CN108328567B - 一种获得高密度不等高晶体微针阵列的方法 - Google Patents
一种获得高密度不等高晶体微针阵列的方法 Download PDFInfo
- Publication number
- CN108328567B CN108328567B CN201810014568.7A CN201810014568A CN108328567B CN 108328567 B CN108328567 B CN 108328567B CN 201810014568 A CN201810014568 A CN 201810014568A CN 108328567 B CN108328567 B CN 108328567B
- Authority
- CN
- China
- Prior art keywords
- mask
- needle
- etching
- boss
- height
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00523—Etching material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00111—Tips, pillars, i.e. raised structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00103—Structures having a predefined profile, e.g. sloped or rounded grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00388—Etch mask forming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00555—Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/0053—Methods for producing microneedles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0101—Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
- B81C2201/0128—Processes for removing material
- B81C2201/013—Etching
- B81C2201/0133—Wet etching
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Micromachines (AREA)
Abstract
本发明公开了一种获得高密度曲面或斜面的微针阵列的方法,该方法通过改变掩膜形状大小生成不同高度的针状石英凸台,从而形成斜面或者曲面排列的微针阵列。该方法中的掩膜形状可以为圆形或者三角形,不同的掩膜形状,掩膜大小有不同的计算方式。该方法可以获得高密度微针阵列,且可准确控制阵列形状。
Description
技术领域
本发明涉及一种晶体微针阵列成型方法。
背景技术
利用各项异性腐蚀的特性获得高密度的,针状凸台的排列成斜面或者曲面的阵列已经应用在硅的刻蚀中。对于不同晶向的体硅晶片,由于硅的掩模边缘钻蚀速度较快,所以直接应用硅的各项异性腐蚀无法形成针状的刻蚀结构。为了得到体硅晶片的带针尖的针状阵列结构,通常一步刻蚀是无法做到的,需要分步进行。
运用DRIE技术,利用深反应离子刻蚀原理,可以得到硅晶体的柱状阵列。通过对要保留的部分进行钝化和保护,利用硅的各项异性腐蚀的特性,对用DRIE技术得到的阵列进行湿法刻蚀可得到体硅晶片的带针尖的针状阵列结构。换言之,利用硅的各向异性刻蚀仅能获得所需的针尖部分,而针体是通过DRIE获得的,以减少湿法刻蚀时掩模边缘钻蚀过快对结构成型的影响。
而对于石英来说,想要得到类似的结构的方法却与之不同。由于其掩模边缘的钻蚀速率较慢,而垂直方向的速率较快,通过Z切α-石英晶片的湿法刻蚀,可以得到我们想要的针状结构。对于石英刻蚀而言,并不需要像硅晶片刻蚀那样需要DRIE技术,并且这样做过程繁琐,步骤过多。
发明内容
发明目的:本发明提供了一种获得高密度不等高晶体微针阵列的方法,通过建立石英刻蚀的全速率以及掩模形状与刻蚀时间的关系,求得不同形状微针阵列对应的掩模形状及刻蚀时间,最终获得可控密度,可控形状的微型化、高集成化的晶体微针阵列。
技术方案:本发明公开了一种获得高密度不等高晶体微针阵列的方法,具体步骤如下:
1)获得石英刻蚀的全空间速率分布:
采用海克斯康三坐标测量机对刻蚀前后的石英球表面数据点进行测量,求得不同方向的石英湿法刻蚀各向异性的速率,从而获得石英各向异性刻蚀的全空间速率。
2)建立起针状凸台的刻蚀模型:
针状凸台的刻蚀模型分为两个部分:第一部分是掩模钻蚀模型,第二部分是掩模脱落以后的自由刻蚀模型。
单独对一根针状凸台进行观察,对于该针状结构,在一个侧面看过去,从上至下有A,B,C,D这4个主要的面。由于Z-cut石英晶片成三对称结构,在对凸台进行旋转的过程中必然会重复这几个面。
对针状凸台进行各向异性腐蚀,对实验得到的凸台的形状进行简化,分出针尖,中段和底座。
掩模钻蚀最终会被速度最快的刻蚀方向影响。由于石英晶体的三对称特性,会在针尖端面形成一个三角形。根据石英球刻蚀得到的石英刻蚀的全空间速率,得到赤道附近测量的刻蚀速率的极坐标图,最大的三个速率会形成一个三角形的包络面,这也是稳定后的针尖钻蚀形貌,直到顶部材料被完全去除,掩模脱落。通过这个模型确定掩模钻蚀的主导面是位于最上方的A面,由于A面近似的垂直于XOY面,所以A面的法向量与x轴约成55°,测量石英球的赤道速率,该赤道方向上出现的最大速率出现的位置与之一致。测量得到的掩模钻蚀的速率为ks。
凸台的刻蚀模型的第二部分是当掩模脱落后的自由刻蚀模型,由于不同的针状凸台的底座高度相同,所以针头的高度变化影响着阵列排列的形状,而掩模脱落之后自由刻蚀的时间以及自由刻蚀的高度变化速率决定了最终针头部分的高度;当掩模脱落时,自由刻蚀所主导的面是B,在全空间中找到其对应的高度变化速率kh,自由刻蚀的刻蚀速率和高度变化速率的关系如下:
其中kh是自由刻蚀时针的高度变化速率,vd是中特征晶面对应的刻蚀速率,α是B面法向和竖直方向所成的夹角。
3)掩模图案设计:
石英各项异性腐蚀的方法,其关键点在于掩模图案的设计。对于每一个针状凸台,设定刻蚀总时间都相同,所覆盖在其顶部的掩模的尺寸控制着掩模钻蚀时间,从而进一步控制自由刻蚀时间,而自由刻蚀时间与自由刻蚀高度变化速率kh决定了最终针状凸台的高度。控制掩模脱落的时间为ts,控制凸台自由刻蚀的时间为th。若保持凸台从高到低的排列,则覆盖在凸台上的掩模的尺寸需要从大到小按照一定的尺寸设计。
4)制作石英晶片并设定时间进行刻蚀获得不等高晶体微针阵列,具体如下:
(41)清洗石英晶片;
(42)溅射金属薄膜:采用溅射沉积的方式沉积金属掩模;
(43)旋涂光刻胶曝光显影,铺设掩模图案:在石英晶片表面旋涂一层光刻胶;将光刻胶涂抹在步骤b中得到的金属掩模上,平行光经过掩模板,使得石英晶片表面的光刻胶得以进行选择性地感光,经由紫外线曝光将步骤3)设计的掩模图案转移至晶片表面的光刻胶上,最后进行显影操作;在显影过程中将不需要的光刻胶,也就是经曝光照射到的区域图形去除,形成设计需要的合格图形;
(44)除去多余光刻胶,进行石英刻蚀:
配制80℃饱和二氟化氢铵(HF:NH4F=3:2)溶液作为湿法刻蚀液,对α-石英晶片进行湿法刻蚀,在进行脱膜等操作,以获得所求之阵列。
需要注意的是,上述的石英各项异性腐蚀的方法,需要考虑极限情况。当掩模面积最小的凸台完全刻蚀到底,而掩模面积最大的掩模刚刚好开始脱落,由于最先被刻蚀到底的凸台所覆盖的掩模的面积最小,一定的时间过后,A面和B面完全消失,凸台只剩下了底座。由于底座的高度变化缓慢,为了避免这样的情况发生,需要考虑每根凸台轴线之间的间距满足的关系。
有益效果:本发明所提供的的获得高密度不等高晶体微针阵列的方法能够准确的根据所需要的微针阵列形状设计每一个针状凸台对应的掩模形状,从而利用掩模控制针状凸台的高度,形成所需要的微针阵列,通过该方法得到的微针阵列的形状准确,刻蚀精度较高,能够避免多次步骤引起的误差,一次刻蚀成型。
附图说明:
图1凸台针头包络成斜面的微针阵列;
图2凸台针头包络成曲面的微针阵列;
图3凸台的刻蚀最终形貌;
图4针状凸台的刻蚀模型;
图5使用探针测量石英球表面数据的示意图;
图6石英各向异性腐蚀的速率云图;
图7掩模钻蚀示意图;
图8顶部钻蚀的速度投影;
图9刻蚀主导面A和B面在全空间的速率图中的分布;
图10刻蚀初期的刻蚀形貌;
图11刻蚀中期的刻蚀形貌;
图12刻蚀末期的刻蚀形貌;
图13凸台自由刻蚀的示意图;
图14钻蚀深度和高度变化的关系图;
图15极限情况的示意图;
图16刻蚀的流程示意图;
图17针尖从高到低斜面排列的阵列示意图;
图18针尖从高到低曲面排列的阵列示意图。
具体实施方式
实施例1
1)获得石英刻蚀的全空间速率分布:
如图5和图6所示,采用三坐标测量机对刻蚀前后的石英球表面数据点进行测量,求得不同方向的石英湿法刻蚀各向异性的速率,从而获得石英各向异性刻蚀的全空间速率。
2)建立起针状凸台的刻蚀模型:
针状凸台的刻蚀模型分为两个部分:第一部分是掩模钻蚀模型,第二部分是掩模脱落以后的自由刻蚀模型。
如图3所示,单独对一根针状凸台进行观察,对于图中的针状结构,在一个侧面看过去,有A,B,C,D这4个主要的面。由于Z-cut石英晶片成三对称结构,在对凸台进行旋转的过程中必然会重复这几个面。
对针状凸台进行各向异性腐蚀,实验得到的凸台的形状进行简化,如图4所示,将针状凸台分为了针尖,中段和底座三部分。
图7中给出了掩模钻蚀的示意图,掩模钻蚀最终会被速度最快的刻蚀方向影响,由于石英晶体的三对称特性,会在针尖形成一个三角形。根据石英球刻蚀得到的石英刻蚀的全空间速率,得到如图8和9所示赤道附近测量的刻蚀速率的极坐标图,最大的三个速率会形成一个三角形的包络面,这也是稳定后的针尖钻蚀形貌,直到顶部材料被完全去除,掩模脱落。图10~12给出了刻蚀的渐变过程模型。通过这个模型确定掩模钻蚀的主导面是位于最上方的A,由于A面近似的垂直于XOY面,所以A面的法向量与x轴约成55°,与测量的赤道方向的最大的速度的位置是一致的。测量得到的掩模钻蚀的速率为ks。
凸台的刻蚀模型的第二部分是当掩模脱落后的自由刻蚀模型,由于不同的针状凸台的底座高度相同,所以针头的高度变化影响着阵列排列的形状,而掩模脱落之后自由刻蚀的时间以及自由刻蚀的高度变化速率决定了最终针头部分的高度;当掩模脱落时,自由刻蚀所主导的面是B,在全空间中找到其对应的高度变化速率kh,A面和B面分别对应的位置如图9所示,图13展示了自由刻蚀时凸台高度变化的模拟图,自由刻蚀的刻蚀速率和凸台高度变化速率的关系如下:
其中kh是自由刻蚀时针的高度变化速率,vd是中特征晶面对应的刻蚀速率,α是B面法向和竖直方向所成的夹角。
3)掩模图案设计:
石英各项异性腐蚀的方法,其关键点在于掩模图案的设计。对于每一个针状凸台,设定刻蚀总时间都相同,所覆盖在其顶部的掩模的尺寸控制着掩模钻蚀时间,从而进一步控制自由刻蚀时间,而自由刻蚀时间与自由刻蚀高度变化速率kh决定了最终针状凸台的高度。控制掩模脱落的时间为ts,控制凸台自由刻蚀的时间为th。若保持凸台从高到低的排列,则覆盖在凸台上的掩模的尺寸需要从大到小按照一定的尺寸设计。若掩模形状为圆形,则掩模尺寸具体计算步骤如下:
(31):设定总的刻蚀时间T;
其中Hi是第i个针状凸台与最高针状凸台的高度差,kh是自由刻蚀时凸台高度变化速率;
其中kh计算方法如下:
其中vd是中特征晶面对应的刻蚀速率,α是凸台B面法向和竖直方向所成的夹角;
R1=Tks
其中T为总的刻蚀时间,ks是掩模钻蚀的最快速率;
(36):第i个针状凸台对应的掩模半径Ri计算方法如下:
其中Ri为与最高针状凸台高度差为Hi的第i个针状凸台对应的掩模半径,ks是掩模钻蚀的最快速率,kh是自由刻蚀时凸台高度变化速率,R1为最高的针状凸台所对应的掩模半径,n为微针阵列中针状凸台的总的个数,Hi是第i个针状凸台与最高针状凸台的高度差。
4)制作石英晶片并设定时间进行刻蚀获得不等高晶体微针阵列,具体如下:
a、清洗石英晶片:将100μm厚的Z-cut晶片置于H2SO4·H2O2溶液(体积比3:1)中清洗15分钟,温度设定在110±5℃。这个步骤完成之后,把晶面移动到纯水之中洗两次,水温80°,一次5分钟。再用清水流冲洗5分钟左右,最后再用氮气烘干。
b、溅射Au/Cr金属薄膜:使用全自动多靶磁控溅射平台,采用溅射沉积的方式沉积金属掩模。先溅射Cr后AU,其过程需要不间断地溅射。两个掩模层分别是10nm和260nm厚。
c、旋涂光刻胶曝光显影:旋涂光刻胶之前,一般先在晶片表面旋涂一层六甲基二戊烷(HMDS)作为底层漆质物,用以增强光刻胶和掩模的附着力,然后在石英晶片表面旋涂一层光刻胶;将光刻胶涂抹在步骤b中得到的金属掩模上,平行光经过掩模板,使得石英晶片表面的光刻胶得以进行选择性地感光,经由紫外线曝光将步骤3)设计的掩模图案转移至晶片表面的光刻胶上,需要掩模留下的地方则不进行曝光,最后进行显影操作;在显影过程中将不需要的光刻胶,也就是经曝光照射到的区域图形去除,形成设计需要的合格图形;
d、除去多余光刻胶,进行石英刻蚀:
配制80℃饱和二氟化氢铵(HF:NH4F=3:2)溶液作为湿法刻蚀液,对α-石英晶片进行湿法刻蚀,在进行脱膜等操作,以获得所求之阵列。
至此,高密度不等高石英晶体微针阵列成型,制作结束。
实施例2
如图1和图17所示,微针阵列由多个顶部呈线性等距排列的线性阵列平行排列而成,图16给出了一簇顶部呈线性等距排列的线性阵列刻蚀示意图,掩模形状为圆形时步骤3)Step5中掩模半径Ri计算公式如下:
其中i表示为同一簇线性阵列中由高到低第i个针状凸台,θ是线性阵列顶部所成斜线与水平线的夹角,n是一个线性阵列针状凸台的个数,ks是掩模钻蚀的最快速率,kh是自由刻蚀时凸台高度变化速率,R1是起始的针状凸台覆盖掩模的半径,D是同一簇阵列相邻两个针状凸台轴线之间的距离。
考虑其极限情况,当针柱消失时,只剩下底座,为避免这种情况,考虑当最快刻蚀针尖出现底座的情形:
故所安排的掩模间隔D以及线性阵列顶部所成斜线与水平线的夹角θ需满足上式关系。
若步骤3)Step5中掩模形状为等边三角形则上述线性阵列第i个针状凸台所对应的掩模边长Li计算公式如下:
其中i表示为同一线性阵列中由高到低第i个针状凸台,θ是线性阵列顶部所成斜线与水平线的夹角,n是一个线性阵列针状凸台的个数,ks是掩模钻蚀的最快速率,kh是自由刻蚀时凸台高度变化速率,L1是起始的针状凸台覆盖掩模的边长,D是同一簇阵列相邻两个针状凸台轴线之间的距离。
实施例3
如图2和图18所示,微针阵列由多个顶部呈对称的抛物线等距排列的曲线阵列平行排列而成,且顶部抛物线平移面,图14给出了半边抛物线排列的刻蚀示意图,掩模形状为圆形时步骤3)掩模半径Ri计算公式如下:
其中i表示同一簇线性阵列中由高到低第i个针状凸台,n是同一簇阵列针状凸台的个数,ks是掩模钻蚀的最快速率,kh是自由刻蚀时凸台高度变化速率,R1是起始的针状凸台覆盖掩模的半径,D是同一簇阵列相邻两个针状凸台轴线之间的距离,a为抛物线对应二次函数的二次项系数。将掩模尺寸进行镜像处理,即可得到对称抛物线等距排列的曲线阵列。
Claims (6)
1.一种获得高密度不等高晶体微针阵列的方法,包括如下步骤:
1)获得石英刻蚀的全空间速率分布;
2)建立起针状凸台的刻蚀膜型;
3)掩膜图案设计;
4)制作石英晶片并设定时间进行刻蚀获得不等高晶体微针阵列;
其特征在于:所述步骤3)在设计掩膜图案之前需要设定刻蚀时间T,确定每一个微针阵列的针状凸台的高度以及微针阵列上表面形状,然后计算掩膜尺寸大小,通过变换掩膜尺寸的大小控制掩膜钻蚀时间和自由刻蚀的时间,从而最终控制微针阵列每一个针状凸台的高度。
2.根据权利要求1所述的一种获得高密度不等高晶体微针阵列的方法,其特征在于,步骤4)包括如下步骤:
(41)清洗石英晶片;
(42)溅射金属薄膜:采用溅射沉积的方式沉积金属掩膜;
(43)旋涂光刻胶曝光显影:在石英晶片表面旋涂一层光刻胶;将光刻胶涂抹在步骤(42)中得到的金属掩膜上,平行光经过掩膜版,使得石英晶片表面的光刻胶得以进行选择性地感光,经由紫外线曝光将步骤3)设计的掩膜图案转移至晶片表面的光刻胶上,最后进行显影操作;在显影过程中将不需要的光刻胶,也就是经曝光照射到的区域图形去除,形成设计需要的合格图形;
(44)除去多余光刻胶,进行石英刻蚀。
3.根据权利要求1或2所述的一种获得高密度不等高晶体微针阵列的方法,其特征在于:若步骤3)中所述掩膜形状为圆形,则掩膜尺寸具体计算步骤如下:
(31):设定总的刻蚀时间T;
其中Hi是第i个针状凸台与最高针状凸台的高度差,kh是自由刻蚀时凸台高度变化速率;
其中kh计算方法如下:
其中vd是自由刻蚀主导面所对应的刻蚀速率,α是刻蚀速率与竖直方向所成的夹角;
R1=Tks
其中T为总的刻蚀时间,ks是掩膜钻蚀的最快速率;
(36):第i个针状凸台对应的掩膜半径Ri计算方法如下:
其中Ri为与最高针状凸台高度差为Hi的第i个针状凸台对应的掩膜半径,ks是掩膜钻蚀的最快速率,kh是自由刻蚀时凸台高度变化速率,R1为最高的针状凸台所对应的掩膜半径,n为微针阵列中针状凸台的总的个数,Hi是第i个针状凸台与最高针状凸台的高度差。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810014568.7A CN108328567B (zh) | 2018-01-08 | 2018-01-08 | 一种获得高密度不等高晶体微针阵列的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810014568.7A CN108328567B (zh) | 2018-01-08 | 2018-01-08 | 一种获得高密度不等高晶体微针阵列的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108328567A CN108328567A (zh) | 2018-07-27 |
CN108328567B true CN108328567B (zh) | 2020-07-14 |
Family
ID=62924105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810014568.7A Active CN108328567B (zh) | 2018-01-08 | 2018-01-08 | 一种获得高密度不等高晶体微针阵列的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108328567B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023042047A1 (en) * | 2021-09-20 | 2023-03-23 | 3M Innovative Properties Company | Non-adhesive medical attachment articles using microneedles |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220241569A1 (en) * | 2019-06-25 | 2022-08-04 | Cosmed Pharmaceutical Co., Ltd. | Microneedle array having uneven needle density |
US11717660B2 (en) * | 2021-07-29 | 2023-08-08 | Nanopass Technologies Ltd. | Silicon microneedle structure and production method |
CN113663208A (zh) * | 2021-08-31 | 2021-11-19 | 华中科技大学同济医学院附属协和医院 | 一种七鳃鳗牙齿形状仿生的抗菌丝胶微针的制备及其生物应用 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3820849B2 (ja) * | 2000-06-27 | 2006-09-13 | 日立電線株式会社 | 光導波路の製造方法 |
WO2008114252A2 (en) * | 2007-03-18 | 2008-09-25 | Nanopass Technologies Ltd | Microneedle structures and corresponding production methods employing a backside wet etch |
CN101143705B (zh) * | 2007-11-01 | 2010-08-11 | 南京大学 | 微米和亚微米针阵列的制备方法 |
CN100591388C (zh) * | 2008-01-04 | 2010-02-24 | 南京大学 | 一种微针阵列注射器的制备方法 |
CN101829394B (zh) * | 2010-04-27 | 2012-08-22 | 上海交通大学 | 台阶微针阵列的制备方法 |
CN102502474A (zh) * | 2011-11-10 | 2012-06-20 | 无锡英普林纳米科技有限公司 | 非平面微米和亚微米微针阵列及其制备方法 |
CN102849673A (zh) * | 2012-09-17 | 2013-01-02 | 无锡英普林纳米科技有限公司 | 液体悬浮微结构及其制备方法 |
GB201318700D0 (en) * | 2013-10-23 | 2013-12-04 | Univ Swansea | Manufacture of microneedles |
CN103985948B (zh) * | 2014-05-12 | 2016-04-20 | 中国电子科技集团公司第五十四研究所 | 一种低损耗石英探针的制备方法 |
CN106495089B (zh) * | 2016-10-31 | 2018-09-21 | 东南大学 | 湿法刻蚀石英晶体少量晶面获取全晶面刻蚀速率的方法 |
-
2018
- 2018-01-08 CN CN201810014568.7A patent/CN108328567B/zh active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023042047A1 (en) * | 2021-09-20 | 2023-03-23 | 3M Innovative Properties Company | Non-adhesive medical attachment articles using microneedles |
Also Published As
Publication number | Publication date |
---|---|
CN108328567A (zh) | 2018-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108328567B (zh) | 一种获得高密度不等高晶体微针阵列的方法 | |
KR100599124B1 (ko) | 부유 구조체 제조방법 | |
JPWO2008156009A1 (ja) | 光学素子及びその製造方法 | |
Schindler et al. | Ion beam and plasma jet etching for optical component fabrication | |
KR100920380B1 (ko) | 프로브 팁의 제조 방법 | |
CN102275868B (zh) | 硅微机械结构的预埋掩模湿法腐蚀工艺 | |
US20080272087A1 (en) | Method for fabricating probe for use in scanning probe microscope | |
JPS58130529A (ja) | 半導体のエツチング方法 | |
US4306951A (en) | Electrochemical etching process for semiconductors | |
CN106610439B (zh) | 倾斜式硅针尖及其制作方法 | |
US10795173B2 (en) | System and method for optimally forming gratings of diffracted optical elements | |
KR101876728B1 (ko) | 탐침의 기울기 조절이 용이한 원자간력 현미경의 캔틸레버 제조방법 및 원자간력 현미경의 캔틸레버 | |
JP5552776B2 (ja) | ナノインプリント用モールドの製造方法と検査方法 | |
US6183594B1 (en) | Method and system for detecting the end-point in etching processes | |
CN109581559B (zh) | 一种四角双锥阵列组成的双光栅纳米结构及其制备方法 | |
JP2004022746A (ja) | ウエハ接合体の製造方法および該ウエハ接合体の厚さ測定方法 | |
KR101011681B1 (ko) | 습식공정을 이용한 광결정 수동소자의 제조방법 | |
Van Veenendaal et al. | The construction of orientation-dependent crystal growth and etch rate functions II: Application to wet chemical etching of silicon in potassium hydroxide | |
JP2666465B2 (ja) | 半導体装置の製造方法 | |
JP3704467B2 (ja) | 半導体装置の製造方法 | |
RU2816085C1 (ru) | Способ изменения радиуса кривизны поверхности пластины | |
KR101181519B1 (ko) | 프로브 팁 및 그 제조방법 | |
Xing et al. | The study of self-limited state profile and level set simulation of anisotropic wet etching on quartz | |
JP5003321B2 (ja) | マスクブランクおよびマスクブランク製造方法 | |
CN113371677B (zh) | 法拉第笼刻蚀法大批量制备倾角补偿afm探针的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |