CN108358233B - 一种镧系元素氟化物二维多孔纳米片及其制备方法和应用 - Google Patents

一种镧系元素氟化物二维多孔纳米片及其制备方法和应用 Download PDF

Info

Publication number
CN108358233B
CN108358233B CN201810131999.1A CN201810131999A CN108358233B CN 108358233 B CN108358233 B CN 108358233B CN 201810131999 A CN201810131999 A CN 201810131999A CN 108358233 B CN108358233 B CN 108358233B
Authority
CN
China
Prior art keywords
fluoride
lanthanide series
sheet
porous nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810131999.1A
Other languages
English (en)
Other versions
CN108358233A (zh
Inventor
张玉忠
张磊涛
李泓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201810131999.1A priority Critical patent/CN108358233B/zh
Priority to PCT/CN2018/089562 priority patent/WO2019019804A1/zh
Publication of CN108358233A publication Critical patent/CN108358233A/zh
Priority to US16/457,892 priority patent/US10604417B2/en
Application granted granted Critical
Publication of CN108358233B publication Critical patent/CN108358233B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/265Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0207Compounds of Sc, Y or Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/027Compounds of F, Cl, Br, I
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/12Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种镧系元素氟化物二维多孔纳米片的制备方法,属于新型材料领域。本发明在氮气气氛中,将水溶性镧系元素金属盐和乙酸钠水溶液混合,得到混合液;将含氟盐类水溶液加入所述混合液中发生沉淀反应,得到镧系元素氟化物二维多孔纳米片。本发明提供的制备过程无需添加额外的表面活性剂或者模板剂,避免表面活性剂对制备材料表面的污染及减少繁琐的模板剂后处理步骤,可进行规模化生产,实现了一步法规模化制备由纳米颗粒构筑的镧系元素氟化物二维多孔纳米片;也无需其他有机溶剂,避免制备过程对环境的污染。

Description

一种镧系元素氟化物二维多孔纳米片及其制备方法和应用
技术领域
本发明涉及新型材料开发技术领域,尤其涉及一种镧系元素氟化物二维多孔纳米片及其制备方法和应用。
背景技术
自从2004年英国曼切斯特大学的物理学家Andre.K.Geim和Kostya.S.Novoselov通过胶带剥离石墨烯以来,二维材料的研究成为了科学界的热点(参见《Electric fieldeffect in atomically thin carbon films》,Andre.K.Geim等,Science.2004,306:666~669)。除了常见的二维材料外,钙钛矿、有机纳米片、多肽分子以及DNA等均可以通过特定的方法而成为新型的二维材料。
目前,顶到底的剥离和底到顶的合成是两种常用的二维材料制备方法。顶到底的剥离法主要适用于体相为层状材料的二维材料制备,而底到顶的合成方法则适用于所有二维材料的合成。在底到顶的合成方法中,模板法和表面活性剂调制生长法是制备二维材料所常用的两种路径,但是这两种制备路径均需要繁琐的后处理步骤,以去除模板剂和表面活性剂,导致难以实现二维材料的规模化制备。
发明内容
有鉴于此,本发明的目的在于提供一种镧系元素氟化物二维多孔纳米片及其制备方法和应用,提供一步法规模化制备由纳米颗粒构筑的镧系元素氟化物二维多孔纳米片。
为了实现上述发明目的,本发明提供以下技术方案:
一种镧系元素氟化物二维多孔纳米片的制备方法,包括以下步骤:
(1)在氮气气氛中,将水溶性镧系元素金属盐和乙酸钠水溶液混合,得到混合液;
(2)将含氟盐类水溶液加入所述步骤(1)得到的混合液中发生沉淀反应,得到镧系元素氟化物二维多孔纳米片。
优选地,所述步骤(1)中水溶性镧系元素金属盐包括镧系元素的硝酸盐、氯酸盐、氯化物和乙酸盐中的一种或多种。
优选地,所述水溶性镧系盐与乙酸钠的摩尔比为1:1~1:10。
优选地,所述步骤(2)中含氟盐类水溶液的浓度为5~100mg/mL。
优选地,所述步骤(2)中含氟盐类水溶液中的氟元素与混合液中镧系元素的摩尔比为0.1~10:1。
优选地,所述步骤(2)中含氟盐类包括氟化铵、氟化钠、氟化钾、氟硼酸钾、氟硅酸钾和四丁基氟化铵中的一种或多种。
优选地,所述步骤(2)中沉淀反应的时间为0.5~24h。
本发明还提供了上述技术方案所述制备方法制得的镧系元素氟化物二维多孔纳米片,所述镧系元素氟化物二维多孔纳米片是由氟-镧系金属单原子层与层间乙酸根交替堆积排列而成,所述镧系元素氟化物二维多孔纳米片的平均孔径为0.1~10nm。
优选地,所述镧系元素氟化物二维多孔纳米片是由直径为0.5~20nm的纳米颗粒组装而成。
本发明还提供了上述技术方案所述镧系元素氟化物二维多孔纳米片在吸附、催化、电池材料以及气体分离中的应用。
本发明提供了一种镧系元素氟化物二维多孔纳米片的制备方法,在氮气气氛中,将水溶性镧系元素金属盐类和乙酸钠水溶液混合,得到混合液;将含氟盐类水溶液加入所述混合液中发生沉淀反应,得到镧系元素氟化物二维多孔纳米片。本发明提供的制备过程无需添加额外的表面活性剂或者模板剂,避免表面活性剂对制备材料表面的污染及减少繁琐的模板剂后处理步骤,可进行规模化生产,实现了一步法规模化制备由纳米颗粒构筑的镧系元素氟化物二维多孔纳米片;也无需其他有机溶剂,避免制备过程对环境的污染。
进一步地,本发明制得的镧系元素氟化物二维多孔纳米片是由纳米颗粒组装而形成的二维多孔纳米片,实现对材料多孔性的控制,实施例的数据表明,本发明制得的镧系元素氟化物二维多孔纳米片是由直径为0.5~20nm的纳米颗粒组装而成的,镧系元素氟化物二维多孔纳米片的平均孔径为0.1~10nm,对刚果红染料的吸附量介于92~3051mg/g。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明实施例1制得的氟化铈(F-Ce)二维多孔纳米片的场发射电子显微镜照片;
图2为本发明实施例1制得的氟化铈(F-Ce)二维多孔纳米片的透射电子显微镜照片;
图3为本发明实施例1制得的氟化铈(F-Ce)二维多孔纳米片的孔径分布。
具体实施方式
本发明提供了一种镧系元素氟化物二维多孔纳米片的制备方法,包括以下步骤:
(1)在氮气气氛中,将水溶性镧系元素金属盐类镧系盐和乙酸钠水溶液混合,得到混合液;
(2)将含氟盐类水溶液加入所述步骤(1)得到的混合液中发生沉淀反应,得到镧系元素氟化物二维多孔纳米片。
本发明在氮气气氛中,将水溶性镧系元素金属盐类和乙酸钠水溶液混合,得到混合液。在本发明中,优选先将水加入到反应装置中,再通氮除空气。
在本发明中,所述水溶性镧系元素金属盐优选包括镧系元素的硝酸盐、氯酸盐、氯化物和乙酸盐中的一种或多种,更优选为硝酸铈、乙酸铈、氯化镨、氯酸镧、氯化钕、硝酸镱、硝酸铒、硝酸镨、硝酸钕、氯化铈和氯酸镨中的一种或多种,混合物最优选为硝酸铈和硝酸镨的混合物、硝酸铈与硝酸钕和硝酸铒的混合物、氯化铈与氯酸镨和硝酸铒的混合物、氯酸镧与硝酸铈和硝酸钕的混合物。当所述水溶性镧系盐优选为混合物时,本发明对所述混合物中各水溶性镧系盐的用量比没有特殊的限定,采用任意比例的混合物均可。
在本发明中,所述水溶性镧系元素金属盐类与乙酸钠的摩尔比优选为1:1~1:10,更优选为1:3~1:8,最优选为1:5~1:7。在本发明中,所述乙酸钠既是反应物,又可以调控反应过程中纳米材料的结构形态,且不对合成后的纳米材料性能造成影响。
在本发明的实施例中,当实验室方案时,所述水溶性镧系元素金属盐和乙酸钠水溶液混合优选在三口烧瓶中进行。本发明中对所述水溶性镧系元素金属盐、乙酸钠水溶液的加入顺序没有特殊的限定,采用本领域技术人员熟知的加料顺序即可,具体的,如先将水加至三口烧瓶中,通入氮气,再依次加入水溶性镧系元素金属盐类和乙酸钠水溶液。在本发明中,所述三口烧瓶中氮气优选通入5~90min,更优选为10~60min,进一步优选为20~40min,最优选为40min。
得到混合液后,本发明将含氟盐类水溶液加入所述混合液中发生沉淀反应,得到镧系元素氟化物二维多孔纳米片。在本发明中,所述含氟盐类水溶液的浓度优选为5~100mg/mL,更优选为10~50mg/mL,进一步优选为20~30mg/mL。
在本发明中,所述含氟盐类水溶液中的氟元素与混合液中镧系元素的摩尔比优选为0.1~10:1,更优选为0.3~3:1。
在本发明中,所述含氟盐类优选包括氟化铵、氟化钠、氟化钾、氟硼酸钾、氟硅酸钾和四丁基氟化铵中的一种或多种。当所述含氟盐类优选为混合物时,本发明对所述混合物中各含氟盐类的用量比没有特殊的限定,采用任意比例的混合物均可。
本发明对所述含氟盐类水溶液的加入速度没有特殊的限定。
在本发明中,所述沉淀反应的时间优选为0.5~24h,更优选为2~20h,进一步优选为4~12h,最优选为8~16h。在本发明中,所述沉淀反应优选在搅拌条件下进行,本发明对所述搅拌的转速没有特殊的限定。
沉淀反应完成后,本发明优选对沉淀反应产物依次进行固液分离和干燥,得到镧系元素氟化物二维多孔纳米片。在本发明中,所述固液分离优选为离心分离,本发明对所述离心分离的时间、转速没有特殊的限定,能够得到固体产物即可。
得到固体产物后,本发明优选对所述固体产物进行干燥,得到镧系元素氟化物二维多孔纳米片。在本发明中,所述干燥优选为冷冻干燥,本发明对所述冷冻干燥的时间、温度没有特殊的限定,能够除去固体产物中的水分即可。
本发明还提供了上述技术方案所述制备方法制得的镧系元素氟化物二维多孔纳米片,所述镧系元素氟化物二维多孔纳米片是由氟-镧系金属单原子层与层间乙酸根交替堆积排列而成,所述镧系元素氟化物二维多孔纳米片的平均孔径为0.1~10nm。
在本发明中,所述镧系元素氟化物二维多孔纳米片是由直径为0.5~20nm的纳米颗粒组装而成。
本发明还提供了上述技术方案所述镧系元素氟化物二维多孔纳米片在吸附、催化、电池材料以及气体分离过程中的应用。
在本发明中,若将镧系元素氟化物二维多孔纳米片用于染料的吸附过程,基于所制备材料荷正电的特性,所述染料优选为阴离子染料,更有选为刚果红染料。
在本发明中,所述染料吸附试验优选为吸附废水中的染料,所述废水的体积优选为10~500mL,废水中染料的浓度优选为100mg/L~2000mg/L,吸附剂量优选为0.01g~1.0g,吸附时间优选为0.5~3h。
在本发明中,若将镧系元素氟化物二维多孔纳米片用于催化反应,基于所制备材料具有多孔及含有三价铈离子的特性,所述催化应用优选为含酚类废水的催化降解,更优选为苯酚的催化降解。
在本发明的催化应用试验中,所述含苯酚废水的体积优选为10~500mL,废水中酚类污染物的浓度优选为50mg/L~500mg/L,催化剂量优选为0.01g~1.0g,催化降解时间优选为0.5~10h。
下面结合实施例对本发明提供的镧系元素氟化物二维多孔纳米片及其制备方法和应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
取纯水(300mL)至三口烧瓶中,在鼓入氮气20min后,依次加入3.6mmol硝酸铈和3.6mmol乙酸钠固体粉末,其中硝酸铈和乙酸钠的摩尔比例为1:1,经搅拌溶解后将20mL、5mg/mL的氟化铵水溶液加至含硝酸铈的水溶液中,并维持搅拌2h后,最后经离心、冷冻干燥之后即可获得氟化铈(F-Ce)二维多孔纳米片。
本实施例中制得的氟化铈(F-Ce)二维多孔纳米片的场发射电子显微镜照片如图1所示,图中能够清晰地观察到大量二维纳米片堆积在一起;图2中的透射电子显微镜照片再次确认本实施例中制得的产物为氟化铈(F-Ce)二维纳米片;对氟化铈(F-Ce)纳米片进行氮气吸附脱附测试并计算纳米片的孔径分布,如图3所示,结果显示本实施例制备的纳米片为多孔纳米片,平均孔径为3.832nm。
本实施例制备的纳米片吸附性能的评价方法如下:取100mL 1500mg/L的刚果红溶液至250mL的反应容器中,加入0.03g的本实施例中形成的氟化铈(F-Ce)二维多孔纳米片以起始纳米片对刚果红染料的吸附实验,每间隔10min取样并测定染料浓度,测得本实施例中制得的氟化铈(F-Ce)二维多孔纳米片对刚果红染料的吸附时间为2h,最大吸附量可达2880mg/g。
实施例2
取纯水200mL至三口烧瓶中,在鼓入氮气30min后,依次加入1.2mmol乙酸铈和3.6mmol乙酸钠固体粉末,其中乙酸铈和乙酸钠的摩尔比例为1:3,经搅拌溶解后将50mL、10mg/mL的氟化钠溶液加至含乙酸铈的水溶液中,并维持搅拌4h后,最后经离心、冷冻干燥之后即可获得氟化铈(F-Ce)二维多孔纳米片。
实施例3
取纯水200mL至三口烧瓶中,在鼓入氮气10min后,依次加入1mmol氯化镨和5mmol乙酸钠固体粉末,其中氯化镨和乙酸钠的摩尔比例为1:5,经搅拌溶解后将80mL30mg/mL的氟化钾溶液加至含氯化镨的水溶液中,并维持搅拌8h后,最后经离心、冷冻干燥之后即可获得氟化镨(F-Pr)二维多孔纳米片。
实施例4
取纯水50mL至三口烧瓶中,在鼓入氮气40min后,依次加入0.5mmol氯酸镧和4mmol乙酸钠固体粉末,其中氯酸镧和乙酸钠的摩尔比例为1:8,经搅拌溶解后将100mL、40mg/mL的氟硼酸钾溶液加至含氯酸镧的水溶液中,并维持搅拌12h后,最后经离心、冷冻干燥之后即可获得氟化镧(F-La)二维多孔纳米片。
实施例5
取纯水100mL至三口烧瓶中,在鼓入氮气60min后,依次加入0.3mmol氯化钕和3mmol乙酸钠固体粉末,其中氯化钕和乙酸钠的摩尔比例为1:10,经搅拌溶解后将50mL、50mg/mL的四丁基氟化铵溶液加至含氯化钕的水溶液中,并维持搅拌16h后,最后经离心、冷冻干燥之后即可获得氟化钕(F-Nd)二维多孔纳米片。
实施例6
取纯水360mL至三口烧瓶中,在鼓入氮气30min后,依次加入1.2mmol硝酸镱和9.6mmol乙酸钠固体粉末,其中硝酸镱和乙酸钠的摩尔比例为1:8,经搅拌溶解后将50mL、50mg/mL的氟硅酸钾溶液加至含硝酸镱的水溶液中,并维持搅拌8h后,最后经离心、冷冻干燥之后即可获得氟化镱(F-Yb)二维多孔纳米片。
实施例7
取纯水240mL至三口烧瓶中,在鼓入氮气60min后,依次加入0.4mmol硝酸铒和2mmol乙酸钠固体粉末,其中硝酸铒和乙酸钠的摩尔比例为1:5,经搅拌溶解后将50mL、50mg/mL的四丁基氟化铵溶液加至含硝酸铒的水溶液中,并维持搅拌20h后,最后经离心、冷冻干燥之后即可获得氟化铒(F-Er)二维多孔纳米片。
实施例8
取纯水80mL至三口烧瓶中,在鼓入氮气30min后,依次加入硝酸铈、硝酸镨、乙酸钠固体粉末,其中硝酸盐(硝酸铈与硝酸镨摩尔数之和为1mmol)和乙酸钠的摩尔比例为1:8,经搅拌溶解后将100mL、20mg/mL的氟化铵溶液加至含硝酸铈和硝酸镨的水溶液中,并维持搅拌24h后,最后经离心、冷冻干燥之后即可获得氟化铈镨(F-Ce-Pr)二维多孔纳米片。
实施例9
取纯水200mL至三口烧瓶中,在鼓入氮气30min后,依次加入硝酸铈、硝酸钕、硝酸铒、乙酸钠固体粉末,其中硝酸盐(硝酸铈、硝酸钕和硝酸铒摩尔数之和为1.5mmol)和乙酸钠的摩尔比例为1:10,经搅拌溶解后将100mL、50mg/mL的氟化钠溶液加至含硝酸铈、硝酸钕和硝酸铒的水溶液中,并维持搅拌24h后,最后经离心、冷冻干燥之后即可获得氟化铈钕铒(F-Ce-Nd-Er)二维多孔纳米片。
实施例10
取纯水120mL至三口烧瓶中,在鼓入氮气30min后,依次加入氯化铈、氯酸镨、硝酸铒、乙酸钠固体粉末,其中前驱体盐类(氯化铈、氯酸钕和硝酸铒摩尔数之和为1.2mmol)和乙酸钠的摩尔比例为1:5,经搅拌溶解后将30mL、50mg/mL的氟化钾溶液加至含氯化铈、氯酸镨和硝酸铒的水溶液中,并维持搅拌12h后,最后经离心、冷冻干燥之后即可获得氟化铈镨铒(F-Ce-Pr-Er)二维多孔纳米片。
实施例11
取纯水480mL至三口烧瓶中,在鼓入氮气90min后,依次加入氯酸镧、硝酸铈、硝酸钕和乙酸钠固体粉末,其中前驱体盐类(氯酸镧、硝酸铈和硝酸钕摩尔数之和3.6mol)和乙酸钠的摩尔比例为1:7,经搅拌溶解后将70mL、30mg/mL的氟化钾溶液加至含氯酸镧、硝酸铈和硝酸钕的水溶液中,并维持搅拌18h后,最后经离心、冷冻干燥之后即可获得氟化镧铈钕(F-La-Ce-Nd)二维多孔纳米片。
实施例2~11中所制备的镧系元素氟化物二维多孔纳米片,若将其用于染料吸附的应用中,染料对刚果红染料的最大吸附量介于92mg/g至3051mg/g间;若将其应用于催化应用中,针对含酚类废水,其降解率可达70%至98%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种镧系元素氟化物二维多孔纳米片的制备方法,包括以下步骤:
(1)在氮气气氛中,将水溶性镧系元素金属盐类和乙酸钠水溶液混合,得到混合液;所述水溶性镧系元素金属盐类与乙酸钠的摩尔比为1:1~1:10;
(2)将含氟盐类水溶液加入所述步骤(1)得到的混合液中发生沉淀反应,得到镧系元素氟化物二维多孔纳米片。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中水溶性镧系元素金属盐类包括镧系元素的硝酸盐、氯酸盐、氯化物和乙酸盐中的一种或多种。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中含氟盐类水溶液的浓度为5~100mg/mL。
4.根据权利要求1或3所述的制备方法,其特征在于,所述步骤(2)中含氟盐类水溶液中的氟元素与混合液中镧系元素的摩尔比为0.1~10:1。
5.根据权利要求1或3所述的制备方法,其特征在于,所述步骤(2)中含氟盐类包括氟化铵、氟化钠、氟化钾、氟硼酸钾、氟硅酸钾和四丁基氟化铵中的一种或多种。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中沉淀反应的时间为0.5~24h。
7.权利要求1~6任意一项所述制备方法制得的镧系元素氟化物二维多孔纳米片,其特征在于,所述镧系元素氟化物二维多孔纳米片是由氟-镧系金属单原子层与层间乙酸根交替堆积排列而成,所述镧系元素氟化物二维多孔纳米片的平均孔径为0.1~10nm。
8.根据权利要求7所述的镧系元素氟化物二维多孔纳米片,其特征在于,所述镧系元素氟化物二维多孔纳米片是由直径为0.5~20nm的纳米颗粒组装而成。
9.权利要求7~8任一项所述的镧系元素氟化物二维多孔纳米片在吸附、催化、电池材料以及气体分离中的应用。
CN201810131999.1A 2018-02-09 2018-02-09 一种镧系元素氟化物二维多孔纳米片及其制备方法和应用 Active CN108358233B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810131999.1A CN108358233B (zh) 2018-02-09 2018-02-09 一种镧系元素氟化物二维多孔纳米片及其制备方法和应用
PCT/CN2018/089562 WO2019019804A1 (zh) 2018-02-09 2018-06-01 一种镧系元素氟化物二维多孔纳米片及其制备方法和应用
US16/457,892 US10604417B2 (en) 2018-02-09 2019-06-28 Lanthanide fluoride two-dimensional porous nanosheets, and preparation method and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810131999.1A CN108358233B (zh) 2018-02-09 2018-02-09 一种镧系元素氟化物二维多孔纳米片及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108358233A CN108358233A (zh) 2018-08-03
CN108358233B true CN108358233B (zh) 2019-11-26

Family

ID=63005430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810131999.1A Active CN108358233B (zh) 2018-02-09 2018-02-09 一种镧系元素氟化物二维多孔纳米片及其制备方法和应用

Country Status (3)

Country Link
US (1) US10604417B2 (zh)
CN (1) CN108358233B (zh)
WO (1) WO2019019804A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108358233B (zh) 2018-02-09 2019-11-26 天津工业大学 一种镧系元素氟化物二维多孔纳米片及其制备方法和应用
CN109694100B (zh) * 2019-02-01 2021-04-02 渤海大学 一种自牺牲模板法制备LaF3的方法
CN111013409B (zh) * 2019-12-27 2021-12-21 天津工业大学 一种镧系氟化物多孔纳米片填充的混合基质膜及其制备方法与应用
CN111573684A (zh) * 2020-05-22 2020-08-25 山东理工大学 一种二维硅酸铁、硅酸钴纳米片的制备方法
CN111603945A (zh) * 2020-06-08 2020-09-01 天津工业大学 一种离子液体功能化氟化铈多孔纳米片及制备方法和应用、混合基质膜及制备方法和应用
CN112939052B (zh) * 2021-03-22 2022-12-09 北方稀土生一伦高科技有限公司 一种小粒度氧化铈的制备方法
CN113351036B (zh) * 2021-07-09 2023-01-10 天津工业大学 一种镧系元素氟化物二维纳米片膜及其制备方法和应用
CN113912104B (zh) * 2021-10-12 2023-03-28 郑州轻工业大学 一种二维多孔CeOx/SnO2纳米片及其制备方法和应用
CN114405297A (zh) * 2022-01-19 2022-04-29 天津工业大学 一种多孔二维氟-铈纳米材料混合基质膜及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348274B (zh) * 2008-08-27 2011-06-15 西南交通大学 一种制备氟化稀土的方法
CN102153128A (zh) * 2011-05-26 2011-08-17 中国地质科学院矿产综合利用研究所 一种制备氟化钪的方法
CN103641149B (zh) * 2013-12-14 2015-06-17 福建师范大学 一种采用流变相反应法合成单分散六角形稀土氟化物纳米片的方法
CN106673045B (zh) * 2016-12-19 2017-11-14 九江学院 一种超小粒径二氧化铈纳米片材料的制备方法
CN108358233B (zh) 2018-02-09 2019-11-26 天津工业大学 一种镧系元素氟化物二维多孔纳米片及其制备方法和应用

Also Published As

Publication number Publication date
CN108358233A (zh) 2018-08-03
US20190322541A1 (en) 2019-10-24
US10604417B2 (en) 2020-03-31
WO2019019804A1 (zh) 2019-01-31

Similar Documents

Publication Publication Date Title
CN108358233B (zh) 一种镧系元素氟化物二维多孔纳米片及其制备方法和应用
CN106699817B (zh) 一种金属有机框架材料的制备方法及其应用
CN105688813A (zh) 吸附水中磷的磁性石墨烯吸附材料及制备方法和吸附方法
CN104591176A (zh) 一种石墨烯的制备方法
CN108751189A (zh) 高比表面积的铝基mof多孔碳材料的制备与应用
CN101575514A (zh) 一种介孔稀土磷酸盐荧光体及其制备方法
Zhao et al. Facile synthesis of low-cost MnPO4 with hollow grape-like clusters for rapid removal uranium from wastewater
CN111167402B (zh) 一种中空结构的锌钴普鲁士蓝类似物吸附剂及其制备方法和应用
CN112138702A (zh) 三维/二维Ni-Co双金属氧化物/g-C3N4纳米复合材料及其制备方法与应用
CN103754936B (zh) 介孔氧化锰的合成方法
CN104907070A (zh) 一种α-Fe2O3/石墨烯纳米复合材料表面增强拉曼散射基底与光催化剂及其制备方法
Ryu et al. Improvement of lithium adsorption capacity of porous cylinder-type lithium manganese oxide through introduction of additive
CN108246269A (zh) 一种锂离子吸附剂及其制备方法与应用
CN105080512A (zh) 一种氧化石墨烯基镉离子印迹聚合物的制备方法及应用
Zhang et al. Advances and promotion strategies of membrane-based methods for extracting lithium from brine
CN101905903B (zh) 具有介孔孔壁的三维有序大孔锰酸镧的双模板制备法
CN106517090A (zh) 一种高性能储氢材料及其制备方法
CN111744454A (zh) 一种复合除磷吸附剂碳酸氧镧负载蒙脱石的制备方法
CN105597705B (zh) 一种具有优异co2吸附与分离性能的超微孔共价三嗪骨架材料以及制备方法
Zhao et al. Cell-wall based aerogels for Ce (III) adsorption from leaching tailings: Properties and mechanistic research
CN102658080A (zh) 高分散介孔γ-Al2O3基碱(土)金属复合吸附剂的制备方法
CN107890849B (zh) 一种磁改性黄土吸附剂的制备方法及其应用
CN112742349A (zh) 用于co2捕集的磁性离子液体纳米复合吸附材料
CN110668546A (zh) 一种催化还原含铀废水中铀酰离子的方法
KR101248551B1 (ko) 다공성 구조물을 이용한 이온 교환형 망간 산화물 리튬 흡착제 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant