CN108379549A - 含酪丝缬肽并基于d构型短肽自组装的抗癌超分子水凝胶的制备方法与应用 - Google Patents

含酪丝缬肽并基于d构型短肽自组装的抗癌超分子水凝胶的制备方法与应用 Download PDF

Info

Publication number
CN108379549A
CN108379549A CN201810061416.2A CN201810061416A CN108379549A CN 108379549 A CN108379549 A CN 108379549A CN 201810061416 A CN201810061416 A CN 201810061416A CN 108379549 A CN108379549 A CN 108379549A
Authority
CN
China
Prior art keywords
anticancer
fmoc
peptide
ysv
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810061416.2A
Other languages
English (en)
Other versions
CN108379549B (zh
Inventor
刘鉴峰
任春华
刘金剑
张玉民
杨翠红
杨丽军
黄帆
高阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Radiation Medicine of CAMMS
Original Assignee
Institute of Radiation Medicine of CAMMS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Radiation Medicine of CAMMS filed Critical Institute of Radiation Medicine of CAMMS
Priority to CN201810061416.2A priority Critical patent/CN108379549B/zh
Publication of CN108379549A publication Critical patent/CN108379549A/zh
Application granted granted Critical
Publication of CN108379549B publication Critical patent/CN108379549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/06Tripeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种含酪丝缬肽的抗癌超分子水凝胶的制备方法与应用。以D构型的五肽NapGDFDFDY作为自组装成胶因子,将抗癌短肽YSV共价修饰到凝胶五肽的C末端,通过多肽固相合成得到目的产物NapGDFDFDYGYSV,经加热‑冷却后形成宏观可见的水凝胶,用于提高YSV的抗癌活性。本发明的抗癌超分子水凝胶微观形貌由纳米纤维构成,在体内外对包括肝癌在内的多种肿瘤表现出较好的抑制作用。其制备简单,产率高,成本低,在体内具有良好的生物相容性和降解性,容易向临床方向转化。与单独抗癌短肽YSV相比,本发明得到的纳米材料在内外能够显著提高其抗蛋白酶降解的能力和抑制肿瘤生长的效果,具有良好的应用前景。

Description

含酪丝缬肽并基于D构型短肽自组装的抗癌超分子水凝胶的 制备方法与应用
技术领域
本发明属于纳米生物医药材料领域,涉及一种含酪丝缬肽(YSV)并基于D构型短肽自组装的新型抗癌超分子水凝胶的制备方法及其在增强抗癌活性中的应用。
背景技术
癌症是导致世界范围内死亡的主要疾病,如何战胜癌症是现代科学技术面临的巨大挑战。在针对癌症治疗的多种方式中,化疗由于具有高效性成为大多数癌症治疗不可缺少的选择。近来,多肽类抗癌药物作为一种新的化疗药物受到了越来越多研究者的关注。相比于传统化疗药物,多肽类抗癌药具有溶解性好、免疫原性低及生物相容性好等优点。但同时也面临着细胞摄取低、组织渗透差、生物利用度低、从血液或肾脏快速清除以及容易被蛋白酶降解稳定性差等缺陷。因此,如何对多肽类抗癌药物进行合理有效的结构修饰以解决这些缺陷并提高其抗癌活性是推进其临床应用面临的主要挑战之一。
为了解决传统化疗局限,科研人员发展了多种纳米载体包括聚合物水凝胶、脂质体、囊泡、聚合物纳米粒子以及无机材料等来做为药物载体。在这些纳米载体的辅助下,药物能够通过物理包裹或化学交联被递送到体内病灶位点实现选择性和响应性释放,从而相比于游离药物表现出更好的治疗效果和更少的副作用。其中,基于多肽自组装形成的超分子水凝胶由于具备容易设计和合成、成本低以及生物相容性好等优点,在药物递送中表现出了较大的应用潜能。多肽水凝胶是小分子多肽在水中通过非共价键相互作用形成三维网状纳米纤维后将水分子包裹于其中而形成的一类宏观可见的凝胶。其中,作为网状堆积结构单元的多肽一般由天然存在的L构型氨基酸组成,容易被体内存在的蛋白酶催化降解导致多肽纳米纤维在体内稳定性较差。为了解决这一问题,研究人员用蛋白酶不易降解的D构型氨基酸取代L构型氨基酸,制备了多种基于D构型多肽自组装的水凝胶或纳米纤维。通过非共价的方式,疏水性化疗药物包括紫杉醇、喜树碱、阿霉素等均可被包裹在水凝胶中,从而增加这些药物分子的溶解性达到更好的治疗效果。但是,这种非共价物理包裹的方式存在药物负载率低、药物分子与载体易分离、可重复性差等问题。如何解决这些问题对进一步推进疏水性抗癌药物在临床治疗中的应用具有重要意义。
酪丝缬肽(YSV)是我国自主研发的小肽类抗癌药物,来源于猪脾脏组织经高通量筛选获得,具有分子量小、毒性低等优势。经前期实验证明,酪丝缬肽能够通过干扰细胞复制周期和抑制组蛋白去乙酰化酶活性发挥抗肿瘤作用,对非小细胞肺癌、肝癌等多种肿瘤均有一定的抗癌活性,目前已经被批准进入临床前期研究。然而,前期实验结果均表明酪丝缬肽只有在较高浓度下才能发挥疗效,并且在体内被蛋白酶快速降解具有极短的半衰期,从而导致临床推广及应用受到极大的限制。因此,寻找合适有效的方法对酪丝缬肽进行结构修饰和改造以提高其抗蛋白酶降解的稳定性和抗癌活性是迫切需要解决的问题,对于将其真正应用于临床癌症治疗从而造福患者和社会具有重要的意义。
发明内容
本发明的目的是解决L构型氨基酸及L构型活性肽抗蛋白酶降解能力差的问题,提供一种含酪丝缬肽并基于D构型短肽自组装的新型抗癌超分子水凝胶及其制备方法与应用。并对本发明用于增强酪丝缬肽稳定性和抗癌活性的能力进行评估。
本发明技术方案:
一种含酪丝缬肽(YSV)并基于D构型短肽自组装的新型抗癌超分子水凝胶,它是利用多肽Fmoc固相合成法,将抗癌短肽YSV共价修饰到成胶短肽NapGDFDFDY的C末端(羧基端),合成目的多肽NapGDFDFDYGYSV,再经过反相高效液相色谱分离纯化得到纯度大于95%的目的产物NapGDFDFDYGYSV纯品,该产物能够以大于1mg/mL的浓度在PBS中经加热-冷却形成肉眼可见的水凝胶。
该抗癌超分子水凝胶具有良好的生物相容性,并且能够克服酪丝缬肽自身容易被蛋白酶降解的缺点,提高其稳定性和生物利用度,并提高酪丝缬肽细胞摄取量,增强其在体外和体内对多种癌细胞的抗癌活性。同时,具有制备简单、生产成本低且产率高的优势,使得这种抗癌超分子水凝胶易于进行临床转化应用。
本发明进一步公开了含酪丝缬肽(YSV)并基于D构型短肽自组装的新型抗癌超分子水凝胶的制备方法,其步骤如下:
1)将固相合成得到的NapGDFDFDYGYSV粗品溶于DMSO,溶解后过0.25μm有机滤膜,过滤后的样品使用反相高效液相色谱进行分离纯化,收集目的产物峰,将收集得到的产物溶液进行真空减压旋转浓缩,除去甲醇后加入适量超纯水于-80℃冰箱冷冻,经冷冻干燥后得到白色粉末状多肽纯品;
2)将多肽纯品溶于PBS中,并用碳酸钠调节pH至7.0~7.4,配置成终浓度大于1mg/mL的溶液;使用移液枪吸取100~500μL样品溶液于玻璃小瓶中,在酒精灯上加热至样品完全溶解后,静置于桌面上冷却,5~10分钟内即可形成宏观可见的水凝胶。
其中NapGDFDFDYGYSV粗品的固相合成制备步骤如下:
1)称取0.5~1g三苯基甲基氯树脂于固相合成管中,加入5~8倍体积的二氯甲烷使树脂充分溶胀后挤出溶剂;
2)称取Fmoc-Val-OH于20mL的小瓶中,依次加入DIEA、适量(约10~15mL)二氯甲烷使氨基酸充分溶解后用吸管转移至步骤1)中的固相合成管中,室温下振荡反应1小时;其中,Fmoc-Val-OH与DIEA的摩尔质量比是1:2;
3)挤出步骤2)中的反应液,用二氯甲烷洗涤,加入10~15mL封端液封闭树脂上未反应的活性氯原子,其中封端液的配比为二氯甲烷:甲醇:DIEA=17:2:1;
4)封闭15~30分钟后,挤出反应液,用二氯甲烷洗涤,再用N,N-二甲基甲酰胺(DMF)洗涤,之后加入10~15mL体积比为20%的哌啶反应30min脱除第一个氨基酸上的Fmoc保护基使之裸露出活性氨基;
5)挤出步骤4)中的反应液,DMF洗涤;
6)称取Fmoc-Ser(tBu)-OH及HBTU于20mL的小瓶中,加入DIEA,加入适量(约10~15mL)DMF使氨基酸充分溶解后用吸管转移至固相合成管中,室温下振荡反应2小时;其中,Fmoc-Ser(tBu)-OH、HBTU与DIEA的用量比为1:1:2;
7)反应完成后,挤出步骤6)中的反应液,DMF洗涤,加入10~15mL体积比为20%哌啶反应30min,反应结束后再用DMF洗涤;
8)重复上述6)-7)的步骤,按顺序依次加入Fmoc-Tyr(tBu)-OH、Fmoc-D-Phe-OH、Fmoc-D-Tyr(tBu)-OH、Fmoc-D-Phe-OH、Fmoc-D-Phe-OH、Fmoc-Gly-OH直至最后的萘乙酸,每个氨基酸的用量均是第一个氨基酸的2~3倍;
9)待肽链全部完成后,挤出反应液,用DMF洗涤后再用二氯甲烷洗涤,加入5~10mL三氟乙酸、水以及三异丙基硅烷(三者的体积比为95%:2.5%:2.5%)的混合液反应30~60min将多肽从树脂上切下来;
10)收集多肽切割液于100mL的圆底烧瓶中,真空减压旋转浓缩除去三氟乙酸,加入10~20mL无水乙醚使多肽粗品析出,静置后轻轻弃去上面的无水乙醚,真空泵将多肽粗品抽干后于-20℃保存待纯化。
本发明更进一步公开了含酪丝缬肽(YSV)并基于D构型短肽自组装的新型抗癌超分子水凝胶在制备增强抗癌活性药物方面的应用;所述的增强抗癌活性指的是在体内、体外能显著增强YSV的抗癌效果。
本发明的优点和有益效果:
本发明利用自组装D构型多肽作为纳米载体,将酪丝缬肽共价修饰D构型多肽C末端,得到含酪丝缬肽的NapGDFDFDYGYSV自传输超分子水凝胶,用以增强酪丝缬肽抗癌活性。本发明制备的抗癌超分子水凝胶体系具备以下势:1)能够克服酪丝缬肽自身容易被蛋白酶降解的缺点,提高其稳定性;2)提高酪丝缬肽细胞摄取量,增强其在体外和体内对多种癌细胞的抗癌活性;3)构成超分子水凝胶的纳米纤维在体内具有良好的生物相容性;4)做为自传输药物水凝胶,能够有效避免额外载体成分降解排泄可能带来的感染和副作用;5)生产成本低且产率高能够为以后的实际应用提供方便。
本发明制备方法具有如下的优势:1)制备简单,成本低、产率高并且重复性好;2)原料全部由氨基酸构成,具有良好的生物相容性和生物可降解性,容易向临床方向转化;3)可以显著提高抗蛋白酶降解的能力,提高酪丝缬肽的稳定性;4)与单独酪丝缬肽相比,NapGDFDFDYGYSV在体内外的抗癌活性均得到显著提高。综上,本发明的含酪丝缬肽的新型抗癌超分子水凝胶具有很好的临床应用前景。
附图说明
图1为NapGFFYGYSV和NapGDFDFDYGYSV的化学结构及加热冷却后分别形成悬浊液和水凝胶的照片;
图2为制备的NapGFFYGYSV和NapGDFDFDYGYSV纳米结构表征(A.NapGFFYGYSV悬浊液的透射电镜(TEM)照片;B.NapGDFDFDYGYSV水凝胶的透射电镜(TEM)照片;C.NapGFFYGYSV和NapGDFDFDYGYSV的圆二色谱;D.NapGFFYGYSV和NapGDFDFDYGYSV自组装的关键胶束浓度);
图3为YSV、NapGFFYGYSV和NapGDFDFDYGYSV三种化合物体外抑制不同肿瘤细胞生长所需的IC50值(A)、在不同细胞中的摄取量(B)、体外被蛋白酶降解速率比较(C)以及在小鼠体内生物相容性比较(D);
图4为YSV、NapGFFYGYSV和NapGDFDFDYGYSV三种化合物在小鼠体内对人源肝癌细胞的抑制效果比较:不同药物处理后各组小鼠的相对肿瘤体积(A);不同药物处理后各组小鼠的体重变化(B);不同药物处理后各组小鼠肿瘤区域的生物发光(C)以及不同药物处理后各组小鼠的生存率(D)。
具体实施方式
下面通过具体的实施例叙述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施例应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施例中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。
本发明所用原料三苯基氯树脂、Fmoc氨基酸、二氯甲烷、N,N-二甲基甲酰胺(DMF)、甲醇、N,N-二异丙基乙胺(DIPEA)、三氟乙酸、三异丙基硅烷均有市售。
实施例1
一种含酪丝缬肽(YSV)并基于D构型短肽自组装的新型抗癌超分子水凝胶,它是将抗癌短肽YSV共价修饰到成胶因子NapGDFDFDY的C末端,利用多肽Fmoc固相合成法合成目的多肽NapGDFDFDYGYSV,再经过反相高效液相色谱分离纯化得到纯品,在PBS中经加热冷却形成肉眼可见的水凝胶。具体制备步骤如下:
一、NapGDFDFDYGYSV的固相合成,步骤如下:
1)称取0.5g三苯基甲基氯树脂于固相合成管中,加入10mL二氯甲烷使树脂充分溶胀后挤出溶剂;
2)称取0.5mmol Fmoc-Val-OH于20mL的小瓶中,依次加入1mmol DIEA、10mL二氯甲烷使氨基酸充分溶解后用吸管转移至步骤1)中的固相合成管中,室温下振荡反应1小时;
3)挤出步骤2)中的反应液,用二氯甲烷洗涤,加入10mL封端液封闭树脂上未反应的活性氯原子,其中封端液的成分为8.5mL二氯甲烷加1mL甲醇加0.5mL DIEA;
4)封闭30分钟后,挤出反应液,用二氯甲烷洗涤,再用N,N-二甲基甲酰胺(DMF)洗涤,之后加入12mL 20%的哌啶反应30min脱除第一个氨基酸上的Fmoc保护基使之裸露出活性氨基;
5)挤出步骤4)中的反应液,DMF洗涤;
6)称取1mmol Fmoc-Ser(tBu)-OH及1mmol HBTU于20mL的小瓶中,加入2mmolDIEA,加入12mL DMF使氨基酸充分溶解后用吸管转移至固相合成管中,室温下振荡反应2小时;
7)反应完成后,挤出步骤6)中的反应液,DMF洗涤,加入15mL 20%哌啶反应30min,反应结束后再用DMF洗涤;
8)重复上述6)-7)的步骤,按顺序依次加入Fmoc-Tyr(tBu)-OH、Fmoc-D-Phe-OH、Fmoc-D-Tyr(tBu)-OH、Fmoc-D-Phe-OH、Fmoc-D-Phe-OH、Fmoc-Gly-OH直至最后的萘乙酸,每个氨基酸的用量均是第一个氨基酸的2倍;
9)待肽链全部完成后,挤出反应液,用DMF洗涤后再用二氯甲烷洗涤,加入10mL三氟乙酸、水以及三异丙基硅烷(三者的体积比为95%:2.5%:2.5%)的混合液反应40min将多肽从树脂上切下来;
10)收集多肽切割液于100mL的圆底烧瓶中,真空减压旋转浓缩除去三氟乙酸,加入15mL无水乙醚使多肽粗品析出,静置后轻轻弃去上面的无水乙醚,真空泵将多肽粗品抽干后于-20℃保存待纯化。
二、NapGDFDFDYGYSV超分子水凝胶制备,步骤如下:
1)上述将固相合成得到的NapGDFDFDYGYSV粗品溶于DMSO,溶解后过0.25μm有机滤膜,过滤后的样品使用反相高效液相色谱进行分离纯化,收集目的产物峰,将收集得到的产物溶液进行真空减压旋转浓缩,除去甲醇后加入20mL超纯水于-80℃冰箱冷冻,经冷冻干燥后得到白色粉末状多肽纯品;
2)将多肽纯品溶于PBS中,并用碳酸钠调节pH至7.4,配置成终浓度为2mg/mL的溶液;使用移液枪吸取200μL样品溶液于玻璃小瓶中,在酒精灯上加热至样品完全溶解后,静置于桌面上冷却,10分钟内即可形成宏观可见的水凝胶。
实施例2
一种含酪丝缬肽(YSV)并基于L构型短肽自组装的悬浊液的制备,它是将抗癌短肽YSV共价修饰到成胶因子NapGFFY的C末端,利用多肽Fmoc固相合成法合成目的多肽NapGFFYGYSV,再经过反相高效液相色谱分离纯化得到纯品,在PBS中经加热冷却形成肉眼可见的悬浊液。具体制备步骤如下:
一、多肽NapGFFYGYSV的合成步骤如下:
NapGFFYGYSV的合成方法与实施例1中NapGDFDFDYGYSV的合成方法相同,不同的是所有氨基酸均为L构型氨基酸。
二、NapGFFYGYSV悬浊液制备,步骤如下:
1)固相合成得到的NapGFFYGYSV粗品溶于DMSO,溶解后过0.25μm有机滤膜,过滤后的样品使用反相高效液相色谱进行分离纯化,收集目的产物峰,将收集得到的产物溶液进行真空减压旋转浓缩,除去甲醇后加入15mL超纯水于-80℃冰箱冷冻,经冷冻干燥后得到白色粉末状多肽纯品;
2)将多肽纯品NapGFFYGYSV溶于PBS中,并用碳酸钠调节pH至7.4,配置成终浓度为2mg/mL的溶液;使用移液枪吸取200μL样品溶液于玻璃小瓶中,在酒精灯上加热至样品完全溶解后,静置于桌面上冷却,1~2分钟内即形成稳定的悬浊液。
实施例3对上述实施例1和实施例2步骤二中制备的两种多肽纳米结构的物理化学性质进行表征
参见附图2,给出了制备的两种多肽纳米结构的物理化学性质表征结果,步骤如下:
1)分别吸取20μL实施例1和实施例2步骤二中制备得到的悬浊液及水凝胶于300目铜网上,静置1~2min,用滤纸吸除多余液体,在铜网上滴加20μL醋酸铀染色1~2min,滤纸吸走多余液体后置于干燥器中过夜干燥,用透射电子显微镜(加速电压为100kV)检测。结果显示NapGFFYGYSV形成的悬浊液微观形貌为直径约80nm的短纤维,而NapGDFDFDYGYSV形成的水凝胶微观形貌则为细而长的纤维并交织成网状结构。
2)用圆二色谱(CD)测定所制备的纳米结构的二级结构,图2C显示NapGFFYGYSV形成悬浊液与NapGDFDFDYGYSV形成的水凝胶均由β片层构成;
3)用DLS来测定不同纳米结构的关键胶束浓度(CMC),图2D显示NapGFFYGYSV的CMC值为75μM,NapGDFDFDYGYSV的CMC值为180μM。实施例4对实施例1和实施例2制备的纳米结构以及游离酪丝缬肽(YSV)的抗蛋白酶降解能力以及体内外抗癌活性进行综合评价,具体实施步骤如下:
附图3A给出了在体外游离酪丝缬肽(YSV)以及组装形成不同纳米结构后对多种肿瘤细胞的抑制效果,步骤如下:
1)将BEL-7402、HeLa以及MCF-7细胞以每空8000的密度接种于96孔板,置于37°细胞培养箱过夜培养;
2)吸除细胞上的培养基,将化合物用培养基稀释成不同浓度后加到细胞中,37℃细胞培养箱孵育48小时;
3)在每个细胞孔中加入10uL MTT溶液,继续在37℃细胞培养箱孵育4小时;
4)吸除含MTT的培养基,每个孔中加入100μL的DMSO溶液以溶解活细胞产生的蓝色结晶状物质,在微型摇床上快速振荡3min后放入酶标仪,读取490nm波长下的紫外吸收值;
5)得出不同药物浓度下的细胞存活率,利用GraphPad Prism 5计算出游离药物及纳米药物对不同癌细胞的半抑制浓度(IC50)。
附图3B给出了在体外游离酪丝缬肽(YSV)以及组装形成不同纳米结构后在不同细胞中的摄取量,步骤如下:
1)将每种细胞均以每孔20万的密度接种于6孔板中,37℃过夜培养;
2)待细胞贴壁伸展后,将含有相同摩尔量化合物(200μM)的培养基分别加入到相应孔板中,每个细胞每个化合物均设立三个平行,37℃继续培养4个小时;
3)去除含药物的培养基,用PBS洗3遍,每孔中加入500μL细胞裂解液和500μLDMSO溶解细胞内的化合物。收集溶液,1570g转速下离心10分钟;
4)上清过滤后,使用液质联用仪(LC-MS)上样分析,根据每个化合物浓度-峰面积标准曲线,定量出每个化合物在每个细胞中的含量。
附图3C通过体外蛋白酶K降解实验来评估制备的纳米药物对YSV稳定性提高的能力,步骤如下:
1)将NapGDFDFDYGYSV超分子水凝胶以及游离酪丝缬肽(YSV)溶液均稀释成浓度为0.2mg/mL的样品,分装于1.5mL的离心管中,每个样品体积为100μL;
2)每个样品管中均加入相同量的蛋白酶K,蛋白酶K的最终浓度为7U/mL;
3)在预先设定好的时间点0.5h、1h、2h、4h、8h、12h以及24h分别向每个样品管中加入500μL的甲醇,终止蛋白酶K的活性;
4)样品过滤后,使用液质联用仪(LC-MS)分析得到每个样品随时间变化的降解谱图,定量出每个样品随时间变化的降解率曲线。
附图3D通过血液学分析评估含酪丝缬肽的纳米材料的体内生物相容性,步骤如下:
1)6-8周健康的BALB/C小鼠随机分成四组,每组5只;
2)将稀释后的酪丝缬肽纳米材料以及酪丝缬肽溶液分别以10mg/kg以及3.3mg/kg的剂量通过尾静脉注射进小鼠体内;连续注射两天;
3)第三天,采用眼球取血的方式对每只小鼠进行采血,每80μL血液样品加入20μL抗凝剂,充分混合均匀后在自动血液分析器上进行分析。
附图4通过体内抑瘤实验来评估制备的纳米药物对YSV抗癌活性提高的能力,步骤如下:
1)将人源肝癌细胞BEL-7402以密度接种于裸鼠左侧腹背部,待肿瘤长到100mm3将荷瘤小鼠随机分成4组:PBS对照组、YSV组、NapGFFYGYSV以及NapGDFDFDYGYSV组,每组6只小鼠。
2)将PBS,YSV(3.6mg/mL)和纳米药物(10mg/mL)以尾静脉注射的方式给药,三天给药一次,共给药4次。期间每两天测量一次小鼠肿瘤体积和体重,直到第一次给药结束后的第21天。后续继续观察小鼠存活状况至结束测量后的第30天,得出各组小鼠的存活率曲线。

Claims (4)

1.一种含酪丝缬肽(YSV)并基于D构型短肽自组装的抗癌超分子水凝胶,其特征在于:它是将抗癌短肽YSV共价修饰到成胶因子NapGDFDFDY的C末端,利用多肽Fmoc固相合成法合成目的多肽;经过反相高效液相色谱分离纯化后得到纯度大于95%的目的产物NapGDFDFDYGYSV,该产物能够以大于1mg/mL的浓度在PBS中经加热-冷却形成肉眼可见的水凝胶。
2.一种权利要求1所述含酪丝缬肽(YSV)并基于D构型短肽自组装的抗癌超分子水凝胶的制备方法,其特征在于步骤如下:
1)将固相合成得到的NapGDFDFDYGYSV粗品溶于DMSO,溶解后过0.25μm有机滤膜,过滤后的样品使用反相高效液相色谱进行分离纯化,收集目的产物峰,将收集得到的产物溶液进行真空减压旋转浓缩,除去甲醇后加入超纯水于-80℃冰箱冷冻,经冷冻干燥后得到白色粉末状多肽纯品;
2)将多肽纯品溶于PBS中,并用碳酸钠调节pH至7.0~7.4,配置成终浓度大于1mg/mL的溶液;使用移液枪吸取100~500μL样品溶液于玻璃小瓶中,加热至样品完全溶解后,静置于桌面上冷却,5~10分钟内即可形成宏观可见的水凝胶。
3.根据权利要求2所述的制备方法,其特征在于,所述NapGDFDFDYGYSV粗品的固相合成步骤如下:
1)称取0.5~1g三苯基甲基氯树脂于固相合成管中,加入5~8倍体积的二氯甲烷使树脂充分溶胀后挤出溶剂;
2)称取Fmoc-Val-OH于20mL的小瓶中,依次加入DIEA、适量二氯甲烷使氨基酸充分溶解后用吸管转移至步骤1)中的固相合成管中,室温下振荡反应1小时;其中,Fmoc-Val-OH与DIEA的摩尔质量比是1:2;
3)挤出步骤2)中的反应液,用二氯甲烷洗涤,加入10~15mL封端液封闭树脂上未反应的活性氯原子,其中封端液的配比为二氯甲烷:甲醇:DIEA=17:2:1;
4)封闭15~30分钟后,挤出反应液,用二氯甲烷洗涤,再用N,N-二甲基甲酰胺(DMF)洗涤,之后加入10~15mL体积比为20%的哌啶反应30min脱除第一个氨基酸上的Fmoc保护基使之裸露出活性氨基;
5)挤出步骤4)中的反应液,DMF洗涤;
6)称取Fmoc-Ser(tBu)-OH及HBTU于20mL的小瓶中,加入DIEA以及适量DMF使氨基酸充分溶解后用吸管转移至固相合成管中,室温下振荡反应2小时;其中,Fmoc-Ser(tBu)-OH、HBTU与DIEA的摩尔质量比为1:1:2;
7)反应完成后,挤出步骤6)中的反应液,DMF洗涤,加入10~15mL体积比为20%的哌啶反应30min,反应结束后再用DMF洗涤;
8)重复上述6)-7)的步骤,按顺序依次加入Fmoc-Tyr(tBu)-OH、Fmoc-D-Phe-OH、Fmoc-D-Tyr(tBu)-OH、Fmoc-D-Phe-OH、Fmoc-D-Phe-OH、Fmoc-Gly-OH直至最后的萘乙酸,每个氨基酸的用量均是第一个氨基酸的2~3倍;
9)待肽链全部完成后,挤出反应液,用DMF洗涤后再用二氯甲烷洗涤,加入5~10mL体积比为95%:2.5%:2.5%的三氟乙酸、水以及三异丙基硅烷的混合液反应30~60min将多肽从树脂上切下来;
10)收集多肽切割液于100mL的圆底烧瓶中,真空减压旋转浓缩除去三氟乙酸,加入10~20mL无水乙醚使多肽粗品析出,静置后轻轻弃去上面的无水乙醚,真空泵将多肽粗品抽干后于-20℃保存待纯化。
4.权利要求1所述含酪丝缬肽(YSV)并基于D构型短肽自组装的抗癌超分子水凝胶在制备增强抗癌活性药物方面的应用;所述的增强抗癌活性指的是在体内、体外能显著增强YSV的抗癌效果。
CN201810061416.2A 2018-01-23 2018-01-23 含酪丝缬肽并基于d构型短肽自组装的抗癌超分子水凝胶的制备方法与应用 Active CN108379549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810061416.2A CN108379549B (zh) 2018-01-23 2018-01-23 含酪丝缬肽并基于d构型短肽自组装的抗癌超分子水凝胶的制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810061416.2A CN108379549B (zh) 2018-01-23 2018-01-23 含酪丝缬肽并基于d构型短肽自组装的抗癌超分子水凝胶的制备方法与应用

Publications (2)

Publication Number Publication Date
CN108379549A true CN108379549A (zh) 2018-08-10
CN108379549B CN108379549B (zh) 2021-04-30

Family

ID=63077454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810061416.2A Active CN108379549B (zh) 2018-01-23 2018-01-23 含酪丝缬肽并基于d构型短肽自组装的抗癌超分子水凝胶的制备方法与应用

Country Status (1)

Country Link
CN (1) CN108379549B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226633A (zh) * 2019-05-17 2019-09-13 浙江国际海运职业技术学院 一种富硒牡蛎小分子蛋白肽固体饮料及其制备方法
CN110560015A (zh) * 2019-08-23 2019-12-13 魏旭榕 纳米水合氧化金属复合水凝胶及污水处理的应用
CN110898230A (zh) * 2019-12-27 2020-03-24 中国医学科学院放射医学研究所 一种基于三氯生的纳米抗生素水凝胶及其制备方法与应用
CN113480601A (zh) * 2021-07-01 2021-10-08 中国医学科学院放射医学研究所 一种螯合铜离子的自组装多肽纳米水凝胶及其制备方法
CN113501864A (zh) * 2021-07-21 2021-10-15 江南大学 一种糖肽或药学上可接受的盐及其制备方法与应用
CN113754730A (zh) * 2021-09-17 2021-12-07 中国药科大学 可以自组装形成ph响应载药水凝胶的多肽、水凝胶及其制备方法和用途
CN114788875A (zh) * 2022-05-25 2022-07-26 中国医学科学院放射医学研究所 一种激活Hippo通路的超分子纳米药物及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05013741A (es) * 2003-06-26 2006-06-27 Cms Peptides Patent Holding Co Peptido biologicamente activo que comprende tirosil-seril-valina (ysv).
CN101704878A (zh) * 2009-12-15 2010-05-12 南开大学 用于生成稳定小分子水凝胶的多肽衍生物
WO2011089216A1 (en) * 2010-01-22 2011-07-28 Ascendis Pharma As Dipeptide-based prodrug linkers for aliphatic amine-containing drugs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05013741A (es) * 2003-06-26 2006-06-27 Cms Peptides Patent Holding Co Peptido biologicamente activo que comprende tirosil-seril-valina (ysv).
CN101704878A (zh) * 2009-12-15 2010-05-12 南开大学 用于生成稳定小分子水凝胶的多肽衍生物
WO2011089216A1 (en) * 2010-01-22 2011-07-28 Ascendis Pharma As Dipeptide-based prodrug linkers for aliphatic amine-containing drugs

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZHIHAO ZHANG等: "Construction of a Supramolecular Drug-Drug Delivery System for Non-Small-Cell Lung Cancer Therapy", 《ACS APPLIED MATERIALS INTERFACES》 *
徐宏艳: "肿瘤靶向D构型多肽纳米纤维作为10-羟基喜树碱载体的研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *
陈鹏: "抗肿瘤寡肽的结构修饰及其稳定性和细胞毒性的初步评价", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226633A (zh) * 2019-05-17 2019-09-13 浙江国际海运职业技术学院 一种富硒牡蛎小分子蛋白肽固体饮料及其制备方法
CN110560015A (zh) * 2019-08-23 2019-12-13 魏旭榕 纳米水合氧化金属复合水凝胶及污水处理的应用
CN110898230A (zh) * 2019-12-27 2020-03-24 中国医学科学院放射医学研究所 一种基于三氯生的纳米抗生素水凝胶及其制备方法与应用
CN110898230B (zh) * 2019-12-27 2022-11-22 中国医学科学院放射医学研究所 一种基于三氯生的纳米抗生素水凝胶及其制备方法与应用
CN113480601A (zh) * 2021-07-01 2021-10-08 中国医学科学院放射医学研究所 一种螯合铜离子的自组装多肽纳米水凝胶及其制备方法
CN113501864A (zh) * 2021-07-21 2021-10-15 江南大学 一种糖肽或药学上可接受的盐及其制备方法与应用
CN113754730A (zh) * 2021-09-17 2021-12-07 中国药科大学 可以自组装形成ph响应载药水凝胶的多肽、水凝胶及其制备方法和用途
CN114788875A (zh) * 2022-05-25 2022-07-26 中国医学科学院放射医学研究所 一种激活Hippo通路的超分子纳米药物及其制备方法与应用
CN114788875B (zh) * 2022-05-25 2023-05-30 中国医学科学院放射医学研究所 一种激活Hippo通路的超分子纳米药物及其制备方法与应用

Also Published As

Publication number Publication date
CN108379549B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
CN108379549A (zh) 含酪丝缬肽并基于d构型短肽自组装的抗癌超分子水凝胶的制备方法与应用
CN105061617B (zh) 一种桃胶多糖的提取工艺及其应用
CN103550781B (zh) 树状大分子自组装药物载体及其制备方法和应用
CN104530199B (zh) 一种抗肿瘤多肽及其制备方法和应用
CN105968372B (zh) 一种自发荧光纳米凝胶及其制备方法与应用
CN114806546B (zh) 基于荧光分子的有机框架材料及其制备方法和应用
CN103554307B (zh) 羧甲基‑羟丙基‑β‑环糊精及其制备方法
CN107029239A (zh) 一种多功能靶向分子及其用途
CN111053911A (zh) 还原响应型交联剂及其交联羟基药物分子的制备及应用
CN101181225B (zh) 纳米聚合物胶束药物传递系统和制备方法及应用
CN111249234A (zh) 一种糖基联合细胞穿透肽修饰的脑靶向纳米脂质体及其制备方法与应用
CN108771763A (zh) 一种脑缺血靶向纳米递药系统的制备方法及用途
CN105832668B (zh) 基于聚磷酸酯的叶酸靶向酸敏感核交联载药胶束
CN104311641B (zh) 一种抗术后疤痕的可降解多支化糖肽水凝胶及其制备方法
CN105963703B (zh) 一种抗肿瘤药物的制备方法
CN111233976B (zh) 一种肿瘤靶向多肽及其在制备多肽药物偶联物中的应用
CN101428003B (zh) Rgdf-脂肪醇偶联物介导阿霉素靶向脂质体制备及作为抗肿瘤剂的应用
CN103319710A (zh) 聚(2-乙基-2-恶唑啉)-脂质衍生物及制备方法
CN106399228B (zh) 一种用于三维肝细胞球培养的细胞交联剂材料
CN101897978A (zh) 一种药用生物材料的制备方法
CN101239180B (zh) 一种靶向杀伤肿瘤细胞的复合物、其制备方法及应用
CN107397962A (zh) 一种葡聚糖‑g‑聚(L‑赖氨酸)‑VAPG核酸载体及其制备方法和应用
CN108752429A (zh) 两亲性多肽p13及其制备方法
CN103665370A (zh) 聚乙二醇二丙烯酸酯的制备方法和应用
CN106581691A (zh) 还原响应的靶向聚乙二醇‑聚碳酸酯美登素前药胶束、其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant