CN108355666A - 一种复合金属氧化物催化剂及其制备方法和应用 - Google Patents

一种复合金属氧化物催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN108355666A
CN108355666A CN201810127866.7A CN201810127866A CN108355666A CN 108355666 A CN108355666 A CN 108355666A CN 201810127866 A CN201810127866 A CN 201810127866A CN 108355666 A CN108355666 A CN 108355666A
Authority
CN
China
Prior art keywords
catalyst
cobalt
metallic oxide
preparation
composite metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810127866.7A
Other languages
English (en)
Other versions
CN108355666B (zh
Inventor
王永钊
赵永祥
郑珂
武瑞芳
胡晓波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN201810127866.7A priority Critical patent/CN108355666B/zh
Publication of CN108355666A publication Critical patent/CN108355666A/zh
Application granted granted Critical
Publication of CN108355666B publication Critical patent/CN108355666B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种复合金属氧化物催化剂及其制备方法和应用。本发明催化剂为钴的氧化物和钇的氧化物形成的复合金属氧化物,各组分的质量百分比为:Co3O4为87.7~98.6%,Y2O3为1.4~12.3%。制备方法为:将钴盐与沉淀剂混合均匀,并充分研磨;将钇的氧化物溶解在酸中形成溶液,并用该溶液浸渍上述混合物,然后经干燥、焙烧步骤制得催化剂。该催化剂制备工艺简单,原料来源广泛,价格低廉,对人体和环境无害;且能在较宽温度范围内催化分解N2O,具有良好的耐氧、耐水和耐CO2等性能;易于实现工业化生产,具有良好的应用前景。

Description

一种复合金属氧化物催化剂及其制备方法和应用
技术领域
本发明涉及一种复合金属氧化物催化剂及其制备方法和应用,属于催化剂制备技术领域。
背景技术
近年来随着对N2O认识的不断深入,其环境危害性已形成共识。N2O具有强烈的温室效应,其全球升温潜能值分别是CH4的21倍,CO2的310倍,可在空气中长期稳定,且极易破坏臭氧层,进而对人体皮肤、眼睛、免疫系统等造成损害。随着硝酸、己二酸、尼龙 66 等化学合成工业品的飞速发展,化石燃料的大量燃烧使用,造成了大气中N2O 浓度持续上升。因此,N2O的消除迫在眉睫。消除N2O的方法有热分解、选择性催化还原和催化分解。其中,催化分解法因其路线简单、成本低且不产生二次污染等优点备受关注。(Zhiming Liu, FangHe, Lingling Ma, et, al. Recent Advances in Catalytic Decomposition of N2O onNoble Metal and Metal Oxide Catalysts. Catalysis Surveys from Asia, 2016, 20(3):121-132.)
目前,用于N2O催化分解的催化剂主要有三类:贵金属催化剂、金属氧化物催化剂和分子筛催化剂。其中,贵金属催化剂因使用温度范围窄、成本高、易中毒等缺点限制了其应用。分子筛催化剂水热稳定性差,在高温水蒸气存在条件下易发生不可逆失活。而金属氧化物催化剂不仅具有较高的催化N2O分解活性,而且成本低廉。
具有尖晶石结构的Co3O4被公认为是催化N2O分解的高活性催化剂,但其存在热稳定性差,对原料气中O2、H2O、CO2等杂质气体敏感的问题。
黑龙江大学朱宇君课题组通过溶胶-凝胶法制备的钴钛复合金属氧化物催化剂Co0.6Ti,对原料气中1.5%O2,2.4%H2O具有较强的耐受性(C Zhang, Z P Zhang, C Sui,et, al. Catalytic Decomposition of N2O over Co-Ti Oxide Catalysts:Interaction between Co and Ti Oxide. ChemCatChem, 2016, 8(12): 2155-2164.)。大连理工大学王新平课题组通过共沉淀法结合浸渍法制备了K0.01Bi0.02Co催化剂,无论是否存在杂质气体,该催化剂均显示出较高的催化N2O分解活性(T Mamutjan, B S Wang, X PWang, et, al. N2O Decomposition Catalyzed by K+-doped Bi0.02Co. ChemicalResearch in Chinese Universities. 2016, 32(3): 41-422.)。印度科学家SUBRAHMANYAM等研究表明掺杂CeO2可增加Co3O4的比表面积,并削弱Co-O键,促进吸附氧的脱附,从而增强催化N2O分解活性(S K Mahammadunnisa, T Akanksha, C HSubrahmanyam, et, al. Catalytic decomposition of N2O over CeO2 supported Co3O4catalysts. Journal of Chemical Sciences, 2016, 128(11):1-10.)。薛莉等发现在Co3O4中添加Ce,当Ce/Co摩尔比为0.02时复合氧化物催化剂能在280 ℃左右实现对0.1%N2O的完全消除(L Xue, H He. Catalytic decomposition of N2O over Co-M (M=La, Ce,Fe, Mn, Cu, Cr) composite oxide catalysts. Acta Physico-Chimica Sinica, 2007,23(5):664-670.)。埃及科学家Abu-Zie课题组研究了CuxCo1-xCo2O4(x=0.0≤x≤1.0)催化剂对于催化N2O分解的性能,得出结论:在尖晶石氧化物Co3O4中部分Co2+被Cu2+取代可显著增强催化N2O分解活性(B M Abu-Zied, S A Soliman, S E Abdellah. Enhanced direct N2Odecomposition over CuxCo1-xCo2O4(x=0.0≤x≤1.0) spinel-oxide catalysts. Journalof Industrial and Engineering Chemistry, 2015, 21: 814–821)。上述公开的文献报道均是从引入电子助剂角度,通过促进催化剂中Co离子的给电子能力以及O2的脱附性能,进而提高催化剂的低温催化N2O分解活性,但此类催化剂热稳定性不高,且仅适用于原料气中N2O浓度较低的情况。
发明内容
本发明旨在提供一种复合金属氧化物催化剂及其制备方法和应用,本发明还提供了上述催化剂在催化N2O分解反应中的应用。
本发明首先将钴盐与沉淀剂混合均匀,并充分研磨;将钇的氧化物溶解在酸中形成溶液,并用该溶液浸渍上述混合物,然后经干燥、焙烧等步骤制得催化剂。该催化剂可在较宽温度范围内催化分解N2O,且具有良好的耐氧、耐水和耐CO2等性能。
本发明提供了一种复合金属氧化物催化剂,催化剂中金属Y、Co的摩尔比为0.01~0.1:1,以钴氧化物为活性组分,钇氧化物为助催化剂,各组分的质量百分比为:
活性组分Co3O4:87.7~98.6%,
助催化剂Y2O3:1.4~12.3%。
进一步地,各组分的质量百分比为:
活性组分Co3O4:92.2~98%,
助催化剂Y2O3:2~7.8%。
本发明提供了上述复合金属氧化物催化剂的制备方法,包括以下步骤:
(1)称取钴盐与沉淀剂在室温下混合均匀,并充分研磨,钴盐与沉淀剂的质量比为1:0.27~1.36;
(2)将Y2O3溶解在酸中形成溶液,其中Y3+浓度为0.06~0.6 mol/L,并用该溶液浸渍上述混合物;
所述酸的浓度为1~12 mol/L;
(3)在80~140 ℃下干燥8~20 h,空气气氛中300~850 ℃焙烧2~5 h制得催化剂。
上述方法中,步骤(1)中钴盐为碳酸钴、乙酸钴或硝酸钴中的一种或几种。
上述方法中,步骤(1)中沉淀剂为NH4HCO3、(NH4)2CO3、尿素中的一种或多种。
上述方法中,步骤(2)中酸为醋酸、甲酸、硝酸中的一种或几种,所述酸的浓度优选为3~8 mol/L。
上述方法中,步骤(3)中干燥温度为100~120 ℃,干燥时间为10~15 h;焙烧温度为600~800 ℃,时间为2.5~3.5 h。
本发明提供了上述复合金属氧化物催化剂在催化N2O分解中的应用。
上述的应用,在常压连续流动反应装置上,催化剂装填量为300 mg,原料气中N2O浓度为0.1 vol% ~10 vol%,空速为10000~100000 h-1
上述应用中,将Y2O3/CO3O4催化剂用于催化N2O分解,在原料气中N2O浓度为0.1vol% ~10vol%,空速为1000~10000 h-1条件下,能使N2O在300~800 ℃范围内完全分解。
本发明的有益效果:
(1)本发明采用氧化钇为钇源制备催化剂,避免了硝酸钇有毒、易燃、助燃等缺点;
(2)本发明所制备的催化剂在常压、反应温度300~800 ℃,N2O浓度0.1 vol% ~10vol%,空速10000~100000 h-1,O2含量0~20%, H2O含量0~10%,CO2含量0~15%条件下,对N2O分解具有较高的催化活性;
(3)该催化剂制备工艺简单,原料来源广泛,价格低廉,对人体和环境无害,易于实现工业化生产,具有良好的应用前景。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
称取17.6335 g Co(NO3)2·6H2O与5.82 g (NH4)2CO3混合均匀,并充分研磨;将0.1369g Y2O3溶解在10 mL浓度为3 mol/L的硝酸中形成溶液,并用该溶液浸渍上述混合物;所得催化剂前驱体120 ℃干燥12 h,之后于700 ℃空气气氛中焙烧3 h制得钴钇复合氧化物催化剂。筛分后取粒径为40~60目之间的颗粒备用。催化剂中钇、钴摩尔比为0.02。
取上述催化剂300 mg,装入连续流动反应装置内径为8 mm的石英反应管中,通入N2O和Ar混合气体进行反应,N2O含量为5 vol%,空速为50000 h-1。在反应温度为380~750 ℃范围内,每间隔20 ℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例2
将实施例1中Co(NO3)2·6H2O质量改为16.8797 g,(NH4)2CO3质量改为5.57 g,Y2O3质量改为0.3276 g,采用同样的方法制得钴钇复合氧化物催化剂,钇、钴摩尔比为0.05。
采用实施例1评价条件,在上述评价条件下,反应温度为420~780 ℃范围内,每间隔20℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例3
将实施例1中,硝酸浓度改为6 mol/L,采用同样的方法制得钴钇复合氧化物催化剂,钇、钴摩尔比为0.02。
采用实施例1评价条件,在上述评价条件下,反应温度为430~680 ℃范围内,每间隔20 ℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例4
将实施例1中Co(NO3)2·6H2O换为CoCO3,(NH4)2CO3改为NH4HCO3,硝酸改为醋酸,采用同样的方法制得钴钇复合氧化物催化剂,钇、钴摩尔比为0.02。
采用实施例1评价条件,在上述评价条件下,反应温度为400~700 ℃范围内,每间隔20℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例5
将实施例1中干燥温度改为100 ℃,干燥时间改为14 h,采用同样的方法制得钴钇复合氧化物催化剂,钇、钴摩尔比为0.02。
采用实施例1评价条件,在上述评价条件下,反应温度为380~750 ℃范围内,每间隔20℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例6
将实施例1中焙烧温度改为600 ℃,焙烧时间改为4 h,采用同样的方法制得钴钇复合氧化物催化剂,钇、钴摩尔比为0.02。
采用实施例1评价条件,在上述评价条件下,反应温度为350~690 ℃范围内,每间隔20℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例7
将实施例1中N2O含量改为8 %,空速改为80000 h-1,采用同样的方法制得钴钇复合氧化物催化剂,钇、钴摩尔比为0.02。
采用实施例1评价条件,在上述评价条件下,反应温度为400~750 ℃范围内,每间隔20℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例8
将实施例1的原料气中引入3% H2O,其他条件不变,取实施例1制备的钴钇复合氧化物催化剂进行活性评价,反应温度为400~750 ℃范围内,每间隔20 ℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例9
将实施例1的原料气中引入5% H2O,其他条件不变,取实施例1制备的钴钇复合氧化物催化剂进行活性评价,反应温度为415~750 ℃范围内,每间隔20 ℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例10
将实施例1的原料气中引入10% O2,其他条件不变,取实施例1制备的钴钇复合氧化物催化剂进行活性评价,反应温度为400~750 ℃范围内,每间隔20 ℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例11
将实施例1的原料气中引入10% CO2,其他条件不变,取实施例1制备的钴钇复合氧化物催化剂进行活性评价,反应温度为420~750 ℃范围内,每间隔20 ℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例12
将实施例1的原料气中引入10% O2和10% CO2,其他条件不变,取实施例1制备的钴钇复合氧化物催化剂进行活性评价,反应温度为445~750 ℃范围内,每间隔20 ℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。
实施例13
将实施例1的原料气中引入5% H2O,10% O2和10% CO2,其他条件不变,取实施例1制备的钴钇复合氧化物催化剂进行活性评价,反应温度为455~750 ℃范围内,每间隔20 ℃进行一次抽样检测,得出:N2O转化率均可达到100%。说明本发明制备的催化剂热稳定性好。

Claims (10)

1.一种复合金属氧化物催化剂,其特征在于:催化剂中金属Y、Co的摩尔比为0.01~0.1:1,以钴氧化物为活性组分,钇氧化物为助催化剂,各组分的质量百分比为:
活性组分Co3O4:87.7~98.6%,
助催化剂Y2O3:1.4~12.3%。
2.根据权利要求1所述的复合金属氧化物催化剂,其特征在于:各组分的质量百分比为:
活性组分Co3O4:92.2~98%,
助催化剂Y2O3:2~7.8%。
3.一种权利要求1或2所述的复合金属氧化物催化剂的制备方法:其特征在于:包括以下步骤:
(1)称取钴盐与沉淀剂在室温下混合均匀,并充分研磨,钴盐与沉淀剂的质量比为1:0.27~1.36;
(2)将Y2O3溶解在酸中形成溶液,其中Y3+浓度为0.06~0.6 mol/L,并用该溶液浸渍上述混合物;
所述酸的浓度为1~12 mol/L;
(3)在80~140 ℃下干燥8~20 h,空气气氛中300~850 ℃焙烧2~5 h制得催化剂。
4.根据权利要求3所述的复合金属氧化物催化剂的制备方法:其特征在于:步骤(1)中钴盐为碳酸钴、乙酸钴或硝酸钴中的一种或几种。
5.根据权利要求3所述的复合金属氧化物催化剂的制备方法:其特征在于:步骤(1)中沉淀剂为NH4HCO3、(NH4)2CO3、尿素中的一种或多种。
6.根据权利要求3所述的复合金属氧化物催化剂的制备方法:其特征在于:步骤(2)中酸为醋酸、甲酸、硝酸中的一种或几种,所述酸的浓度为3~8 mol/L。
7.根据权利要求3所述的复合金属氧化物催化剂的制备方法:其特征在于:步骤(3)中干燥温度为100~120 ℃,干燥时间为10~15 h;焙烧温度为600~800 ℃,时间为2.5~3.5 h。
8.一种权利要求1或2所述的复合金属氧化物催化剂在催化N2O分解中的应用。
9.根据权利要求8所述的应用,其特征在于:在常压连续流动反应装置上,催化剂装填量为300 mg,原料气中N2O浓度为0.1 vol% ~10 vol%,空速为10000~100000 h-1
10.根据权利要求8所述的应用,其特征在于:将Y2O3/CO3O4催化剂用于催化N2O分解,在原料气中N2O浓度为0.1 vol% ~10 vol%,空速为1000~10000 h-1条件下,能使N2O在300~800℃范围内完全分解。
CN201810127866.7A 2018-02-08 2018-02-08 一种复合金属氧化物催化剂及其制备方法和应用 Expired - Fee Related CN108355666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810127866.7A CN108355666B (zh) 2018-02-08 2018-02-08 一种复合金属氧化物催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810127866.7A CN108355666B (zh) 2018-02-08 2018-02-08 一种复合金属氧化物催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108355666A true CN108355666A (zh) 2018-08-03
CN108355666B CN108355666B (zh) 2020-04-17

Family

ID=63004817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810127866.7A Expired - Fee Related CN108355666B (zh) 2018-02-08 2018-02-08 一种复合金属氧化物催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108355666B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109261158A (zh) * 2018-11-08 2019-01-25 烟台大学 一种钇-钴复合氧化物催化剂的制备方法及应用
CN113600202A (zh) * 2021-09-09 2021-11-05 上海华峰新材料研发科技有限公司 一种分解一氧化二氮的催化剂及其制备方法和一氧化二氮的分解方法
CN113996305A (zh) * 2021-11-23 2022-02-01 辽宁大学 一种中低温催化分解n2o的复合氧化物催化剂及其制备方法和应用
CN115739090A (zh) * 2022-11-03 2023-03-07 辽宁大学 一种具有高表面氧空位密度的过渡金属氧化物催化剂的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171063A (zh) * 1994-11-02 1998-01-21 波基达拉·格里戈洛瓦 催化剂
WO2007143837A1 (en) * 2006-06-12 2007-12-21 Nanox Inc. Process for optimizing the catalytic activity of a perovskite-based catalyst
CN103599790A (zh) * 2013-11-06 2014-02-26 南昌大学 高效低温催化甲烷完全氧化的钴稀土复合氧化物催化剂
CN103949264A (zh) * 2014-04-28 2014-07-30 四川蜀泰化工科技有限公司 一种用于高温催化分解n2o的催化剂及其制备方法
CN107029749A (zh) * 2017-05-08 2017-08-11 黑龙江大学 四氧化三钴负载钌催化剂、四氧化三钴负载钌催化剂的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171063A (zh) * 1994-11-02 1998-01-21 波基达拉·格里戈洛瓦 催化剂
WO2007143837A1 (en) * 2006-06-12 2007-12-21 Nanox Inc. Process for optimizing the catalytic activity of a perovskite-based catalyst
CN103599790A (zh) * 2013-11-06 2014-02-26 南昌大学 高效低温催化甲烷完全氧化的钴稀土复合氧化物催化剂
CN103949264A (zh) * 2014-04-28 2014-07-30 四川蜀泰化工科技有限公司 一种用于高温催化分解n2o的催化剂及其制备方法
CN107029749A (zh) * 2017-05-08 2017-08-11 黑龙江大学 四氧化三钴负载钌催化剂、四氧化三钴负载钌催化剂的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘启宪等: "不同沉淀剂对Co3O4催化剂结构及催化分解N2O活性的影响", 《分子催化》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109261158A (zh) * 2018-11-08 2019-01-25 烟台大学 一种钇-钴复合氧化物催化剂的制备方法及应用
CN113600202A (zh) * 2021-09-09 2021-11-05 上海华峰新材料研发科技有限公司 一种分解一氧化二氮的催化剂及其制备方法和一氧化二氮的分解方法
CN113600202B (zh) * 2021-09-09 2023-09-01 上海华峰新材料研发科技有限公司 一种分解一氧化二氮的催化剂及其制备方法和一氧化二氮的分解方法
CN113996305A (zh) * 2021-11-23 2022-02-01 辽宁大学 一种中低温催化分解n2o的复合氧化物催化剂及其制备方法和应用
CN115739090A (zh) * 2022-11-03 2023-03-07 辽宁大学 一种具有高表面氧空位密度的过渡金属氧化物催化剂的制备方法及其应用
CN115739090B (zh) * 2022-11-03 2024-05-07 辽宁大学 一种具有高表面氧空位密度的过渡金属氧化物催化剂的制备方法及其应用

Also Published As

Publication number Publication date
CN108355666B (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
Tang et al. Alkali-metal poisoning effect of total CO and propane oxidation over Co3O4 nanocatalysts
Ji et al. Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4
CN108355666A (zh) 一种复合金属氧化物催化剂及其制备方法和应用
Liu et al. Direct molten polymerization synthesis of highly active samarium manganese perovskites with different morphologies for VOC removal
Yang et al. Transformation of waste battery cathode material LiMn2O4 into efficient ultra-low temperature NH3-SCR catalyst: Proton exchange synergistic vanadium modification
Feng et al. MnyCo3− yOx bimetallic oxide prepared by ultrasonic technology for significantly improved catalytic performance in the reduction of NOx with NH3
CN103506146B (zh) 用于分解磷化氢气体的催化剂及其制备方法和应用
Yang et al. Synthesis of α–MnO2–like rod catalyst using YMn2O5 A–site sacrificial strategy for efficient benzene oxidation
CN109453797A (zh) 一种Co/羟基磷灰石催化剂及其制备方法和应用
CN113117722A (zh) 一种用于常温nh3-scr脱硝的原子级活性位点催化剂的制备方法
CN110102295A (zh) 一种用于合成氨的钌催化剂及其制备方法
Zhu et al. Co3O4 nanoparticles with different morphologies for catalytic removal of ethyl acetate
CN108889301B (zh) 一种尖晶石型催化剂及其制备方法
CN105312080B (zh) 一种用于氧化亚氮催化分解的分子筛催化剂改性的方法
CN110201680A (zh) 一种用于α,β-不饱和醛/酮选择性加氢的催化剂、制备方法及催化方法
CN111905718A (zh) 一种等离子体辅助制备钙钛矿型甲烷燃烧催化剂的方法
Ko et al. Selective catalytic reduction of NOx with NH3 on Mn, Co-BTC-derived catalysts: Influence of thermal treatment temperature
CN101411975A (zh) 一种炭载过渡金属碳化物催化剂在肼分解反应中的应用
Wang et al. Selective catalytic reduction of NO by CO over MOF-based CuOx@ ZIF-67 catalysts and reaction mechanism
Jiang et al. Unveiling mechanism and the roles of distinct active sites over Cu/beta@ ceo2 with strong core-shell interface interaction for simultaneous removal of NO and toluene
CN113578358A (zh) 一种Pt/NVC-g-C3N4光催化材料及其制备方法和应用
Jiang et al. Synthesis of Co-doped MnO 2 catalysts with the assistance of PVP for low-temperature SCR
CN108404906A (zh) 一种纳米棒状锰铬复合氧化物低温脱硝催化剂及制备方法
Wang et al. The inhibition effect and deactivation mechanism of H 2 O and SO 2 on selective catalytic oxidation of NO over the Mn–Ca–O x–(CO 3) y catalyst
Wang et al. H2SO4 poisoning of Ru-based and Ni-based catalysts for HI decomposition in SulfurIodine cycle for hydrogen production

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200417