CN108341940A - 一种高效无凝胶的长链支化聚乳酸的制备方法 - Google Patents

一种高效无凝胶的长链支化聚乳酸的制备方法 Download PDF

Info

Publication number
CN108341940A
CN108341940A CN201810144451.0A CN201810144451A CN108341940A CN 108341940 A CN108341940 A CN 108341940A CN 201810144451 A CN201810144451 A CN 201810144451A CN 108341940 A CN108341940 A CN 108341940A
Authority
CN
China
Prior art keywords
polylactic acid
polylactic
long chain
nano
chain branching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810144451.0A
Other languages
English (en)
Other versions
CN108341940B (zh
Inventor
罗筑
杨乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN201810144451.0A priority Critical patent/CN108341940B/zh
Publication of CN108341940A publication Critical patent/CN108341940A/zh
Application granted granted Critical
Publication of CN108341940B publication Critical patent/CN108341940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了属于高性能聚合物材料制备技术领域的一种高效无凝胶的长链支化聚乳酸的制备方法。本发明在制备方法中采用金属氧化物纳米粒子为促进剂,利用其与大分子聚乳酸及多官能度小分子酯类单体酯基间的配位作用使酯基活化,从而促进多官能度小分子酯类单体与大分子聚乳酸之间的酯交换反应,制备出具有高熔体强度和显著应变硬化特征的长链支化聚乳酸。结果表明,本发明中涉及的制备方法使聚乳酸的熔体强度提高了数倍,最高可达三十倍,且其凝胶含量为0,且选用的纳米金属氧化物粒子和多官能度酯类单体对环境友好,无毒无污染,多官能度酯类单体来源广泛,大多可用于食品相关行业。因此,本发明是一种高效的、环境友好且无凝胶的长链支化聚乳酸的制备方法。

Description

一种高效无凝胶的长链支化聚乳酸的制备方法
技术领域
本发明属于高性能聚合物材料制备技术领域,特别涉及一种高效无凝胶的长链支化聚乳酸的制备方法。
背景技术:
一次性餐具和一次性塑料袋等一次性塑料制品的出现极大地方便了人们的日常生活,但通常制作一次性塑料用品的原料为不可降解的通用塑料,使其在极大方便人们生活的同时却对环境造成了严重的白色污染。政府及环保部门基于此种情况颁布了限塑令,但目前为止的成效似乎不大,尽管很多商家已经对一次性餐盒和塑料袋实行了有偿措施,但随着人们生活水平的不断提高,低廉的费用似乎起不到应有的效果。这说明在物质需求日益增长的今天,一味的“限制”并不是长久之计。在这样的情况下,迫切要求开发可自然生物降解的材料来制作此类一次性用品。
生物降解材料是指可在自然环境微生物酶作用下发生生物化学反应,最终形成二氧化碳和水的材料。而聚乳酸是最具代表性的生物降解材料之一。在问世之初,聚乳酸的生产原料主要来源于谷物等粮食作物,由于具有成本高和产量低的缺点,其价格一直居高不下,应用范围也大多局限在医用材料领域,如手术缝合线等。随着美国Natureworks公司开发了聚乳酸的二代生产技术,通过玉米秸秆和甘蔗残渣等非食用材料的发酵来获取乳酸原料以制备聚乳酸,使聚乳酸的价格大幅下降,极大地扩宽了聚乳酸的应用领域,因此,在当今的市场上除医用材料外,在农业、纺织、工程及包装等领域都能发现聚乳酸的身影。
在可降解的生物塑料中,与聚乙交酯、聚羟基烷酸酯、聚己内酯等相比,聚乳酸具备较高的力学性能和可观的价格;从性能上看,聚乳酸与聚苯乙烯、聚丙烯、高密度聚乙烯等通用塑料具有相似的力学性能,并且可以用一般通用塑料的加工方式进行加工成型。但聚乳酸是线形结构的长链大分子,其熔体在受到外力作用时,分子链容易发生解缠和滑移,使其熔体强度较差,在挤出发泡和中空吹塑等大应变的加工方式中容易出现泡孔塌陷、吹膜厚薄不均等现象。
因此,鉴于聚乳酸广阔的应用前景和其在熔体强度方面表现出的不足,对于聚乳酸及其复合材料的改性研究显得十分必要。
聚合物的熔体强度主要是指在熔融拉伸时,聚合物熔体在断裂之前所能承受的最大力,也就是熔体支持自身重量的能力。而在聚合物的分子结构中引入长链支化结构(即长支链)可以大幅度地提高聚合物的熔体强度。在聚乳酸的分子链中引入长链支化结构,长支链的存在能增加分子链间的缠结,当其熔体在受到外力作用时,缠结点间的拖拽作用使其分子链不易滑移,表现出显著的应变硬化效应;同时,缠结的长链支化分子链具有较长的松弛时间,使其可以在长时间的大应变加工中仍保持很高的熔体强度。
目前制备长链支化聚乳酸的方法主要分为反应器法和后反应器法两种。而后反应器法由于具有高效率、低成本和无溶剂的优点,使其成为最适合工业化生产的方法。当前,以后反应器法制备长链支化聚乳酸的方法概括起来主要分为两类。一类是端基反应法,以异氰尿酸三缩水甘油酯(TGIC)和均苯四甲酸酐(PMDA)的体系为代表:聚乳酸的端羟基与均苯四甲酸酐和TGIC发生协同基团反应,最终可形成三臂星形、四臂星形、H形、梳形甚至树枝状的长链支化聚乳酸。该方法的缺点主要集中在两方面,其一是反应时间较长,通常需要20-30分钟的时间才能使反应达平衡,不利于连续化生产,且在如此长的反应时间下还需考虑聚乳酸的降解问题;同时该法所用的原料具有一定的污染性和毒性,尤其是TGIC对水体的污染比较严重。另一类是自由基反应法:在自由基引发剂或高能射线的作用下,产生的初级自由基夺取聚乳酸主链叔碳上的氢而形成大分子叔碳自由基,通过其与体系中的多官能度单体发生自由基反应而得到长链支化聚乳酸。该法同样也具有自由基反应难控制以及容易产生交联结构,不利于后续加工的缺点。
发明内容:
本发明的目的是提供一种高效无凝胶的长链支化聚乳酸的制备方法,它生产获得的材料具有更高的熔体强度和更显著的应变硬化效应,使其更加适应于挤出发泡和中空吹塑等大应变的加工方式,而且无毒、对环境友好,反应时间短,适于连续性生产。
本发明是这样实现的:高效无凝胶的长链支化聚乳酸的制备方法,采用粒径为200nm以下的金属氧化物纳米粒子作为促进剂,,利用其与大分子聚乳酸及多官能度小分子酯类单体酯基间的配位作用使酯基活化,从而促进多官能度小分子酯类单体与大分子聚乳酸之间的酯交换反应,使不同的聚乳酸大分子分别与多官能度小分子酯类单体形成化学键的连接,制备具有高熔体强度和显著应变硬化特征的长链支化聚乳酸。
具体步骤和条件如下:
A:原料和助剂的预干燥:将聚乳酸粒料和纳米金属氧化物分别装于不同的容器内,并将其置于真空干燥箱中在60℃下干燥12~24h后备用;
B:原料的预混:将步骤A中经干燥的聚乳酸粒料及纳米金属氧化物取出,按照将聚乳酸粒料、纳米金属氧化物和多官能度酯类单体在室温下进行预混,以保证物料混合均匀,预混时间为10~20分钟;
C:将步骤B中的预混物取出并加入到密炼机中加热熔融混合反应5~10分钟,控制反应温度在160~200℃,混合转速为60~120转/分;
D:将步骤C所得到的反应产物取出,待其冷却后放于强力破碎机中进行破碎,最终得到粒度较为均匀的长链支化聚乳酸粒料。
所述的聚乳酸包括左旋聚乳酸粒料,右旋聚乳酸粒料及无定型聚乳酸粒料。
所述的聚乳酸的重均分子量100000~200000g/mol。
所述纳米金属氧化物指粒径在200nm以下的纳米氧化锌、纳米二氧化锡、纳米二氧化钛、纳米氧化铁或纳米氧化铝。
聚乳酸粒料、纳米金属氧化物和多官能度酯类的质量比为100:0.1~2:1~5。
所述多官能度酯类单体只指三官能度以上的酯类单体,包括三官能度单体,如三羟甲基丙烷三丙烯酸酯,季戊四醇三丙烯酸酯,柠檬酸三乙酯、柠檬酸三丁酯、季戊四醇四丙烯酸酯,季戊四醇四甲基丙烯酸酯,乙酰柠檬酸三乙酯或乙酰柠檬酸三丁酯。
聚合物的酯交换反应是广泛存在于酯类聚合物合成和加工过程中的一类反应。酯类化合物通过分子内或分子间的酯基交换,可以改变聚合物的链结构。而聚乳酸是聚酯家族的一员,其分子主链上含有高密度的酯基,因此可通过其自身或与其它酯类化合物间的酯交换反应来达到改性的目的。以纳米氧化锌为代表的一些纳米粒子对聚乳酸显示出良好的酯交换催化活性,通过纳米粒子与多官能度酯类单体共同作用可以使聚乳酸具备长链支化结构。
与现有技术常用的两种方法相比,酯交换反应具有环境友好、反应速度快、可连续化生产、反应易控制和不产生交联结构等优点,同时所采用的多官能度酯类单体易获取,且大多可用于食品相关行业。
长链支化聚乳酸较普通线形聚乳酸具有更高的熔体强度和更显著的应变硬化效应,使其更加适应于挤出发泡和中空吹塑等大应变的加工方式。而聚乳酸作为一种绿色的降解塑料,对于它的改性和使用都应在尽量不引入有毒或造成环境污染的物质。本方法选用的纳米粒子和多官能度酯类单体对环境友好,且酯交换反应时间短,适于连续性生产。
本发明的有益效果是在制备方法中,采用金属氧化物纳米粒子为促进剂,利用其与大分子聚乳酸及多官能度小分子酯类单体酯基间的配位作用使其酯基活化,从而促进多官能度小分子酯类(三官能度以上)单体与大分子聚乳酸之间的酯交换反应,并以此制备出了具有高熔体强度和显著应变硬化特征的长链支化聚乳酸,该发明使聚乳酸的熔体强度提高了数倍,最高可达三十倍,且其凝胶含量为0(对加工有利)。选用的纳米金属氧化物粒子和多官能度酯类单体对环境友好,无毒无污染,且多官能度酯类单体来源广泛,大多可用于食品相关行业。本发明所使用的主要设备为密炼机,设备投资少,工艺简单,容易实施,成本低廉,效率高。所得产品的熔体强度显著提高,可适应挤出发泡、中空吹塑等大应变的加工方式。
具体实施方式
本发明提供一种高效无凝胶的长链支化聚乳酸的制备方法。本发明在制备方法中利用纳米金属氧化物粒子与大分子聚乳酸及多官能度小分子酯类单体酯基间的配位作用使其酯基活化,从而促进多官能度小分子酯类单体与大分子聚乳酸之间的酯交换反应,并以此制备具有高熔体强度和显著应变硬化特征的长链支化聚乳酸,其原理如下所示:
其中,R1,R2,R3相同或不同,为C原子数1~10的烃基;MxOy为纳米金属氧化物粒子,M为Zn、Sn、Fe、Al、Ti等。
本发明在实施例中采用的测试设备如下:
熔体强度测定:采用RH-7型毛细管流变仪和“Haul-off”熔体拉伸组件;
熔体流动速率:采用SRZ-400E型熔体流动速率测定仪;
凝胶含量(gel%):称取0.2~0.3g聚乳酸样品用300目的铜网包裹,以微沸的二氯甲烷为溶剂,在Soxhlet提取器中抽提24h,干燥后称重。
凝胶含量(gel%)=(干燥后聚乳酸重量/聚乳酸原来重量)×100
实施例1
取聚乳酸(左旋聚乳酸粒料,熔融指数为3.8g/10min,分子量为150000,190℃)和纳米氧化锌,在60℃的真空干燥箱中干燥12h后,称取100g的干燥聚乳酸与0.2g纳米氧化锌(粒径为50nm)预混合。将2g三羟甲基丙烷三丙烯酸酯溶解在丙酮里,溶解完全后将丙酮溶液均匀喷洒在预混合的聚乳酸粒料中,置于40℃的真空干燥箱中挥发丙酮6h,真空度为10-6MPa,随后将混合物加入到密炼机的料腔中,温度设定为:一区185℃,二区185℃,三区190℃,转子转速:80转/分,反应7分钟后出料。取部分样品进行性能测试和熔体强度测定。结果见表一。
实施例2
取聚乳酸(左旋聚乳酸粒料,熔融指数为3.8g/10min,分子量为150000,190℃)和纳米氧化锌,在60℃的真空干燥箱中干燥12h后称取100g的干燥聚乳酸与0.4g纳米氧化锌50nm预混合。将2g三羟甲基丙烷三丙烯酸酯溶解在丙酮里,溶解完全后将丙酮溶液均匀喷洒在预混合的聚乳酸粒料中,置于40℃的真空干燥箱中挥发丙酮6h,真空度为10-6MPa,随后将混合物加入到密炼机的料腔中,温度设定为:一区185℃,二区185℃,三区190℃,转子转速:80转/分,反应7分钟后出料。取部分样品进行性能测试和熔体强度测定。结果见表一。
实施例3
取聚乳酸(左旋聚乳酸粒料,熔融指数为3.8g/10min,分子量为150000,190℃)和纳米二氧化锡,在60℃的真空干燥箱中干燥12h后,称取100g的干燥聚乳酸与0.2g纳米二氧化锡(粒径为150nm)预混合。将2g三羟甲基丙烷三丙烯酸酯溶解在丙酮里,溶解完全后将丙酮溶液均匀喷洒在预混合的聚乳酸粒料中,置于40℃的真空干燥箱中挥发丙酮6h,真空度为10-6MPa,随后将混合物加入到密炼机的料腔中,温度设定为:一区185℃,二区185℃,三区190℃,转子转速:80转/分,反应7分钟后出料。取部分样品进行性能测试和熔体强度测定。结果见表一。
实施例4
取聚乳酸(左旋聚乳酸粒料,熔融指数为3.8g/10min,分子量为150000,190℃)和纳米二氧化钛,在60℃的真空干燥箱中干燥12h后称取100g的干燥聚乳酸与0.2g纳米二氧化钛(粒径为100nm)预混合。将2g三羟甲基丙烷三丙烯酸酯溶解在丙酮里,溶解完全后将丙酮溶液均匀喷洒在预混合的聚乳酸粒料中,置于40℃的真空干燥箱中挥发丙酮6h,真空度为10-6MPa,随后将混合物加入到密炼机的料腔中,温度设定为:一区185℃,二区185℃,三区190℃,转子转速:80转/分,反应7分钟后出料。取部分样品进行性能测试和熔体强度测定。结果见表一。
实施例5
取聚乳酸(左旋聚乳酸粒料,熔融指数为3.8g/10min,分子量为150000,190℃)和纳米氧化锌,在60℃的真空干燥箱中干燥12h后称取100g的干燥聚乳酸与0.2g纳米氧化锌(粒径为50nm)预混合。将2g季戊四醇三丙烯酸酯溶解在丙酮里,溶解完全后将丙酮溶液均匀喷洒在预混合的聚乳酸粒料中,置于40℃的真空干燥箱中挥发丙酮6h,真空度为10-6MPa,随后将混合物加入到密炼机的料腔中,温度设定为:一区185℃,二区185℃,三区190℃,转子转速:80转/分,反应7分钟后出料。取部分样品进行性能测试和熔体强度测定。结果见表一。
实施例6
取聚乳酸(左旋聚乳酸粒料,熔融指数为3.8g/10min,分子量为150000,190℃)和纳米二氧化锡,在60℃的真空干燥箱中干燥12h后称取100g的干燥聚乳酸与0.2g纳米二氧化锡(粒径为200nm)预混合。将2g季戊四醇三丙烯酸酯溶解在丙酮里,溶解完全后将丙酮溶液均匀喷洒在预混合的聚乳酸粒料中,置于40℃的真空干燥箱中挥发丙酮6h,真空度为10-6MPa,随后将混合物加入到密炼机的料腔中,温度设定为:一区185℃,二区185℃,三区190℃,转子转速:80转/分,反应7分钟后出料。取部分样品进行性能测试和熔体强度测定。结果见表一。
实施例7
取聚乳酸(左旋聚乳酸粒料,熔融指数为4.5g/10min,分子量为120000,190℃)和纳米氧化锌,在60℃的真空干燥箱中干燥12h后称取100g的干燥聚乳酸与0.4g纳米氧化锌(粒径为50nm)预混合。将2g三羟甲基丙烷三丙烯酸酯溶解在丙酮里,溶解完全后将丙酮溶液均匀喷洒在预混合的聚乳酸粒料中,置于40℃的真空干燥箱中挥发丙酮6h,真空度为10-6MPa,随后将混合物加入到密炼机的料腔中,温度设定为:一区185℃,二区185℃,三区190℃,转子转速:80转/分,反应7分钟后出料。取部分样品进行性能测试和熔体强度测定。结果见表一。
实施例8
取聚乳酸(左旋聚乳酸粒料,熔融指数为4.5g/10min,分子量为120000,190℃)和纳米氧化锌,在60℃的真空干燥箱中干燥12h后称取100g的干燥聚乳酸与0.4g纳米氧化锌(粒径为50nm)预混合。将2g三羟甲基丙烷三丙烯酸酯溶解在丙酮里,溶解完全后将丙酮溶液均匀喷洒在预混合的聚乳酸粒料中,置于40℃的真空干燥箱中挥发丙酮6h,真空度为10-6MPa,随后将混合物加入到密炼机的料腔中,温度设定为:一区185℃,二区185℃,三区190℃,转子转速:80转/分,反应10分钟后出料。取部分样品进行性能测试和熔体强度测定。结果见表一。
表一.由实施例1-8所获样品的测试结果
零切黏度为在170℃下的值。
实施例的结果表明,在金属氧化物纳米粒子的促进作用下,聚乳酸大分子与多官能度小分子酯类单体产生酯交换反应,从而形成长链支化结构,使熔体强度大幅提高(3~30倍),同时无凝胶产生,且其它力学性能不降低,可满足挤出发泡和中空吹塑等加工过程对材料高熔体强度的要求。

Claims (7)

1.一种高效无凝胶的长链支化聚乳酸的制备方法,其特征在于:采用粒径为200nm以下的金属氧化物纳米粒子作为促进剂,利用其与大分子聚乳酸及多官能度小分子酯类单体的酯基间的配位作用使酯基活化,从而促进多官能度小分子酯类单体与大分子聚乳酸之间的酯交换反应,使不同的聚乳酸大分子分别与多官能度小分子酯类单体形成化学键的连接,制备具有高熔体强度和显著应变硬化特征的长链支化聚乳酸。
2.根据权利要求1所述的高效无凝胶的长链支化聚乳酸的制备方法,其特征在于:具体步骤和条件如下:
A:原料和助剂的预干燥:将聚乳酸粒料和纳米金属氧化物分别装于不同的容器内,并将其置于真空干燥箱中在60℃下干燥12~24h后备用;
B:原料的预混:将步骤A中经干燥的聚乳酸粒料及纳米金属氧化物取出,按照将聚乳酸粒料、纳米金属氧化物和多官能度酯类单体在室温下进行预混,以保证物料混合均匀,预混时间为10~20分钟;
C:将步骤B中的预混物取出并加入到密炼机中加热熔融混合反应5~10分钟,控制反应温度在160~200℃,混合转速为60~120转/分;
D:将步骤C所得到的反应产物取出,待其冷却后放于强力破碎机中进行破碎,最终得到粒度较为均匀的长链支化聚乳酸粒料。
3.根据权利要求1所述的高效无凝胶的长链支化聚乳酸的制备方法,其特征在于:所述的聚乳酸包括左旋聚乳酸粒料,右旋聚乳酸粒料及无定型聚乳酸粒料。
4.根据权利要求1或3所述的高效无凝胶的长链支化聚乳酸的制备方法,其特征在于:所述的聚乳酸的重均分子量100000~200000g/mol。
5.根据权利要求1所述的高效无凝胶的长链支化聚乳酸的制备方法,其特征在于:所述纳米金属氧化物指粒径在200nm以下的纳米氧化锌、纳米二氧化锡、纳米二氧化钛、纳米氧化铁或纳米氧化铝。
6.根据权利要求1所述的高效无凝胶的长链支化聚乳酸的制备方法,其特征在于:聚乳酸粒料、纳米金属氧化物和多官能度酯类的质量比为100:0.1~2:1~5。
7.根据权利要求1所述的高效无凝胶的长链支化聚乳酸的制备方法,其特征在于:所述多官能度酯类单体只指三官能度以上的酯类单体,包括三官能度单体,如三羟甲基丙烷三丙烯酸酯,季戊四醇三丙烯酸酯,柠檬酸三乙酯、柠檬酸三丁酯、季戊四醇四丙烯酸酯,季戊四醇四甲基丙烯酸酯,乙酰柠檬酸三乙酯或乙酰柠檬酸三丁酯。
CN201810144451.0A 2018-02-12 2018-02-12 一种高效无凝胶的长链支化聚乳酸的制备方法 Active CN108341940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810144451.0A CN108341940B (zh) 2018-02-12 2018-02-12 一种高效无凝胶的长链支化聚乳酸的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810144451.0A CN108341940B (zh) 2018-02-12 2018-02-12 一种高效无凝胶的长链支化聚乳酸的制备方法

Publications (2)

Publication Number Publication Date
CN108341940A true CN108341940A (zh) 2018-07-31
CN108341940B CN108341940B (zh) 2020-05-12

Family

ID=62959333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810144451.0A Active CN108341940B (zh) 2018-02-12 2018-02-12 一种高效无凝胶的长链支化聚乳酸的制备方法

Country Status (1)

Country Link
CN (1) CN108341940B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041466A (zh) * 2019-05-08 2019-07-23 湘潭大学 一种高熔体强度聚乳酸材料及其制备方法
CN113265127A (zh) * 2020-04-27 2021-08-17 汕头市三马塑胶制品有限公司 一种全生物基全降解长链支化聚乳酸及其制备方法
CN114806120A (zh) * 2022-06-15 2022-07-29 韩胜 一种耐热聚乳酸发泡热成型体的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597374A (zh) * 2009-07-16 2009-12-09 上海交通大学 长支化聚乳酸的制备方法
CN101921371A (zh) * 2009-06-09 2010-12-22 中国科学院化学研究所 一种长链支化聚乳酸树脂及其制备方法
CN103382298A (zh) * 2012-05-04 2013-11-06 中国石油天然气股份有限公司 一种易加工易结晶聚乳酸的制备方法
CN104418999A (zh) * 2013-08-20 2015-03-18 中国石油大学(北京) 一种可降解共聚酯纳米复合材料及由其制备的暂堵剂
EP2905297A1 (en) * 2014-02-10 2015-08-12 Samsung Electronics Co., Ltd Polylactic acid preparation method, polylactic acid resin prepared using the method, resin composition comprising the polylactic acid resin, and catalyst system for preparing polylactic acid
CN104837923A (zh) * 2012-11-15 2015-08-12 巴斯夫欧洲公司 生物可降解的聚酯混合物
US20160376152A1 (en) * 2014-02-28 2016-12-29 Functionalize, Inc. Nano or macro material functionalization and self assembled construction mediated by tris(trimethylsilyl)silane
CN106928672A (zh) * 2017-03-17 2017-07-07 四川大学 具有热/磁响应双向形状记忆功能及自愈合能力的聚己内酯杂化交联网络及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921371A (zh) * 2009-06-09 2010-12-22 中国科学院化学研究所 一种长链支化聚乳酸树脂及其制备方法
CN101597374A (zh) * 2009-07-16 2009-12-09 上海交通大学 长支化聚乳酸的制备方法
CN103382298A (zh) * 2012-05-04 2013-11-06 中国石油天然气股份有限公司 一种易加工易结晶聚乳酸的制备方法
CN104837923A (zh) * 2012-11-15 2015-08-12 巴斯夫欧洲公司 生物可降解的聚酯混合物
CN104418999A (zh) * 2013-08-20 2015-03-18 中国石油大学(北京) 一种可降解共聚酯纳米复合材料及由其制备的暂堵剂
EP2905297A1 (en) * 2014-02-10 2015-08-12 Samsung Electronics Co., Ltd Polylactic acid preparation method, polylactic acid resin prepared using the method, resin composition comprising the polylactic acid resin, and catalyst system for preparing polylactic acid
US20160376152A1 (en) * 2014-02-28 2016-12-29 Functionalize, Inc. Nano or macro material functionalization and self assembled construction mediated by tris(trimethylsilyl)silane
CN106928672A (zh) * 2017-03-17 2017-07-07 四川大学 具有热/磁响应双向形状记忆功能及自愈合能力的聚己内酯杂化交联网络及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERJUN TANG ET.AL: "Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system", 《APPLIED SURFACE SCIENCE》 *
FENG WU,ETAL: "Grafting Polymerization of Polylactic Acid on the Surface of Nano-SiO2 and Properties of PLA/PLA-Grafted-SiO2 Nanocomposites", 《JOURNAL OF APPLIED POLYMER SCIENCE》 *
JINXIU YOU,ETAL.: "The Preparation and Crystallization of Long Chain Branching Polylactide Made by Melt Radicals Reaction", 《JOURNAL OF APPLIED POLYMER SCIENCE》 *
杨再军等: "酯交换法制备长链支化聚乳酸及其流变和结晶行为", 《高分子材料科学与工程》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041466A (zh) * 2019-05-08 2019-07-23 湘潭大学 一种高熔体强度聚乳酸材料及其制备方法
CN110041466B (zh) * 2019-05-08 2022-01-25 湘潭大学 一种高熔体强度聚乳酸材料及其制备方法
CN113265127A (zh) * 2020-04-27 2021-08-17 汕头市三马塑胶制品有限公司 一种全生物基全降解长链支化聚乳酸及其制备方法
CN114806120A (zh) * 2022-06-15 2022-07-29 韩胜 一种耐热聚乳酸发泡热成型体的制备方法

Also Published As

Publication number Publication date
CN108341940B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
Castro-Mayorga et al. Biosynthesis of silver nanoparticles and polyhydroxybutyrate nanocomposites of interest in antimicrobial applications
CN102408587B (zh) 环保型可控降解农用地膜及其制备方法
Yu et al. Exploring polylactide/poly (butylene adipate-co-terephthalate)/rare earth complexes biodegradable light conversion agricultural films
CN108341940A (zh) 一种高效无凝胶的长链支化聚乳酸的制备方法
CN102504345A (zh) 一次性使用可控完全降解塑料包装袋及其制备方法
CN106674923B (zh) 一种降解可控pbat/pla复合膜及其制备方法
CN108003645A (zh) 一种全生物降解秸秆注塑塑料及其制备方法
CN103265669B (zh) 秸秆纤维/pbs复合材料专用增容剂的制备方法及应用
Wang et al. Structure-controlled lignin complex for PLA composites with outstanding antibacterial, fluorescent and photothermal conversion properties
CN111410822A (zh) 一种pbat/pla淀粉基完全生物降解材料及其制备方法
Oulidi et al. Incorporation of olive pomace as a natural filler in to the PA6 matrix: effect on the structure and thermal properties of synthetic Polyamide 6
CN108047741A (zh) 一种聚乳酸阿拉伯树胶植物纤维全降解复合材料
CN117126518A (zh) 一种生物环保增韧强抗氧化抗菌聚乳酸复合材料及其制备方法
CN106317338A (zh) 长链支化聚乳酸树脂及其制备方法
CN102504346B (zh) 淀粉基纳米光催化复合降解改性剂及其制备方法
CN108570145B (zh) 一种高支化高强度聚乳酸微型制品的制备方法
CN113429762A (zh) 一种淀粉/聚乳酸/pbat纳米复合材料及其制备方法
CN105566690B (zh) 一种淀粉基可降解生物塑料及其制备方法
CN105419261A (zh) 一种生物降解材料及其制备方法和应用
Wang et al. Biodegradable and multifunctional black mulch film decorated with darkened lignin induced by iron ions for “green” agriculture
CN109054107A (zh) 一种新型易降解环保材料及其制备方法
CN109369967A (zh) 一种可降解薄膜及制备方法
CN101457024A (zh) 一种制备木塑复合材料的方法及制得的复合材料
CN102504349B (zh) 一种磷酸酯淀粉可生物降解膜及其制备方法
CN107793623A (zh) 一种可降解的复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant