图1所示为发明实施例1的ANT20样品在室温环境下,随着测试电场升高的电极化曲线图,测试频率10Hz。从图1中可以看出,当测试电场强度在200kV/cm时,电极化曲线,显示出双滞后迹象,表明陶瓷样品具有反铁电特性并在270kV/cm的电场强度下,最大极化值Pmax高达37μC/cm2。根据公式计算的最大有效储能密度Wrec如图2所示,Wrec=3.7J/cm3
图3所示为发表实施例1的ANT20样品在25-125℃范围内,在220kV/cm测试电场强度下,不同温度下的电极化响应曲线,图4为根据图3出的储能特性。从图中可以看出,随着温度的升高,Pmax逐渐减小。计算的储能密度如图4所示,Wstore逐渐减小。但是其Wrec随着温度的升高,在25-100℃范围内,略微降低,但是变化率不超过10%,Wrec保持在3J/cm3左右。
实施例2
步骤一:按照摩尔比例5:4:1称取Ag2O、Nb2O5和Ta2O5,将称取的原料混合后放入球磨罐中,加入球磨溶剂异丙醇和氧化锆球,球磨12小时,球磨转速为350转/分,再将混合料放入烘箱内80℃烘干,在放入研钵内研磨,过80目筛;在管式气氛炉中,通入流动的纯氧并在800℃进行预烧,保温6小时,自然冷却到室温,出炉;再次球磨4小时,取出粉料并放入烘箱内80℃烘干;
步骤二:将步骤一烘干的粉料在研钵中研细,过筛,加入质量百分比为5%的聚乙烯醇(PVA)溶液,该溶液浓度为5%,混合均匀,过筛指取60~100目之间的粉料;
步骤三:将步骤二中造粒后的粉料静置24小时,再将粉料放入直径为10mm的不锈钢模具中,在300MPa压力下压成圆片状坯件;
步骤四:将步骤三中的坯体放入Al2O3瓷舟中,放入管式气氛炉中通入流动的纯氧,温度升至600℃,保温2小时之后,进一步升温到1080℃并保温6小时,冷却到500℃后,然后自然冷却到室温,出炉;
步骤五:将步骤四中陶瓷片放入Al2O3瓷舟中,将瓷舟放入管式气氛炉中之后,通入流动的氧气,升温至1090℃进行二次烧结,保温6小时,冷却到500℃后,自然冷却到室温,出炉;
步骤六:将步骤五中烧好的陶瓷片打磨至厚度为0.3mm,自然晾干,在其上下表面涂覆银浆,置于炉中升温至600℃,保温20min,自然冷却至室温,即得到高储能密度无铅反铁电陶瓷材料Ag(Nb0.8Ta0.2)O3
实施例3
步骤一:按照摩尔比例5:4:1称取Ag2O、Nb2O5和Ta2O5,将称取的原料混合后放入球磨罐中,加入球磨溶剂异丙醇和氧化锆球,球磨12小时,球磨转速为350转/分,再将混合料放入烘箱内80℃烘干,在放入研钵内研磨,过80目筛;在管式气氛炉中,通入流动的纯氧并在950℃进行预烧,保温6小时,自然冷却到室温,出炉;再次球磨4小时,取出粉料并放入烘箱内80℃烘干;
步骤二:将步骤一烘干的粉料在研钵中研细,过筛,加入质量百分比为5%的聚乙烯醇(PVA)溶液,该溶液浓度为5%,混合均匀,过筛指取60~100目之间的粉料;
步骤三:将步骤二中造粒后的粉料静置24小时,再将粉料放入直径为10mm的不锈钢模具中,在700MPa压力下压成圆片状坯件;
步骤四:将步骤三中的坯体放入Al2O3瓷舟中,放入管式气氛炉中通入流动的纯氧,温度升至600℃,保温2小时之后,进一步升温到1100℃并保温6小时,冷却到500℃后,然后自然冷却到室温,出炉;
步骤五:将步骤四中陶瓷片放入Al2O3瓷舟中,将瓷舟放入管式气氛炉中之后,通入流动的氧气,升温至1110℃进行二次烧结,保温6小时,冷却到500℃后,自然冷却到室温,出炉;
步骤六:将步骤五中烧好的陶瓷片打磨至厚度为0.4mm,自然晾干,在其上下表面涂覆银浆,置于炉中升温至600℃,保温20min,自然冷却至室温,即得到高储能密度无铅反铁电陶瓷材料Ag(Nb0.8Ta0.2)O3

Claims (10)

1.一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤一:按照摩尔比例5:4:1称取Ag2O、Nb2O5和Ta2O5,将称取的原料混合后一次球磨,将球磨得到的混合料依次进行烘干、研磨、过筛;然后将过筛后的混合料进行预烧,预烧结束后自然冷却到室温;然后二次球磨并烘干得到预制粉料;
步骤二:将步骤一得到的预制粉料研磨并过筛得到筛选粉料,然后向筛选粉料中加入聚乙烯醇溶液,混合均匀得到造粒后的粉料;
步骤三:将步骤二得到的造粒后的粉料静置,然后放入模具中,压成坯件;
步骤四:将步骤三得到的坯件在纯氧条件下进行一次烧结,一次烧结结束后冷却,出炉得到一次烧结陶瓷片;
步骤五:将步骤四得到的一次烧结陶瓷片在纯氧条件下进行二次烧结,二次烧结结束后冷却,出炉得到二次烧结陶瓷片;
步骤六:将步骤五得到的二次烧结陶瓷片打磨后晾干,在其上下表面涂覆银浆,然后煅烧,煅烧后冷却,即得到高储能密度无铅反铁电陶瓷材料Ag(Nb0.8Ta0.2)O3
2.根据权利要求1所述的一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,其特征在于,步骤一中球磨溶剂采用异丙醇,球磨介质采用氧化锆球,球磨转速为350转/分,一次球磨时间为12小时,二次球磨时间为4小时;步骤一中过筛筛网为80目,一次球磨和二次球磨后烘干温度均为80℃。
3.根据权利要求1所述的一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,其特征在于,步骤一中预烧具体为在纯氧条件下,在800~950℃的温度下保温6小时。
4.根据权利要求1所述的一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,其特征在于,步骤二中过筛取60~100目之间的粉料。
5.根据权利要求1所述的一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,其特征在于,步骤二中聚乙烯醇溶液的加入质量为筛选粉料质量的5%,且聚乙烯醇溶液的质量浓度为5%。
6.根据权利要求1所述的一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,其特征在于,步骤三中将造粒后的粉料静置24小时,再将粉料放入直径为10mm的不锈钢模具中,在300-700MPa压力下压成圆片状坯件。
7.根据权利要求1所述的一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,其特征在于,步骤四中将坯件放入Al2O3瓷舟中,将瓷舟放入管式气氛炉中通入流动的纯氧,温度升至600℃,保温2小时之后,进一步升温到1080-1100℃并保温6小时,冷却到500℃后,然后自然冷却到室温,出炉得到一次烧结陶瓷片。
8.根据权利要求1所述的一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,其特征在于,步骤五中将一次烧结陶瓷片放入Al2O3瓷舟中,将瓷舟放入管式气氛炉中之后,通入流动的纯氧,升温至1090-1110℃进行二次烧结,保温6小时,冷却到500℃后,自然冷却到室温,出炉得到二次烧结陶瓷片。
9.根据权利要求1所述的一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,其特征在于,步骤六中将二次烧结陶瓷片打磨至厚度为0.3~0.4mm,自然晾干,在其上下表面涂覆银浆。
10.根据权利要求1所述的一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法,其特征在于,步骤六中煅烧具体为将上下表面涂覆银浆的二次烧结陶瓷片置于炉中升温至600℃,保温20min,然后自然冷却至室温。
CN201810231029.9A 2018-03-20 2018-03-20 一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法 Active CN108424122B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810231029.9A CN108424122B (zh) 2018-03-20 2018-03-20 一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810231029.9A CN108424122B (zh) 2018-03-20 2018-03-20 一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法

Publications (2)

Publication Number Publication Date
CN108424122A true CN108424122A (zh) 2018-08-21
CN108424122B CN108424122B (zh) 2020-07-28

Family

ID=63158587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810231029.9A Active CN108424122B (zh) 2018-03-20 2018-03-20 一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN108424122B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002875A (zh) * 2019-05-09 2019-07-12 南昌航空大学 一种利用钽改性铌酸钠-锆酸钙基反铁电陶瓷储能的方法
CN111170739A (zh) * 2020-01-19 2020-05-19 南京邮电大学 一种高储能铌酸银基无铅反铁电陶瓷及其制备方法
CN111233472A (zh) * 2020-02-19 2020-06-05 内蒙古科技大学 一种多功能铌酸银陶瓷在电卡效应致冷技术中的应用
CN114956817A (zh) * 2022-06-17 2022-08-30 陕西科技大学 一种高储能密度的铌酸银钠基无铅反铁电陶瓷材料及其制备方法
CN115159984A (zh) * 2022-06-27 2022-10-11 北京科技大学 一种钐钽共掺的铌酸银基多层介电储能材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070117913A1 (en) * 2005-11-23 2007-05-24 Qi Tan Antiferroelectric polymer composites, methods of manufacture thereof, and articles comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070117913A1 (en) * 2005-11-23 2007-05-24 Qi Tan Antiferroelectric polymer composites, methods of manufacture thereof, and articles comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEI ZHAO ET AL.: "Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance", 《ADVANCED MATERIALS》 *
杨华斌等: "二次烧结对KNN-LS-Bi(Mg0.5Ti0.5)O3无铅压电陶瓷性能的影响", 《四川大学学报(工程科学版)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002875A (zh) * 2019-05-09 2019-07-12 南昌航空大学 一种利用钽改性铌酸钠-锆酸钙基反铁电陶瓷储能的方法
CN111170739A (zh) * 2020-01-19 2020-05-19 南京邮电大学 一种高储能铌酸银基无铅反铁电陶瓷及其制备方法
CN111233472A (zh) * 2020-02-19 2020-06-05 内蒙古科技大学 一种多功能铌酸银陶瓷在电卡效应致冷技术中的应用
CN114956817A (zh) * 2022-06-17 2022-08-30 陕西科技大学 一种高储能密度的铌酸银钠基无铅反铁电陶瓷材料及其制备方法
CN115159984A (zh) * 2022-06-27 2022-10-11 北京科技大学 一种钐钽共掺的铌酸银基多层介电储能材料及其制备方法

Also Published As

Publication number Publication date
CN108424122B (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
CN108424122A (zh) 一种宽温度稳定性的高储能密度无铅反铁电陶瓷材料的制备方法
CN108439981B (zh) 一种宽温区介电稳定性和高储能密度的铌酸银基反铁电材料及其制备方法
CN109574656A (zh) 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法
CN110451955B (zh) 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法
CN108623300B (zh) 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN110540423A (zh) 钛酸铋钠基高储能密度和功率密度陶瓷及制备方法和应用
CN111548156A (zh) 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN112266247A (zh) 一种高性能铌酸钾钠基无铅储能陶瓷的制备方法
CN109180181A (zh) 一种无铅弛豫反铁电陶瓷储能材料及其制备方法
CN107602115B (zh) 一种无铅高储能密度和宽温稳定陶瓷材料及其制备方法
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN113135753A (zh) 一类低电场驱动高效储能特性的无铅弛豫陶瓷材料及其制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN107445611B (zh) 一种无铅低损耗高储能密度陶瓷材料及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN115376825B (zh) 一种兼具高储能密度和储能效率的nn基储能陶瓷块体材料及其制备方法
CN111217604A (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷及制备方法
CN114149261B (zh) 一种铪酸铅反铁电陶瓷材料及其制备方法
CN113683410B (zh) 具有负电卡效应的钛酸铋基铋层状结构无铅压电陶瓷及其制备方法
CN109279883A (zh) 一种低温烧结硅酸锶铜系介质陶瓷及其制备方法和应用
CN104788098B (zh) 一种双参数测温复相热敏陶瓷材料及其制备方法
CN108249918B (zh) 低温烧结巨介电常数细晶陶瓷材料及制备方法及应用
Huybrechts et al. Influence of high oxygen partial pressure annealing on the positive temperature coefficient of Mn-doped Ba0· 8Sr0· 2TiO3

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant