CN108178659B - 一种3d打印用成型材料 - Google Patents

一种3d打印用成型材料 Download PDF

Info

Publication number
CN108178659B
CN108178659B CN201810113719.4A CN201810113719A CN108178659B CN 108178659 B CN108178659 B CN 108178659B CN 201810113719 A CN201810113719 A CN 201810113719A CN 108178659 B CN108178659 B CN 108178659B
Authority
CN
China
Prior art keywords
alumina powder
modified alumina
powder
molding material
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810113719.4A
Other languages
English (en)
Other versions
CN108178659A (zh
Inventor
杨道媛
梁威威
滕仪宾
刘莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201810113719.4A priority Critical patent/CN108178659B/zh
Publication of CN108178659A publication Critical patent/CN108178659A/zh
Application granted granted Critical
Publication of CN108178659B publication Critical patent/CN108178659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种3D打印用成型材料,所述成型材料由以下组分组成:级配改性氧化铝粉、黄糊精粉以及粘结剂,其中,粘结剂占成型材料的质量百分比为5%‑50%,且级配改性氧化铝粉与黄糊精粉的用量比为(63‑97):(15‑25)。由此成型材料烧结后得到的氧化铝陶瓷,形成了气孔率高、孔径均匀且分布可控的微孔结构,且材料的烧结收缩率低,有利于保持材料的尺寸形状而避免开裂。

Description

一种3D打印用成型材料
技术领域
本发明属于3D打印用成型材料技术领域,具体涉及一种3D打印用成型材料。
背景技术
粉末材料3D打印快速成型,也被称为增材制造,其基本原理是通过铺设连续的材料层来产生3D物体的成型技术。3D打印成型材料是3D打印快速成型技术发展的重要物质基础,在某种程度上,材料的发展决定着3D打印快速成型能否有更广泛的应用。目前,3D打印成型材料主要包括工程塑料、光敏树脂、橡胶类材料、金属材料和陶瓷材料等,其中陶瓷材料具有高强度、高硬度、耐高温、低密度、化学稳定性好、耐腐蚀等优异特性,在航空航天、汽车、生物等行业有着广泛的应用。
但是当前市场上所售的陶瓷成型材料基本上被国外公司所垄断,售价高昂,严重制约该技术在我国的推广和普及。专利CN105237022A公开了一种陶瓷基3D打印材料及其制备方法,包括按重量计的如下组分:氧化铝粉末100重量份;氧化铝粉末处理剂3~20重量份;分散介质100~500重量份;单晶蓝宝石晶须1~20重量份;稳定剂1~20重量份;光固化剂5~20重量份。该专利通过在氧化铝陶瓷中加入单晶蓝宝石晶须,以提高制品的弯曲弹性模量、抗拉强度。虽然该专利能够在一定程度上解决3D打印原材料过度依赖国外进口,且价格昂贵等问题,且加入的单晶蓝宝石晶须能够提高强度,但是单晶蓝宝石晶须成本高,不利于该材料的工业应用,而且得到的3D打印产品表面存在较明显的粗糙感,成型精度不够高。
发明内容
本发明针对现有技术中的3D打印材料成本高且成型产品密度高、不易制备绝热、隔音等多孔材料的问题,提供一种3D打印用成型材料,由此成型材料烧结后得到的氧化铝陶瓷,形成了气孔率高、孔径均匀且分布可控的微孔结构,且材料的烧结收缩率低,有利于保持材料的尺寸形状而避免开裂。
本发明采用如下技术方案:
一种3D打印用成型材料,所述成型材料由以下组分组成:级配改性氧化铝粉、黄糊精粉以及粘结剂, 其中,粘结剂占成型材料的质量百分比为5%-50%,且级配改性氧化铝粉与黄糊精粉的用量比为(63-97):(15-25)。
优选地,以重量份数计,所述级配改性氧化铝粉的尺寸级配具体为:
4-50μm 改性氧化铝粉 400份-600份;
1-3μm 改性氧化铝粉 200份-300份;
和 0.5-1μm 改性氧化铝粉 30份-70份。
作为最佳配比,以重量百分比计,所述成型材料中各组分的重量配比为:50%的4μm改性氧化铝粉、20%的1.2μm改性氧化铝粉、10%的0.6μm改性氧化铝粉和20%的黄糊精粉。
优选地,所述改性氧化铝粉的改性方法为:将氧化铝粉与质量分数为5%~15%的黄糊精的乙醇溶液(黄糊精的乙醇溶液的加入量为氧化铝粉重量的5%~15%)进行球磨混合并冷冻干燥后,即得改性氧化铝粉;其中,球磨罐中的料球比(原料与磨球的比例)为1:3,不仅能够将各原料充分混合,而且球磨更加细腻,得到更高结合性能的改性氧化铝粉体,有利于后面的打印成型。
其中,所述冷冻干燥的方法为:将球磨混合后所得混合料于-10 ~ -30℃冷冻后,进行真空干燥,即可。
优选地,级配改性氧化铝粉与黄糊精粉的混合方式为球磨,且球磨条件为:球磨速度500~600转/分钟,球磨时间2~3h。
优选地,所述粘结剂为改性聚丙烯酰胺水溶液、硅溶胶、聚乙烯醇水溶液或水玻璃;其中,聚丙烯酰胺水溶液中聚丙烯酰胺的质量分数为5%~10%,硅溶胶为纳米级的二氧化硅颗粒在水中或溶剂中的分散液,且二氧化硅的质量分数为5%~10%,聚乙烯醇水溶液中聚乙烯醇的质量分数为5%~10%,水玻璃中硅酸盐的质量分数为5%~10%。
本发明的有益效果如下:
本发明所述成型材料由合理级配的改性氧化铝粉构成,这是形成均匀可控的孔结构的关键,且保证了烧结过程中产品的线变化小,不易变形,形状保持性好,有利于保持材料的尺寸形状而避免开裂;同时本发明辅以黄糊精粉作为造孔剂,由此成型烧结后得到的氧化铝陶瓷,形成了气孔率高、孔径分布均匀(50%以上的孔径尺寸都在27.48μm左右)且可控的微观结构,使得多孔氧化铝陶瓷能够实现3D打印工艺,填补了这一领域的空白,现有技术中的气孔率多介于45%和55%之间,而本发明所得烧结样品气孔率高达73.4%~83%,也是重大突破;可见本发明所得多孔氧化铝陶瓷兼具体积密度低的独特性能,同时保留了耐高温、抗氧化和使用寿命长、热膨胀系数小等优点,这种多孔材料不但具有隔热保温作用,亦可用作多孔吸声材料,在冶金、化工、环保和能源等领域具有广阔的应用前景。
同时,黄糊精在本发明中的作用既是改性剂又是造孔剂,首先作为改性剂:改性机理是黄糊精(黄糊精是亲水性的物质)包覆在氧化铝颗粒表面,形成改性膜,使得氧化铝颗粒表面更易于亲水,并且与聚丙烯酰胺粘结剂更容易充分结合,提高了材料打印成型性能,由此制备的多孔氧化铝陶瓷强度达5-6MPa(目前3D打印得到的多孔氧化铝陶瓷产品强度普遍在1MPa以下);然后作为造孔剂:黄糊精与级配改性氧化铝粉配比合适,且经充分混料后,均匀的分布于成型材料中,在后续的烧结过程中,黄糊精受热分解在氧化铝陶瓷产品中留下均匀分布的微孔结构。
此外,本发明所述成型材料中的氧化铝粉价格低廉、制备方法简单、易于工业化生产,混配得到的成型材料保质期长、成本相对较低,对打破国外公司对我国的市场垄断有着明显的促进作用,而且该成型材料能够有效地在3D打印机上快速成型,可应用于多种不同型号的陶瓷3D打印机,有利于推广应用。
附图说明
图1为应用例所得烧结样品的SEM图;
图2为应用例所得烧结样品的压汞仪测试结果图。
具体实施方式
为了使本发明的技术目的、技术方案和有益效果更加清楚,下面结合附图和具体实施例对本发明的技术方案作出进一步的说明。
实施例1
一种3D打印用成型材料,以重量份数计,分别取400份4μm氧化铝粉、200份1.2μm氧化铝粉、30份0.6μm氧化铝粉并分别与质量分数为5%的黄糊精的乙醇溶液(黄糊精的乙醇溶液的加入量为氧化铝粉重量的10%)进行球磨混合并冷冻干燥后,即得三种改性氧化铝粉,其中,所述冷冻干燥的方法为:将球磨混合后所得混合料于-10 ~ -30℃冷冻后,然后在真空干燥箱中于-10℃~-30℃、小于100Pa的真空下干燥24h,即可制得改性氧化铝粉,球磨罐中的料球比(原料与磨球的比例)为1:3;
然后将所得三种改性氧化铝粉混合并加入150份黄糊精粉,然后将混合物料加入到转速为500转/分钟的球磨罐中球磨2h,得到级配改性氧化铝粉和黄糊精粉的混合料;
将级配改性氧化铝粉和黄糊精粉的混合料进行3D打印时,同时加入粘结剂,本实施例中,所述粘结剂为质量分数5%的硅溶胶,且粘结剂与级配改性氧化铝粉的用量比为1:2。
实施例2
一种3D打印用成型材料,以重量份数计,分别取600份4μm氧化铝粉、300份1.2μm氧化铝粉、70份0.6μm氧化铝粉并分别与质量分数为10%的黄糊精的乙醇溶液(黄糊精的乙醇溶液的加入量为氧化铝粉重量的5%)进行球磨混合并冷冻干燥后,即得三种改性氧化铝粉,其中,所述冷冻干燥的方法同实施例1,球磨罐中的料球比(原料与磨球的比例)为1:3;
然后将所得三种改性氧化铝粉混合并加入250份黄糊精粉,然后将混合物料加入到转速为600转/分钟的球磨罐中球磨3h,得到级配改性氧化铝粉和黄糊精粉的混合料;
将级配改性氧化铝粉和黄糊精粉的混合料进行3D打印时,同时加入粘结剂,本实施例中,所述粘结剂为质量分数10%的聚乙烯醇水溶液(聚乙烯醇分子量为18万-20万),且粘结剂与级配改性氧化铝粉的用量比为1:19。
实施例3
一种3D打印用成型材料,以重量份数计,分别取500份4μm氧化铝粉、250份1.2μm氧化铝粉、50份0.6μm氧化铝粉并分别与质量分数为15%的黄糊精的乙醇溶液(黄糊精的乙醇溶液的加入量为氧化铝粉重量的8%)进行球磨混合并冷冻干燥后,即得三种改性氧化铝粉,其中,所述冷冻干燥的方法同实施例1,球磨罐中的料球比(原料与磨球的比例)为1:3;
然后将所得三种改性氧化铝粉混合并加入200份黄糊精粉,然后将混合物料加入到转速为550转/分钟的球磨罐中球磨2.5h,得到级配改性氧化铝粉和黄糊精粉的混合料;
将级配改性氧化铝粉和黄糊精粉的混合料进行3D打印时,同时加入粘结剂,本实施例中,所述粘结剂为质量分数8%的水玻璃,且粘结剂与级配改性氧化铝粉的用量比为1:3。
实施例4
一种3D打印用成型材料,以重量份数计,分别取500份4μm氧化铝粉、200份1.2μm氧化铝粉、100份0.6μm氧化铝粉并分别与质量分数为5%的黄糊精的乙醇溶液(黄糊精的乙醇溶液的加入量为氧化铝粉重量的15%)进行球磨混合并冷冻干燥后,即得三种改性氧化铝粉,其中,所述冷冻干燥的方法同实施例1,球磨罐中的料球比(原料与磨球的比例)为1:3;
然后将所得三种改性氧化铝粉混合并加入200份黄糊精粉,然后将混合物料加入到转速为550转/分钟的球磨罐中球磨2.5h,得到级配改性氧化铝粉和黄糊精粉的混合料;
将级配改性氧化铝粉和黄糊精粉的混合料进行3D打印时,同时加入粘结剂,本实施例中,所述粘结剂为质量分数8%的聚丙烯酰胺水溶液,且粘结剂与级配改性氧化铝粉的用量比为1:3。
应用例
利用实施例4制备的3D打印用成型材料制备氧化铝陶瓷样品,获得4.0*4.0*4.0(cm)的3D打印样品,对4.0*4.0*4.0(cm)的3D打印样品在1250℃烧结3h,烧结后样品尺寸为3.9*3.9*4.0(cm),体积变化4.9%,体积密度:D=1.04g/cm3,气孔率:Pa=73.4%;
由样品烧结后的数据分析可得:烧结过程中的线变化小,不易变形,形状保持性好;
现有技术中的气孔率多介于45%和55%之间,而本应用例所得烧结样品气孔率高达73.4%,不仅可以保证较佳的保温隔热效果,且体积密度低,质量轻;
同时对所得烧结样品做了热性能测试、SEM测试、压汞试验。
实施例4的烧结样品在各个温度区间的导热系数如下表1所示:
表1 实施例4的烧结样品在各个温度区间的导热系数
Figure DEST_PATH_IMAGE002
根据图1的SEM图像可知,烧结后的样品为多孔材料,材料内部有大量的封闭气孔;根据图2的压汞仪测试结果并结合压汞测试仪自动生成数据可知,烧结后的样品的孔径范围在6nm-225μm,中值孔径为27.48μm,说明材料具有较好的隔热保温作用,也可用作多孔吸声材料;由表1可知,其导热系数满足耐火材料的要求,可用作耐火材料;其余实施例的应用效果与实施例4效果相当。
最后所应说明的是:上述实施例仅用于说明而非限制本发明的技术方案,任何对本发明进行的等同替换及不脱离本发明精神和范围的修改或局部替换,其均应涵盖在本发明权利要求保护的范围之内。

Claims (3)

1.一种3D打印用成型材料,其特征在于,所述成型材料由以下组分组成:级配改性氧化铝粉、黄糊精粉以及粘结剂, 其中,粘结剂占成型材料的质量百分比为5%-50%,且级配改性氧化铝粉与黄糊精粉的用量比为(63-97):(15-25);
以重量份数计,所述级配改性氧化铝粉的尺寸级配具体为:
4-50μm 改性氧化铝粉 400份-600份;
1.2-3μm 改性氧化铝粉 200份-300份;
和 0.5-1μm 改性氧化铝粉 30份-70份;
所述改性氧化铝粉的改性方法为:将氧化铝粉与质量分数为5%~15%的黄糊精的乙醇溶液进行球磨混合并冷冻干燥后,即得改性氧化铝粉,其中:黄糊精的乙醇溶液的加入量为氧化铝粉重量的5%~15%;
所述粘结剂为聚丙烯酰胺水溶液、硅溶胶、聚乙烯醇水溶液或水玻璃。
2.根据权利要求1所述的3D打印用成型材料,其特征在于,所述冷冻干燥的方法为:将球磨混合后所得混合料于-10 ~ -30℃冷冻后,进行真空干燥,即可。
3.根据权利要求1所述的3D打印用成型材料,其特征在于,级配改性氧化铝粉与黄糊精粉进行球磨混合的条件为:球磨速度500~600转/分钟,球磨时间2~3h。
CN201810113719.4A 2018-02-05 2018-02-05 一种3d打印用成型材料 Active CN108178659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810113719.4A CN108178659B (zh) 2018-02-05 2018-02-05 一种3d打印用成型材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810113719.4A CN108178659B (zh) 2018-02-05 2018-02-05 一种3d打印用成型材料

Publications (2)

Publication Number Publication Date
CN108178659A CN108178659A (zh) 2018-06-19
CN108178659B true CN108178659B (zh) 2021-01-15

Family

ID=62552241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810113719.4A Active CN108178659B (zh) 2018-02-05 2018-02-05 一种3d打印用成型材料

Country Status (1)

Country Link
CN (1) CN108178659B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939585B (zh) * 2021-04-09 2022-03-04 湖北中烟工业有限责任公司 一种Al2O3多孔陶瓷的制备方法及应用
CN114933486B (zh) * 2022-04-28 2023-07-28 辽宁大学 一种基于水基浆料的3d打印制备多孔陶瓷块体的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016118151A1 (en) * 2015-01-23 2016-07-28 Hewlett-Packard Development Company, L.P. Susceptor materials for 3d printing using microwave processing
CN104788081B (zh) * 2015-03-23 2016-11-09 济南大学 一种氧化铝粉末3d打印材料的制备方法
CN105237022A (zh) * 2015-09-16 2016-01-13 东莞深圳清华大学研究院创新中心 一种陶瓷基3d打印材料及其制备方法
CN105330267A (zh) * 2015-12-16 2016-02-17 郑州大学 一种氧化铝陶瓷及其制备方法

Also Published As

Publication number Publication date
CN108178659A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
CN108585810B (zh) 微孔陶瓷及其制备方法和雾化芯
CN101503298B (zh) 一种利用凝胶注模法制备氮化硅多孔陶瓷的方法
Zhu et al. Improvement in the strut thickness of reticulated porous ceramics
CN102351563B (zh) 具有多级孔径结构的高孔隙率氮化硅多孔陶瓷的制备方法
CN108178659B (zh) 一种3d打印用成型材料
US20180186698A1 (en) Porous alumina ceramic ware and preparation method thereof
CN105199253B (zh) 一种碳化硅多孔陶瓷材料前驱体及其制备方法
CN107619226B (zh) 一种多孔水泥膜及其制备方法和用途
CN110922204A (zh) 一种低温烧结氧化铝陶瓷膜的制备方法
CN1212289C (zh) 采用流延成型法制备功能梯度材料的方法
CN104876638A (zh) 一种纳米级多孔陶瓷用造孔剂及其制备方法和应用
CN104529461A (zh) 一种碳化硅泡沫陶瓷及其制备方法
CN105294111A (zh) 一种氮化硅多孔陶瓷的凝胶注模成型方法
CN114736033A (zh) 具有多孔发热体的陶瓷雾化芯及其制备方法
CN1915626A (zh) 脉冲磁场中强磁-弱磁梯度材料流延成型制备方法
CN103641510A (zh) 添加PMMA造孔剂制备O-Sialon多孔陶瓷的方法
Li et al. Enhanced 3D printed alumina ceramic cores via impregnation
CN1915625A (zh) 脉冲磁场中强磁-弱磁梯度材料压滤成型制备方法
CN1821181A (zh) 微孔陶瓷的制备方法
CN115432994B (zh) 一种具有多级孔径结构的香氛缓释陶瓷板
CN111253148A (zh) 陶瓷过滤膜制备方法及陶瓷过滤膜
CN113318518B (zh) 过滤元件及其制备方法与应用
CN115872771A (zh) 一种激光3D打印结合浸渍裂解工艺制备多孔SiOC基陶瓷膜支撑体的方法
CN113800944A (zh) 一种烧失法制备微米孔隔热材料的方法
CN108610088A (zh) 一种氧化铝-莫来石多孔隔热陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant