CN108292742B - 制造电极的方法 - Google Patents

制造电极的方法 Download PDF

Info

Publication number
CN108292742B
CN108292742B CN201780004231.1A CN201780004231A CN108292742B CN 108292742 B CN108292742 B CN 108292742B CN 201780004231 A CN201780004231 A CN 201780004231A CN 108292742 B CN108292742 B CN 108292742B
Authority
CN
China
Prior art keywords
electrode
current collector
polymer film
active material
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780004231.1A
Other languages
English (en)
Other versions
CN108292742A (zh
Inventor
金大洙
梁晋浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lg Energy Solution
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority claimed from PCT/KR2017/009717 external-priority patent/WO2018052213A1/ko
Publication of CN108292742A publication Critical patent/CN108292742A/zh
Application granted granted Critical
Publication of CN108292742B publication Critical patent/CN108292742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本公开内容意欲解决聚合物粘合剂在电极活性材料层中的非均匀分布以及提高电极集电器与电极活性材料层之间的粘附力。本公开内容提供一种制造电极的方法,所述方法包括以下步骤:(S1)将包含分散在溶剂中的电极活性材料、聚合物粘合剂和导电材料的电极浆料施加至电极集电器的一个表面;(S2)将聚合物膜堆叠在涂覆有电极浆料的顶表面上;(S3)将其上堆叠有聚合物膜的电极集电器进行干燥以使溶剂蒸发;和(S4)将其上堆叠有聚合物膜的电极集电器进行辊压以获得电极。

Description

制造电极的方法
技术领域
本公开内容涉及一种制造电极的方法。
本申请要求于2016年9月13日在韩国提交的韩国专利申请第10-2016-0118087号和于2017年9月4日在韩国提交的韩国专利申请第10-2017-0112722号的优先权,通过引用将上述专利申请的公开内容结合在此。
背景技术
随着技术发展和对移动设备需求的增长,对作为能源的二次电池的需求迅速增长。在此类二次电池中,具有高能量密度和高电压、长循环寿命和低放电速率的锂二次电池已被商业化并广泛使用。锂二次电池包括正极、负极、以及插置在正极和负极之间的隔板,诸如正极或负极之类的电极是通过将包含电极活性材料、粘合剂和溶剂的电极浆料施加至电极集电器,并执行干燥和辊压而获得的。
这种制造电极的方法的问题在于:当电极进行干燥时,溶剂从电极向上蒸发,聚合物粘合剂沿着溶剂蒸发的方向移动,因而聚合物粘合剂在电极活性材料层中的分布变得不均匀。此外,由于聚合物粘合剂分布不均匀,因此电极集电器与电极活性材料层之间的粘附力下降,导致电池的输出劣化。
发明内容
技术问题
设计本公开内容来解决上述现有技术的问题,因此本公开内容涉及提供一种能够防止聚合物粘合剂的不均匀分布的制造电极的方法。
技术方案
在本公开内容的一个方面中,提供一种制造电极的方法,所述方法包括以下步骤:(S1)将包含分散在溶剂中的电极活性材料、聚合物粘合剂和导电材料的电极浆料施加至电极集电器的一个表面;(S2)将聚合物膜堆叠在涂覆有电极浆料的顶表面上;(S3)将其上堆叠有聚合物膜的电极集电器进行干燥以使溶剂蒸发;和(S4)将其上堆叠有聚合物膜的电极集电器进行辊压以获得电极。
优选地,所述方法可进一步包括步骤(S5):移除所述聚合物膜。
优选地,所述聚合物膜可以是聚甲基丙烯酸甲酯、聚二甲基硅氧烷、或塑料石蜡膜。
优选地,所述电极集电器可以是多孔电极集电器。
优选地,所述多孔电极集电器的孔隙可具有1-20μm的直径。
有益效果
根据本公开内容的方法,可以解决聚合物粘合剂的非均匀分散的问题并且可以提高电极集电器与电极活性材料层之间的粘附力。
附图说明
附图图解了本公开内容的优选实施方式并且与前述公开内容一起用于提供对本公开内容的技术精神的进一步理解,因此,本公开内容不被解释为限于这些附图。
图1是图解根据现有技术的干燥电极的步骤的示意性截面图。
图2是图解根据本公开内容实施方式的干燥电极的步骤的示意性截面图。
图3是图解在根据实施例和比较例的电极的每一者中,电极活性材料层与集电器之间的粘附力的曲线图。
[附图标记说明]
100:电极
110:电极浆料
111:聚合物粘合剂
112:电极活性材料
120:电极集电器
200:聚合物膜。
具体实施方式
下文中,将详细地描述本公开内容的优选实施方式。在描述之前,应当理解,在说明书和所附权利要求书中使用的术语不应被解释为限于普遍的含义和字典的含义,而是在允许发明人适当定义术语以获得最佳解释的原则的基础上,基于与本公开内容的技术方面对应的含义和概念进行解释。因此,在此提出的描述仅是出于说明目的的优选的实例,而不是意图限制本公开内容的范围,因此应当理解,在不背离本公开内容的范围的情况下,可对其做出其他等同替换和修改。
图1是图解根据现有技术的干燥电极的步骤的示意性截面图。参照图1,在制造电极的常规方法中,当将包含电极活性材料112、聚合物粘合剂111和溶剂的电极浆料110施加至电极集电器120的一个表面并随后对该浆料进行干燥时,溶剂从电极100向上蒸发。接着,聚合物粘合剂111沿着溶剂蒸发的方向移动,从而导致以下问题:聚合物粘合剂111在电极活性材料层中分布得不均匀。
图2是图解根据本公开内容实施方式的干燥电极的步骤的示意性截面图。参照图2,根据本公开内容,将聚合物膜200堆叠在电极浆料110的顶部。以这种方式,可以控制溶剂蒸发的方向至电极100的横侧,从而防止聚合物粘合剂111的不均匀分布。
根据本公开内容的制造电极的方法包括以下步骤:(S1)将包含分散在溶剂中的电极活性材料、聚合物粘合剂和导电材料的电极浆料施加至电极集电器的一个表面;(S2)将聚合物膜堆叠在涂覆有电极浆料的顶表面上;(S3)将其上堆叠有聚合物膜的电极集电器进行干燥以使溶剂蒸发;和(S4)将其上堆叠有聚合物膜的电极集电器进行辊压以获得电极。
具体地,在步骤(S1)中,将包含分散在溶剂中的电极活性材料、聚合物粘合剂和导电材料的电极浆料施加至电极集电器的一个表面。
所述电极活性材料可以是正极活性材料或负极活性材料。
正极活性材料可包括含锂氧化物,优选地是含锂过渡金属氧化物。含锂过渡金属氧化物的具体实例包括选自由以下化合物构成的组中的任意一种:LixCoO2(0.5<x<1.3)、LixNiO2(0.5<x<1.3)、LixMnO2(0.5<x<1.3)、LixMn2O4(0.5<x<1.3)、Lix(NiaCobMnc)O2(0.5<x<1.3,0<a<1,0<b<1,0<c<1,a+b+c=1)、LixNi1-yCoyO2(0.5<x<1.3,0<y<1)、LixCo1-yMnyO2(0.5<x<1.3,0≤y<1)、LixNi1-yMnyO2(0.5<x<1.3,0≤y<1)、Lix(NiaCobMnc)O4(0.5<x<1.3,0<a<2,0<b<2,0<c<2,a+b+c=2)、LixMn2-zNizO4(0.5<x<1.3,0<z<2)、LixMn2-zCozO4(0.5<x<1.3,0<z<2)、LixCoPO4(0.5<x<1.3)和LixFePO4(0.5<x<1.3),或者它们中的两种以上的组合。此外,含锂过渡金属氧化物可涂覆有金属(诸如铝(Al))或金属氧化物。此外,除上述含锂过渡金属氧化物之外,亦可使用硫化物(sulfide)、硒化物(selenide)和卤化物(halide)。
负极活性材料是具有锂离子嵌入/脱嵌能力,其具体实例包括锂金属、碳质材料、金属化合物、和它们的组合。
具体地,可使用低结晶碳和高结晶碳作为碳质材料。低结晶碳的典型实例包括软碳(soft carbon)和硬碳(hard carbon)。高结晶碳的典型实例包括kish石墨、热解碳、中间相沥青基碳纤维(mesophase pitch based carbon fiber)、中位碳微球(meso-carbonmicrobead)、中间相沥青(mesophase pitches)、和高温焙烧炭,诸如石油或煤焦油沥青(petroleum or coal pich derived cokes)衍生的焦炭。
金属化合物的具体实例包括包含至少一种诸如Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr和Ba之类的金属元素的化合物。尽管这些金属化合物可以以包括单质、合金、氧化物(TiO2、SnO2等)、氮化物、硫化物、硼化物、以及与锂的合金在内的任何一种形式来使用,但单质、氧化物以及与锂的合金可具有高容量。具体地,包含选自Si、Ge和Sn中的至少一种元素的金属化合物以及包含选自Si和Sn中的至少一种元素的金属化合物能够提供具有较高容量的电池。
聚合物粘合剂可以是选自由以下材料构成的组中的任意一种:聚偏二氟乙烯(polyvinylidene fluoride,PVDF)、六氟丙烯(hexafluoropropylene,HFP)、聚偏二氟乙烯-共-六氟丙烯(polyvinylidene fluoride-co-hexafluoropropylene,PVDF-共-HFP)、聚偏二氟乙烯-三氯乙烯(polyvinylidene fluoride-trichloroethylene)、聚甲基丙烯酸甲酯(polymethyl methacrylate)、聚丙烯酸丁酯(polybutyl acrylate)、聚丙烯腈(polyacrylonitrile)、聚乙烯吡咯烷酮(polyvinylpyrrolidone)、聚乙酸乙烯酯(polyvinyl acetate)、聚乙烯-共-乙酸乙烯酯(polyethylene-co-vinyl acetate)、聚环氧乙烷(polyethylene oxide)、聚芳酯(polyarylate)、醋酸纤维素(cellulose acetate)、醋酸丁酸纤维素(cellulose acetate butyrate)、醋酸丙酸纤维素(cellulose acetatepropionate)、氰乙基支链淀粉(cyanoethyl pullulan)、氰乙基聚乙烯醇(cyanoethylpolyvinyl alcohol)、氰乙基纤维素(cyanoethyl cellulose)、氰乙基蔗糖(cyanoethylsucrose)、支链淀粉(pullulan)、羧甲基纤维素(carboxymethyl cellulose)、丙烯腈-苯乙烯-丁二烯共聚物(acrylonitrile-styrene-butadiene copolymer)和聚酰胺(polyamide),或者它们中的两种以上的组合。
溶剂可包括选自由以下构成的组中的任意一种:丙酮(acetone)、四氢呋喃(tetrahydrofuran)、二氯甲烷(methylene chloride)、氯仿(chloroform)、二甲基甲酰胺(dimethyl formamide)、N-甲基-2-吡咯烷酮(N-methyl-2-pyrrolidone,NMP)、环己烷(cyclohexane)和水,或者它们中的两种以上的组合。
电极集电器可以是正极集电器或负极集电器。
正极集电器没有特别限制,只要其具有高导电性并且不会在电池中引起任何化学变化即可。正极集电器的具体实例包括:不锈钢、铝、镍、钛或焙烧碳;经碳、镍、钛或银表面处理过的铝或不锈钢;或类似物。
负极集电器没有特别限制,只要其具有导电性并且不会在电池中引起任何化学变化即可。负极集电器的具体实例包括:铜、不锈钢、铝、镍、钛或焙烧碳;经碳、镍、钛或银表面处理过的铜或不锈钢;铝镉合金;或类似物。
在步骤(S2)中,将聚合物膜堆叠在涂覆有电极浆料的顶表面上。将能够防止溶剂蒸发的聚合物膜进行堆叠以将溶剂蒸发的方向控制为电极的横侧,从而防止聚合物粘合剂的不均匀分布。
所述聚合物膜没有特别限制,只要其能够防止溶剂蒸发即可。聚合物膜的具体实例包括聚甲基丙烯酸甲酯(polymethyl methacrylate)、聚二甲基硅氧烷(polydimethylsiloxane)、塑料石蜡膜(plastic paraffin films)、或类似物。优选地,可使用聚甲基丙烯酸甲酯。由于聚合物膜随后被移除,因此聚合物膜的厚度没有特别限制。优选地,聚合物膜可具有100-2000μm的厚度。
在步骤(S3)中,将其上堆叠有聚合物膜的电极集电器进行干燥以使溶剂蒸发。借助于聚合物膜,溶剂在电极的横向上蒸发的同时被除去。因此,可以防止聚合物粘合剂朝着电极集电器的顶表面移动。
在步骤(S4)中,将其上堆叠有聚合物膜的电极集电器进行辊压以获得电极。电极集电器经过辊压之后,可以控制电极的孔隙率和孔隙比,可以提高电极集电器与电极活性材料层之间的粘附力。
此外,根据本公开内容的另一实施方式,所述制造电极的方法可进一步包括步骤(S3-2):在干燥步骤之后,移除所述聚合物膜。
根据本公开内容的又一实施方式,电极集电器可以是多孔电极集电器。当电极集电器具有多个孔隙时,溶剂可以经由这些孔隙而蒸发,且聚合物粘合剂可以均匀地分布。
所述多孔电极集电器的孔隙可具有1-20μm的直径。
下文将更全面地描述各实施例,以便使本公开内容能够容易理解。然而,以下实施例可以以多种不同的形式实施,而不应解释为受限于在此阐述的示例性实施方式。而是,提供这些示例性实施方式,以使得本公开内容将是全面的和完整的,并将本公开内容的范围完全传递给本领域技术人员。
实施例
首先,将包括95.6wt%的负极活性材料(包括有以90:10的重量比混合的人工石墨和天然石墨)、作为导电材料的1.0wt%的炭黑、作为粘合剂的2.3wt%的聚偏二氟乙烯(PVdF)、和作为增稠剂的1.1wt%的羧甲基纤维素(CMC)在内的混合物与作为溶剂的N-甲基吡咯烷酮(NMP)进行混合以提供负极浆料。
将所述负极浆料施加至铜集电器达4.0mAh/cm2的负载量,然后将由聚甲基丙烯酸甲酯形成的聚合物膜堆叠在其上。接着,将该浆料在真空烘箱中于120℃干燥10小时以上以进行NMP溶剂的蒸发。
之后,利用辊式压制机对该负极浆料进行辊压,并移除由聚甲基丙烯酸甲酯形成的聚合物膜,从而获得负极。
比较例
首先,将包括95.6wt%的负极活性材料(包括有以90:10的重量比混合的人工石墨和天然石墨)、作为导电材料的1.0wt%的炭黑、作为粘合剂的2.3wt%的PVdF、和作为增稠剂的1.1wt%的CMC在内的混合物与作为溶剂的NMP进行混合以提供负极浆料。
将所述负极浆料施加至铜集电器达4.0mAh/cm2的负载量,然后将该浆料在真空烘箱中于120℃干燥10小时以上以进行NMP溶剂的蒸发。
之后,利用辊式压制机对该负极浆料进行辊压,从而获得负极。
负极活性材料层与集电器之间的粘附力的测定
将根据实施例和比较例的每一个负极进行剥离测试(peel off test)以测定各个负极活性材料层与集电器之间的粘附力。
图3是图解在根据实施例和比较例的电极的每一者中,电极活性材料层与集电器之间的粘附力的曲线图。
参照图3,可以看出,相较于根据比较例的电极,根据实施例的电极显示出较高的粘附力。
已参照具体实施方式和附图详细地描述了本公开内容,但应当理解,本公开内容的范围并不限于此。还应理解的是,根据这些详细描述,在本公开内容范围内的各种改变和修改对于本领域技术人员来说将变得显而易见。

Claims (4)

1.一种制造电极的方法,所述方法包括以下步骤:
(S1)将包含分散在溶剂中的电极活性材料、聚合物粘合剂和导电材料的电极浆料施加至电极集电器的一个表面;
(S2)将聚合物膜堆叠在涂覆有所述电极浆料的顶表面上;
(S3)将其上堆叠有所述聚合物膜的所述电极集电器进行干燥以使所述溶剂蒸发;
(S4)将其上堆叠有所述聚合物膜的所述电极集电器进行辊压以获得电极;和
(S5)移除所述聚合物膜。
2.根据权利要求1所述的制造电极的方法,其中所述聚合物膜是聚甲基丙烯酸甲酯、聚二甲基硅氧烷或塑料石蜡膜。
3.根据权利要求1所述的制造电极的方法,其中所述电极集电器是多孔电极集电器。
4.根据权利要求3所述的制造电极的方法,其中所述多孔电极集电器的孔隙具有1-20μm的直径。
CN201780004231.1A 2016-09-13 2017-09-05 制造电极的方法 Active CN108292742B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2016-0118087 2016-09-13
KR20160118087 2016-09-13
KR10-2017-0112722 2017-09-04
KR1020170112722A KR102040257B1 (ko) 2016-09-13 2017-09-04 전극의 제조방법
PCT/KR2017/009717 WO2018052213A1 (ko) 2016-09-13 2017-09-05 전극의 제조방법

Publications (2)

Publication Number Publication Date
CN108292742A CN108292742A (zh) 2018-07-17
CN108292742B true CN108292742B (zh) 2020-12-04

Family

ID=61900890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780004231.1A Active CN108292742B (zh) 2016-09-13 2017-09-05 制造电极的方法

Country Status (5)

Country Link
US (1) US10333136B2 (zh)
EP (1) EP3370284B1 (zh)
KR (1) KR102040257B1 (zh)
CN (1) CN108292742B (zh)
PL (1) PL3370284T3 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102633552B1 (ko) * 2018-12-11 2024-02-06 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR102326642B1 (ko) * 2019-03-19 2021-11-16 전남대학교산학협력단 실록센 화합물을 포함하는 리튬-황 이차전지용 양극
US20220109136A1 (en) * 2020-10-01 2022-04-07 GM Global Technology Operations LLC Electrode assembly and method of making the same
KR102465331B1 (ko) 2021-08-09 2022-11-10 주식회사 제이디 이차전지 전극 공정용 코팅장치 및 코팅방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957489A (zh) * 2004-05-12 2007-05-02 三井金属矿业株式会社 非水电解液二次电池用负极及其制造方法
CN102197516A (zh) * 2008-08-29 2011-09-21 日本瑞翁株式会社 多孔膜、二次电池电极与锂离子二次电池
CN102487137A (zh) * 2010-12-06 2012-06-06 现代自动车株式会社 包括多孔绝缘层的二次电池的电极及其制造方法
CN104685673A (zh) * 2012-10-10 2015-06-03 日本瑞翁株式会社 二次电池用正极的制造方法、二次电池、以及二次电池用叠层体的制造方法
KR20150080745A (ko) * 2014-01-02 2015-07-10 주식회사 엘지화학 전극 전도도가 향상된 전기 화학 소자용 전극 및 이의 제조 방법
CN105074989A (zh) * 2013-10-31 2015-11-18 株式会社Lg化学 电极-隔膜复合物的制造方法、由该制造方法制造的电极-隔膜复合物及包含其的锂二次电池
CN105378979A (zh) * 2013-07-12 2016-03-02 丰田自动车株式会社 干燥装置、干燥方法及电池的制造方法
CN105932290A (zh) * 2016-06-07 2016-09-07 程建聪 单体大容量聚合物锂离子电池正极片及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584893A (en) * 1995-11-17 1996-12-17 Valence Technology, Inc. Method of preparing electrodes for an electrochemical cell
JP2948205B1 (ja) 1998-05-25 1999-09-13 花王株式会社 二次電池用負極の製造方法
JP3510175B2 (ja) 1999-05-25 2004-03-22 花王株式会社 二次電池用負極の製造方法
US8507151B2 (en) * 2008-01-17 2013-08-13 GM Global Technology Operations LLC Membrane electrode assembly having low surface ionomer concentration
US8420158B2 (en) * 2008-03-07 2013-04-16 Bathium Canada Inc. Process for making electrodes for lithium based electrochemical cells
EP4203130B1 (en) 2009-09-29 2024-07-03 LG Energy Solution, Ltd. Separator and electrochemical device having the same
KR20120063574A (ko) * 2010-12-08 2012-06-18 현대자동차주식회사 고분자 전해질막 연료전지용 막전극접합체의 제조방법
JP5664942B2 (ja) * 2011-05-12 2015-02-04 株式会社豊田自動織機 リチウムイオン二次電池用電極、その製造方法及びその電極を用いたリチウムイオン二次電池
KR101511732B1 (ko) * 2012-04-10 2015-04-13 주식회사 엘지화학 다공성 코팅층이 형성된 전극, 이의 제조방법 및 이를 포함하는 전기화학소자
JP5325332B1 (ja) 2012-12-28 2013-10-23 日本碍子株式会社 電池用電極塗膜の乾燥方法及び乾燥炉
JP2014157773A (ja) 2013-02-18 2014-08-28 Toyota Motor Corp 電極の製造方法
KR101816763B1 (ko) * 2013-05-08 2018-01-09 주식회사 엘지화학 절연층을 포함한 전극 구조체, 그 제조방법 및 상기 전극을 포함하는 전기화학소자
KR20150045786A (ko) * 2013-10-21 2015-04-29 주식회사 엘지화학 절연층을 포함한 전극, 그 제조방법 및 상기 전극을 포함하는 전기화학소자
KR102490865B1 (ko) * 2015-06-18 2023-01-20 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 리튬 전지

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957489A (zh) * 2004-05-12 2007-05-02 三井金属矿业株式会社 非水电解液二次电池用负极及其制造方法
CN102197516A (zh) * 2008-08-29 2011-09-21 日本瑞翁株式会社 多孔膜、二次电池电极与锂离子二次电池
CN102487137A (zh) * 2010-12-06 2012-06-06 现代自动车株式会社 包括多孔绝缘层的二次电池的电极及其制造方法
CN104685673A (zh) * 2012-10-10 2015-06-03 日本瑞翁株式会社 二次电池用正极的制造方法、二次电池、以及二次电池用叠层体的制造方法
CN105378979A (zh) * 2013-07-12 2016-03-02 丰田自动车株式会社 干燥装置、干燥方法及电池的制造方法
CN105074989A (zh) * 2013-10-31 2015-11-18 株式会社Lg化学 电极-隔膜复合物的制造方法、由该制造方法制造的电极-隔膜复合物及包含其的锂二次电池
KR20150080745A (ko) * 2014-01-02 2015-07-10 주식회사 엘지화학 전극 전도도가 향상된 전기 화학 소자용 전극 및 이의 제조 방법
CN105932290A (zh) * 2016-06-07 2016-09-07 程建聪 单体大容量聚合物锂离子电池正极片及其制造方法

Also Published As

Publication number Publication date
KR20180029874A (ko) 2018-03-21
EP3370284A4 (en) 2019-01-09
US20180351162A1 (en) 2018-12-06
US10333136B2 (en) 2019-06-25
KR102040257B1 (ko) 2019-11-04
EP3370284B1 (en) 2019-08-28
CN108292742A (zh) 2018-07-17
EP3370284A1 (en) 2018-09-05
PL3370284T3 (pl) 2020-01-31

Similar Documents

Publication Publication Date Title
CN108292742B (zh) 制造电极的方法
KR101690515B1 (ko) 개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지
EP3370278B1 (en) Cathode for secondary battery, method for preparing same, and lithium secondary battery comprising same
CN107925061B (zh) 用于制造电极的方法
CN104067417A (zh) 二次电池用电极、包含其的二次电池和线缆型二次电池
CN104067418A (zh) 二次电池用电极、包含其的二次电池和线缆型二次电池
KR102081770B1 (ko) 다층 구조의 리튬-황 전지용 양극 및 이의 제조방법
KR20150015918A (ko) 이차전지용 분리막 및 이를 포함하는 이차전지
CN109148797B (zh) 电极组件以及包括该电极组件的锂二次电池
US20220158155A1 (en) Electrode Drying Method
JP2019532471A5 (zh)
US20170263927A1 (en) Electrode, manufacturing method thereof and secondary battery comprising the same
CN116391269A (zh) 用于二次电池的电极、包括其的二次电池、和制造电极的方法
KR102160273B1 (ko) 리튬 이차전지용 전극 및 이의 제조방법
CN108012572B (zh) 电极组件及其制造方法
KR102076689B1 (ko) 리튬 이차전지의 집전체용 금속 메쉬 박판, 이를 포함하는 리튬 이차전지용 전극 및 리튬 이차전지
KR101742652B1 (ko) 분리막 및 이를 포함하는 전기 화학 전지
KR102376138B1 (ko) 고로딩 전극 및 그의 제조방법
KR102179967B1 (ko) 구형 이차전지용 전극, 이의 제조방법 및 이를 포함하는 구형 이차전지
KR100471983B1 (ko) 리튬 전지용 전극
KR101812577B1 (ko) 분리막 및 이를 포함하는 전기 화학 전지
KR101475258B1 (ko) 마그네슘 이차전지용 양극 및 이를 포함하는 마그네슘 이차전지
WO2018052213A1 (ko) 전극의 제조방법
KR20170061461A (ko) 리튬 이차전지
KR20220165995A (ko) 전극 제조 방법 및 이를 이용하여 제조된 전극 조립체

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211223

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.

TR01 Transfer of patent right