CN108139058A - 高透射玻璃 - Google Patents

高透射玻璃 Download PDF

Info

Publication number
CN108139058A
CN108139058A CN201680062028.5A CN201680062028A CN108139058A CN 108139058 A CN108139058 A CN 108139058A CN 201680062028 A CN201680062028 A CN 201680062028A CN 108139058 A CN108139058 A CN 108139058A
Authority
CN
China
Prior art keywords
moles
glassware
glass
mole
gamut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680062028.5A
Other languages
English (en)
Other versions
CN108139058B (zh
Inventor
M·M·阿什顿-帕顿
A·J·埃利森
E·A·金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN108139058A publication Critical patent/CN108139058A/zh
Application granted granted Critical
Publication of CN108139058B publication Critical patent/CN108139058B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Planar Illumination Modules (AREA)
  • Surface Treatment Of Glass (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

化合物、组合物、制品、装置,以及用于制造导光板和包含由玻璃制造的此类导光板的背光单元的方法。在一些实施方式中,提供的导光板(LGP)具有与由PMMA制造的导光板相似或者更优的光学性质,并且其相比于PMMA导光板具有出乎意料的机械性质,例如刚度、CTE和高水分条件下的尺寸稳定性。

Description

高透射玻璃
相关申请的交叉参考
本申请根据35U.S.C.§119,要求2016年07月14日提交的美国临时申请系列第62/362331号以及2015年10月22日提交的美国临时申请系列第62/245006号的优先权,本文以其作为基础并将其全文分别通过引用结合于此。
背景技术
侧光式背光单元包括导光板(LGP),其通常由诸如聚甲基丙烯酸甲酯(PMMA)之类的高透射塑料材料制造。虽然此类塑料材料具有例如透光之类的优异性质,但是这些材料展现出差的机械性质,例如刚度、热膨胀系数(CTE)和水分吸收。
因此,会希望提供一种改进的导光板,所述导光板的属性实现了透光、负感、散射和光耦合方面的改善的光学性能并且展现出刚度、CTE和水分吸收方面的出乎意料的机械性能。
发明内容
本文主题方面属于化合物、组合物、制品、装置,以及用于制造导光板和包含由玻璃制造的此类导光板的背光单元的方法。在一些实施方式中,提供的导光板(LGP)具有与由PMMA制造的导光板相似或者更优的光学性质,并且其相比于PMMA导光板具有出乎意料的机械性质,例如刚度、CTE和高水分条件下的尺寸稳定性。
在一些实施方式中,本文主题的原理和实施方式涉及用于背光单元的导光板。在一些实施方式中,(一些例子中的)玻璃制品或导光板会包括玻璃片,所述玻璃片具有:具有宽度和高度的正面,与正面相对的背面,以及正面与背面之间的宽度,形成绕着正面和背面的四个边缘,其中,玻璃片包含:约为65.79摩尔%至约78.17摩尔%SiO2、约为2.94摩尔%至约12.12摩尔%Al2O3、约为0摩尔%至约11.16摩尔%B2O3、约为0摩尔%至约2.06摩尔%Li2O、约为3.52摩尔%至约13.25摩尔%Na2O、约为0摩尔%至约4.83摩尔%K2O、约为0摩尔%至约3.01摩尔%ZnO、约为0摩尔%至约8.72摩尔%MgO、约为0摩尔%至约4.24摩尔%CaO、约为0摩尔%至约6.17摩尔%SrO、约为0摩尔%至约4.3摩尔%BaO、和约为0.07摩尔%至约0.11摩尔%SnO2。在一些实施方式中,玻璃制品包括色移<0.008。在一些实施方式中,玻璃制品包括色移<0.005。在一些实施方式中,玻璃制品包括RxO/Al2O3为0.95-3.23,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃制品包括RxO/Al2O3为1.18-5.68,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,以及x是1。在一些实施方式中,玻璃制品包括RxO-Al2O3-MgO为-4.25至4.0,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃的应变温度约为522-590℃。在一些实施方式中,玻璃的退火温度约为566-641℃。在一些实施方式中,玻璃的软化温度约为800-914℃。在一些实施方式中,玻璃的CTE约为49.6x 10-7/℃至约80x 10-7/℃。在一些实施方式中,玻璃的密度约为2.34gm/cc@20C至约2.53gm/cc@20C。在一些实施方式中,玻璃制品是导光板。在一些实施方式中,板厚度约为0.2-8mm。在一些实施方式中,厚度变化小于5%。在一些实施方式中,由熔合拉制工艺、狭缝拉制工艺或者浮法工艺制造导光板。在一些实施方式中,玻璃包含小于1ppm的Co、Ni和Cr中的每一个。在一些实施方式中,Fe的浓度小于约50ppm、小于约20ppm、或者小于约10ppm。在一些实施方式中,Fe+30Cr+35Ni<约60ppm,<约40ppm,<约20ppm,或者<约10ppm。在一些实施方式中,对于长度至少500mm的情况,在450nm处的透射率大于或等于85%,对于长度至少500mm的情况,在550nm处的透射率大于或等于90%,或者对于长度至少500mm的情况,在630nm处的透射率大于或等于85%,及其组合。在一些实施方式中,玻璃片经过化学强化。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了包含玻璃片的玻璃制品,所述玻璃片具有:具有宽度和高度的正面,与正面相对的背面,以及正面与背面之间的宽度,形成绕着正面和背面的四个边缘,其中,玻璃片包含:约为66摩尔%至约78摩尔%SiO2、约为4摩尔%至约11摩尔%Al2O3、约为4摩尔%至约11摩尔%B2O3、约为0摩尔%至约2摩尔%Li2O、约为4摩尔%至约12摩尔%Na2O、约为0摩尔%至约2摩尔%K2O、约为0摩尔%至约2摩尔%ZnO、约为0摩尔%至约5摩尔%MgO、约为0摩尔%至约2摩尔%CaO、约为0摩尔%至约5摩尔%SrO、约为0摩尔%至约2摩尔%BaO、和约为0摩尔%至约2摩尔%SnO2。在一些实施方式中,玻璃制品包括色移<0.008。在一些实施方式中,玻璃制品包括色移<0.005。在一些实施方式中,玻璃制品包括RxO/Al2O3为0.95-3.23,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃制品包括RxO/Al2O3为1.18-5.68,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,以及x是1。在一些实施方式中,玻璃制品包括RxO-Al2O3-MgO为-4.25至4.0,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃的应变温度约为522-590℃。在一些实施方式中,玻璃的退火温度约为566-641℃。在一些实施方式中,玻璃的软化温度约为800-914℃。在一些实施方式中,玻璃的CTE约为49.6x 10-7/℃至约80x 10-7/℃。在一些实施方式中,玻璃的密度约为2.34gm/cc@20C至约2.53gm/cc@20C。在一些实施方式中,玻璃制品是导光板。在一些实施方式中,板厚度约为0.2-8mm。在一些实施方式中,厚度变化小于5%。在一些实施方式中,由熔合拉制工艺、狭缝拉制工艺或者浮法工艺制造导光板。在一些实施方式中,玻璃包含小于1ppm的Co、Ni和Cr中的每一个。在一些实施方式中,Fe的浓度小于约50ppm、小于约20ppm、或者小于约10ppm。在一些实施方式中,Fe+30Cr+35Ni<约60ppm,<约40ppm,<约20ppm,或者<约10ppm。在一些实施方式中,对于长度至少500mm的情况,在450nm处的透射率大于或等于85%,对于长度至少500mm的情况,在550nm处的透射率大于或等于90%,或者对于长度至少500mm的情况,在630nm处的透射率大于或等于85%,及其组合。在一些实施方式中,玻璃片经过化学强化。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了包含玻璃片的玻璃制品,所述玻璃片具有:具有宽度和高度的正面,与正面相对的背面,以及正面与背面之间的宽度,形成绕着正面和背面的四个边缘,其中,玻璃片包含:约为72摩尔%至约80摩尔%SiO2、约为3摩尔%至约7摩尔%Al2O3、约为0摩尔%至约2摩尔%B2O3、约为0摩尔%至约2摩尔%Li2O、约为6摩尔%至约15摩尔%Na2O、约为0摩尔%至约2摩尔%K2O、约为0摩尔%至约2摩尔%ZnO、约为2摩尔%至约10摩尔%MgO、约为0摩尔%至约2摩尔%CaO、约为0摩尔%至约2摩尔%SrO、约为0摩尔%至约2摩尔%BaO、和约为0摩尔%至约2摩尔%SnO2。在一些实施方式中,玻璃制品包括色移<0.008。在一些实施方式中,玻璃制品包括色移<0.005。在一些实施方式中,玻璃制品包括RxO/Al2O3为0.95-3.23,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃制品包括RxO/Al2O3为1.18-5.68,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,以及x是1。在一些实施方式中,玻璃制品包括RxO-Al2O3-MgO为-4.25至4.0,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃的应变温度约为522-590℃。在一些实施方式中,玻璃的退火温度约为566-641℃。在一些实施方式中,玻璃的软化温度约为800-914℃。在一些实施方式中,玻璃的CTE约为49.6x 10-7/℃至约80x 10-7/℃。在一些实施方式中,玻璃的密度约为2.34gm/cc@20C至约2.53gm/cc@20C。在一些实施方式中,玻璃制品是导光板。在一些实施方式中,板厚度约为0.2-8mm。在一些实施方式中,厚度变化小于5%。在一些实施方式中,由熔合拉制工艺、狭缝拉制工艺或者浮法工艺制造导光板。在一些实施方式中,玻璃包含小于1ppm的Co、Ni和Cr中的每一个。在一些实施方式中,Fe的浓度小于约50ppm、小于约20ppm、或者小于约10ppm。在一些实施方式中,Fe+30Cr+35Ni<约60ppm,<约40ppm,<约20ppm,或者<约10ppm。在一些实施方式中,对于长度至少500mm的情况,在450nm处的透射率大于或等于85%,对于长度至少500mm的情况,在550nm处的透射率大于或等于90%,或者对于长度至少500mm的情况,在630nm处的透射率大于或等于85%,及其组合。在一些实施方式中,玻璃片经过化学强化。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了玻璃制品,其包含玻璃片,所述玻璃片具有:约为60-80摩尔%的SiO2、约为0-15摩尔%的Al2O3、约为0-15摩尔%的B2O3、以及约为2-50摩尔%的RxO,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,并且x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,并且x是1,以及其中,Fe+30Cr+35Ni<约60ppm。在一些实施方式中,玻璃的色移<0.008。在一些实施方式中,玻璃的色移<0.005。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了玻璃制品,其包含玻璃片,所述玻璃片具有:约为60-80摩尔%的SiO2、约为0-15摩尔%的Al2O3、约为0-15摩尔%的B2O3、以及约为2-50摩尔%的RxO,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,并且x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,并且x是1,以及其中,玻璃的色移<0.008。在一些实施方式中,玻璃的色移<0.005。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了玻璃制品,其包含玻璃片,所述玻璃片具有:约为65.79-78.17摩尔%的SiO2、约为2.94-12.12摩尔%的Al2O3、约为0-11.16摩尔%的B2O3、以及约为3.52-42.39摩尔%的RxO,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,并且x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,并且x是1,以及其中,玻璃的色移<0.008。在一些实施方式中,玻璃的色移<0.005。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了玻璃制品,其包含玻璃片,所述玻璃片具有:约为60摩尔%至约81摩尔%SiO2、约为0摩尔%至约2摩尔%Al2O3、约为0摩尔%至约15摩尔%MgO、约为0摩尔%至约2摩尔%Li2O、约为9摩尔%至约15摩尔%Na2O、约为0摩尔%至约1.5摩尔%K2O、约为7摩尔%至约14摩尔%CaO、约为0摩尔%至约2摩尔%SrO,以及其中,Fe+30Cr+35Ni<约60ppm。在一些实施方式中,玻璃的色移<0.008。在一些实施方式中,玻璃的色移<0.005。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了玻璃制品,其包含玻璃片,所述玻璃片具有:约为60摩尔%至约81摩尔%SiO2、约为0摩尔%至约2摩尔%Al2O3、约为0摩尔%至约15摩尔%MgO、约为0摩尔%至约2摩尔%Li2O、约为9摩尔%至约15摩尔%Na2O、约为0摩尔%至约1.5摩尔%K2O、约为7摩尔%至约14摩尔%CaO、和约为0摩尔%至约2摩尔%SrO,其中,玻璃的色移<0.008。在一些实施方式中,玻璃的色移<0.005。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在以下的详细描述中给出了本文的其他特征和优点,其中的部分特征和优点对本领域的技术人员而言,根据所作描述就容易看出,或者通过实施包括以下详细描述、权利要求书以及附图在内的本文所述的方法而被认识。
应理解,前面的一般性描述和以下的详细描述都表示本文的各种实施方式,用来提供对于权利要求的性质和特性的总体理解或框架性理解。包括的附图提供了对本文的进一步的理解,附图被结合在本说明书中并构成说明书的一部分。附图以图示形式说明了本文的各种实施方式,并与说明书一起用来解释本文的原理和操作。
附图说明
当结合附图阅读时,可以更进一步理解以下详细描述。
图1是导光板的一个示例性实施方式的图示;
图2显示百分比光耦合与LED和LGP边缘之间的距离的关系;
图3显示估算的光泄露(dB/m)与LGP的RMS粗糙度之间的关系;
图4显示对于将2mm厚的LED耦合入2mm厚的LGP,预期耦合(无菲涅尔损耗)与LGP和LED之间的距离的关系;
图5显示LED到玻璃LGP的耦合机制;
图6显示从表面拓扑计算得到的预期角度能量分布图;
图7显示在玻璃LGP的两个相邻边缘的光的全内反射;
图8是具有根据一个或多个实施方式的LGP的示例性LCD面板的横截面图;
图9是具有根据另一个实施方式的LGP的示例性LCD面板的横截面图;以及
图10显示具有根据其他实施方式的粘合垫的LGP。
具体实施方式
本文描述了导光板,制造导光板的方法以及采用根据本发明的实施方式的导光板的背光单元。
用于LCD背光应用的现有导光板通常由PMMA材料制造,因为这对于可见光谱中的透光而言是最好的材料之一。但是,PMMA存在机械问题,这使得制造大尺寸(例如,对角线大于或等于50英寸)的显示器存在机械设计方面的困难,例如,刚度、水分吸收和热膨胀系数(CTE)。
对于刚度,常规LCD面板由两片薄玻璃(滤色器基材和TFT基材)和PMMA光导和多个塑料薄膜(扩散器、双亮度增强膜(DBEF)膜等)制得。由于PMMA的差弹性模量,LCD面板的整体结构不具有足够的刚度,并且需要额外的机械结构来为LCD面板提供刚度。应注意的是,PMMA的杨氏模量通常约为2GPa,而某些示例性玻璃的杨氏模量约为60-90GPa或更大。
对于水分吸收,湿度测试显示PMMA对于水分是敏感的,并且尺寸变化会是约为0.5%。对于长度为1米的PMMA面板,该0.5%的变化会使得长度增加5mm,这是明显的,并且使得对应的背光单元的机械设计存在困难。解决该问题的常规方式是在发光二极管(LED)与PMMA导光板(LGP)之间留有空气间隙,以允许材料膨胀。该方法的问题在于,光耦合对于LED与LGP之间的距离是极为敏感的,这会导致显示器亮度随着湿度发生变化。图2显示百分比光耦合与LED和LGP边缘之间的距离的关系。参见图2,显示的关系阐述了解决PMMA带来的问题的常规措施的缺陷。更具体来说,图2显示光耦合与LED到LGP距离的关系图,假定两者的高度都是2mm。可以观察到,LED与LGP之间的距离越大,LED与LGP之间的有效光耦合越小。
对于CTE,PMMA的CTE约为75E-6C-1并且具有较低的导热率(0.2W/m/K),而一些玻璃具有约为8E-6C-1的CTE和0.8W/m/K的导热率。当然,其它玻璃的CTE可能发生变化,并且该公开内容不应对本文所附权利要求的范围造成限制。PMMA还具有约为105℃的转变温度,并且当使用LGP时,PMMA LGP材料会变得非常热,从而其低导热率使得其难以消散热量。因此,使用玻璃代替PMMA作为用于导光板的材料提供了该方面的益处,但是主要由于铁和其他杂质,常规玻璃相比于PMMA具有较差的透射。此外,一些其他参数,例如表面粗糙度、波度和边缘质量抛光也会对玻璃导光板的性能起到明显作用。根据本发明的实施方式,用于背光单元的玻璃导光板可具有如下一种或多种属性。
玻璃导光板结构和组成
图1是导光板的一个示例性实施方式的图示。参见图1,提供了示例性实施方式,其具有示例性导光板的形状和结构,所述示例性导光板包括玻璃片100,其具有第一面110(其可以是正面)和与第一面相对的第二面(其可以是背面)。第一和第二面可以具有高度H和宽度W。第一面和/或第二面的粗糙度可以小于0.6nm、小于0.5nm、小于0.4nm、小于0.3nm、小于0.2nm、小于0.1nm、或者约为0.1-0.6nm。
玻璃片在正面和背面之间可以具有厚度T,其中,厚度形成了4个边缘。玻璃片的厚度可以小于正面和背面的高度和宽度。在各个实施方式中,板厚度可以小于正面和/或背面高度的1.5%。或者,厚度T可以小于约3mm、小于约2mm、小于约1mm或者约为0.1-3mm。导光板的高度、宽度和厚度可以构造成和尺寸调节成用于LCD背光应用。
第一边缘130可以是光注入边缘,其接收例如发光二极管(LED)提供的光。在透射中,光注入边缘可以在小于12.8度的半峰值全宽(FWHM)的角度内散射光。可以通过对边缘进行研磨来获得光注入边缘,没有对光注入边缘进行抛光。玻璃片还可包括与光注入边缘相邻的第二边缘140,以及与第二边缘相对且与光注入边缘相邻的第三边缘,其中,在反射中,第二边缘和/或第三边缘在小于12.8度的FWHM的角度内散射光。第二边缘140和/或第三边缘在反射中可以具有低于6.4度的扩散角。应注意的是,虽然图1所示的实施方式显示光注入单边缘130,但是要求保护的本文主题不应限于此,因为示例性实施方式100的任意一个或多个边缘可以注入光。例如,在一些实施方式中,第一边缘130及其相对边缘都可注入光。该示例性实施方式可用于具有大和或曲线宽度W的显示器装置。其他实施方式可在第二边缘140及其相对边缘注入光,而不是在第一边缘130和/或其相对边缘。示例性显示器装置的厚度可以小于约10mm、小于约9mm、小于约8mm、小于约7mm、小于约6mm、小于约5mm、小于约4mm、小于约3mm、或者小于约2mm。
在各种实施方式中,玻璃片的玻璃组合物可包含:60-80摩尔%的SiO2、0-20摩尔%的Al2O3和0-15摩尔%的B2O3,以及小于50ppm的铁(Fe)浓度。在一些实施方式中,可以存在小于25ppm的铁,或者在一些实施方式中,Fe浓度可以小于或等于约20ppm。在各种实施方式中,导光板100的热传导可以大于0.5W/m/K。在其他实施方式中,玻璃片可以通过抛光的浮法玻璃、熔合拉制工艺、狭缝拉制工艺、再拉制工艺或者其他合适成形工艺形成。
在其他实施方式中,玻璃片的玻璃组合物可以包含:63-81摩尔%SiO2、0-5摩尔%Al2O3、0-6摩尔%MgO、7-14摩尔%CaO、0-2摩尔%Li2O、9-15摩尔%Na2O、0-1.5摩尔%K2O,以及痕量的Fe2O3、Cr2O3、MnO2、Co3O4、TiO2、SO3、和/或Se。
根据一个或多个实施方式,LGP可以由包含无色氧化物组分的玻璃制造,所述无色氧化物组分选自玻璃成形剂SiO2、Al2O3和B2O3。示例性玻璃还可包含熔剂以获得有益的熔融和成形属性。此类熔剂包括碱性氧化物(Li2O、Na2O、K2O、Rb2O和Cs2O)和碱土氧化物(MgO、CaO、SrO、ZnO和BaO)。在一个实施方式中,玻璃含有如下组分:60-80摩尔%的SiO2,0-20摩尔%的Al2O3,0-15摩尔%的B2O3,以及5-20摩尔%的碱性氧化物、碱土氧化物或其组合。在其他实施方式中,玻璃片的玻璃组合物可以不包含B2O3,以及包含:63-81摩尔%SiO2、0-5摩尔%Al2O3、0-6摩尔%MgO、7-14摩尔%CaO、0-2摩尔%Li2O、9-15摩尔%Na2O、0-1.5摩尔%K2O,以及痕量的Fe2O3、Cr2O3、MnO2、Co3O4、TiO2、SO3、和/或Se。
在本文所述的一些玻璃组合物中,SiO2会起到基础玻璃形成剂的作用。在某些实施方式中,为了提供具有适合于显示器玻璃或者导光板玻璃的密度和化学耐久性的玻璃,以及允许通过下拉工艺(例如,熔合工艺)使玻璃成形的液相线温度(液相线粘度),SiO2浓度可大于60摩尔%。通常来说,对于上限而言,SiO2浓度可以小于或等于约80摩尔%,以实现采用常规的高容积熔融技术(例如在耐火熔炉中进行焦耳熔融(Joule melting))使批料材料熔化。随着SiO2浓度增加,200泊温度(熔化温度)通常增加。在各种应用中,调节SiO2浓度从而使玻璃组合物的熔化温度小于或等于1750℃。在各种实施方式中,SiO2的摩尔%可以约为60-81%,或者约为66-78%,或者约为72-80%,或者约为65-79%,以及其间的所有子范围。在其他实施方式中,SiO2的摩尔%可以约为70-74%,或者约为74-78%。在一些实施方式中,SiO2的摩尔%可以约为72-73%。在其他实施方式中,SiO2的摩尔%可以约为76-77%。
Al2O3是用于制造本文所述玻璃的另一种玻璃形成剂。较高摩尔%的Al2O3可以改善玻璃的退火点和模量。在各种实施方式中,Al2O3的摩尔%可以约为0-20%,或者约为4-11%,或者约为6-8%,或者约为3-7%,以及其间的所有子范围。在其他实施方式中,Al2O3的摩尔%可以约为4-10%,或者约为5-8%。在一些实施方式中,Al2O3的摩尔%可以约为7-8%。在其他实施方式中,Al2O3的摩尔%可以约为5-6%,或者0%至约5%,或者0%至约2%。
B2O3同时是玻璃形成剂和熔剂,有助于熔化和降低熔融温度。其对于液相线温度和粘度都有影响。增加B2O3可用于增加玻璃的液相线粘度。为了实现这些效果,一个或多个实施方式的玻璃组合物的B2O3浓度可大于或等于0.1摩尔%;但是一些组合物可具有可忽略不计的B2O3量。如上关于SiO2所述,玻璃耐久性对于显示器应用是非常重要的。可通过升高浓度的碱土氧化物来稍微控制耐久性,以及通过升高B2O3含量显著降低耐久性。随着B2O3增加,退火点下降,所以保持低含量的B2O3可能是有用的。因此,在各种实施方式中,B2O3的摩尔%可以约为0-15%,或者约为0-12%,或者约为0-11%,约为3-7%,或者约为0-2%,以及其间的所有子范围。在一些实施方式中,B2O3的摩尔%可以约为7-8%。在一些实施方式中,B2O3的摩尔%可以是可忽略不计的或者约为0-1%。
除了玻璃形成剂(SiO2、Al2O3和B2O3)之外,本文所述的玻璃还包含碱土氧化物。在一个实施方式中,至少3种碱土氧化物是玻璃组成部分,例如MgO、CaO和BaO,以及任选的SrO。碱土氧化物为玻璃提供对熔融、澄清、成形和最终应用而言重要的各种性质。因此,为了改善这些方面的玻璃性能,在一个实施方式中,(MgO+CaO+SrO+BaO)/Al2O3比例是0-2.0。随着该比例增加,粘度倾向于比液相线温度更强烈地增加,从而对于获得合适的高值T35k-T液相线越来越困难。因此,在另一个实施方式中,比例(MgO+CaO+SrO+BaO)/Al2O3小于或等于约2。在一些实施方式中,(MgO+CaO+SrO+BaO)/Al2O3比例约为0-1.0,或者约为0.2-0.6,或者约为0.4-0.6。在具体实施方式中,(MgO+CaO+SrO+BaO)/Al2O3比例小于约0.55、或小于约0.4。
对于本公开的某些实施方式,可以将碱土氧化物视为实际上是单组成组分。这是因为相比于玻璃形成氧化物SiO2、Al2O3和B2O3,它们对于粘弹性性质、液相线温度和液相线相的关系的影响相互之间性质上更为类似。但是,碱土氧化物CaO、SrO和BaO可形成长石矿物,特别是钙长石(CaAl2Si2O8)和钡长石(BaAl2Si2O8)以及它们的含锶固溶体,但MgO没有显著程度地参与这些晶体。因此,当长石晶体已经是液相线相时,MgO的超添加可能起了相对于晶体稳定液体从而降低液相线温度的作用。同时,粘度曲线通常变得更陡,降低熔融温度但对低温粘度几乎没有或没有影响。
发明人发现,添加少量的MgO可以:通过降低熔化温度使熔化受益,通过降低液相线温度和增加液相线粘度使成形受益,同时保持高退火点。在各种实施方式中,玻璃组合物包含MgO的量可以约为0摩尔%至约10摩尔%、或者约为0摩尔%至约6摩尔%、或者约为1.0摩尔%至约8.0摩尔%、或者约为0摩尔%至约8.72摩尔%、或者约为1.0摩尔%至约7.0摩尔%、或者约为0摩尔%至约5摩尔%、或者约为1摩尔%至约3摩尔%、或者约为2摩尔%至约10摩尔%、或者约为4摩尔%至约8摩尔%,以及其间的所有子范围。
不希望受限于任何特定操作理论,相信玻璃组合物中存在的氧化钙可以产生低液相线温度(高液相线粘度)、高退火点和模量,以及对于显示器和导光板应用而言最合乎希望的CTE范围。它还对化学耐久性产生积极作用,与其他碱土氧化物相比,它是较为廉价的批料材料。但是,在高浓度时,CaO使密度和CTE增大。此外,在足够低的SiO2浓度下,CaO可使得钙长石稳定化,因此降低液相线粘度。因此,在一个或多个实施方式中,CaO浓度可以是0-6摩尔%。在各种实施方式中,玻璃组合物的CaO浓度约为0-4.24摩尔%,或者约为0-2摩尔%,或者约为0-1%摩尔%,或者约为0-0.5%,或者约为0-0.1摩尔%,以及其间的所有子范围。在其他实施方式中,玻璃组合物的CaO浓度约为7-14摩尔%,或者约为9-12摩尔%。
SrO和BaO都会对降低液相线温度(高液相线粘度)做出贡献。可以对这些氧化物的选择和浓度进行选择,以避免CTE和密度的增加以及模量和退火点的下降。可以平衡SrO和BaO的相对比例,从而获得合适物理性质和液相线粘度的组合,从而可通过下拉工艺成形玻璃。在各种实施方式中,玻璃包含SrO的范围如下:约0-8.0摩尔%、或者约0-4.3摩尔%、或者约0-5摩尔%、1摩尔%至约3摩尔%、或者约为小于约2.5摩尔%,以及其间的所有子范围。在一个或多个实施方式中,玻璃包含BaO的范围如下:约0-5摩尔%、或者0摩尔%至约4.3摩尔%、或者0摩尔%至约2.0摩尔%、或者0摩尔%至约1.0摩尔%、或者0摩尔%至约0.5摩尔%,以及其间的所有子范围。
除了上述组分外,本文所述的玻璃组合物可包含各种其他氧化物以调节玻璃的各种物理、熔化、澄清和成形特性。此类其他氧化物的例子包括但是不限于TiO2、MnO、V2O3、Fe2O3、ZrO2、ZnO、Nb2O5、MoO3、Ta2O5、WO3、Y2O3、La2O3和CeO2以及其他稀土氧化物和磷酸盐。在一个实施方式中,这些氧化物各自的量可小于或等于2.0摩尔%,且它们的组合浓度之和可小于或等于5.0摩尔%。在一些实施方式中,玻璃组合物包含的ZnO的量约为0-3.5摩尔%、或者约为0-3.01摩尔%、或者约为0-2.0摩尔%,以及其间的所有子范围。在其他实施方式中,玻璃组合物包含:约为0.1摩尔%至约1.0摩尔%钛氧化物;约为0.1摩尔%至约1.0摩尔%钒氧化物;约为0.1摩尔%至约1.0摩尔%氧化铌;约为0.1摩尔%至约1.0摩尔%锰氧化物;约为0.1摩尔%至约1.0摩尔%氧化锆;约为0.1摩尔%至约1.0摩尔%锡氧化物;约为0.1摩尔%至约1.0摩尔%氧化钼;约为0.1摩尔%至约1.0摩尔%氧化铈;以及任意上文所列的过渡金属氧化物之间的所有子范围。本文所述的玻璃组合物还可以包含与批料材料相关的各种污染物和/或由生产玻璃所用的熔融、澄清和/或成形设备引入玻璃的各种污染物。玻璃还可包含SnO2,其来自使用锡氧化物电极的焦耳熔融和/或通过含锡材料如SnO2、SnO、SnCO3、SnC2O2等的批料。
本文所述的玻璃组合物可以含有一些碱性组分,例如,这些玻璃不是无碱性玻璃。如本文所用,“不含碱性玻璃”是碱性物质总浓度小于或等于0.1摩尔%的玻璃,其中碱性物质总浓度是Na2O、K2O和Li2O的浓度之和。在一些实施方式中,玻璃包含Li2O的范围如下:约为0-3.0摩尔%,约为0-3.01摩尔%,约为0-2.0%摩尔%,约为0-1.0摩尔%,小于约3.01摩尔%,或者小于约2.0摩尔%,以及其间的所有子范围。在其他实施方式中,玻璃包含Na2O的范围如下:约为3.5-13.5摩尔%,约为3.52-13.25摩尔%,约为4-12%摩尔%,约为6-15摩尔%,或者约为6-12摩尔%,约为9-15摩尔%,以及其间的所有子范围。在一些实施方式中,玻璃包含K2O的范围如下:约为0-5.0摩尔%,约为0-4.83摩尔%,约为0-2.0%摩尔%,约为0-1.5摩尔%,约为0-1.0摩尔%,或者小于约4.83摩尔%,以及其间的所有子范围。
在一些实施方式中,本文所述的玻璃组合物可具有以下组成特性中的一种或多种或者全部:(i)As2O3浓度至多为0.05-1.0摩尔%;(ii)Sb2O3浓度至多为0.05-1.0摩尔%;(iii)SnO2浓度至多为0.25-3.0摩尔%。
As2O3对于显示器玻璃是有效的高温澄清剂,以及在本文所述的一些实施方式中,As2O3由于其优异的澄清性质被用于澄清。但是,As2O3是有毒的,在玻璃制造过程期间需要特殊的处理。因此,在某些实施方式中,进行澄清但不使用显著量的As2O3,即最终的玻璃最多具有0.05摩尔%的As2O3。在一个实施方式中,在玻璃的澄清中不有意地使用As2O3。在这种情况下,由于批料材料中和/或用于熔化批料材料的设备中存在的污染物,导致完成后的玻璃通常会具有最多0.005摩尔%的As2O3
虽然不如As2O3那么有毒性,但是Sb2O3也是有毒的且需要特殊的处理。此外,与使用As2O3或SnO2作为澄清剂的玻璃相比,Sb2O3增大了密度,提升了CTE,并降低了退火点。因此,在某些实施方式中,进行澄清但不使用显著量的Sb2O3,即最终的玻璃最多具有0.05摩尔%的Sb2O3。在另一个实施方式中,在玻璃的澄清中不有意地使用Sb2O3。这种情况下,由于批料材料中和/或用于熔化批料材料的设备中存在的污染物,导致完成后的玻璃通常会具有最多0.005摩尔%的Sb2O3
相比于As2O3和Sb2O3澄清,锡澄清(即,SnO2澄清)较不有效,但是SnO2是不具有已知危险性质的普通材料。此外,通过在用于显示器玻璃的批料材料的焦耳熔融中使用锡氧化物电极,SnO2作为此类玻璃的组分已经很多年了。在使用这些玻璃制造液晶显示器时,显示器玻璃中存在SnO2没有导致任何已知的不利影响。但是,高浓度的SnO2不是优选的,因为这会导致在显示器玻璃中形成晶体缺陷。在一个实施方式中,最终玻璃中的SnO2浓度小于或等于约0.25摩尔%、约为0.07-0.11摩尔%、约为0-2摩尔%、约为0-3摩尔%,以及其间的所有子范围。
可以单独使用锡澄清或者如果需要的话可结合其他澄清技术使用。例如,锡澄清可以与卤化物澄清例如溴澄清结合。其他可能的组合包括但不限于锡澄清加上硫酸盐、硫化物、氧化铈、机械鼓泡和/或真空澄清。预期这些其它澄清技术可单独使用。在某些实施方式中,将(MgO+CaO+SrO+BaO)/Al2O3的比例以及单个碱土浓度保持在上文所述的范围中,使得澄清过程更易于进行和更加有效。
在各种实施方式中,玻璃可以包含RxO,其中,R是Li、Na、K、Rb、Cs,并且x是2,或者R是Zn、Mg、Ca、Sr或Ba,并且x是1。在一些实施方式中,RxO-Al2O3>0。在其他实施方式中,0<RxO-Al2O3<15。在一些实施方式中,RxO/Al2O3是0至10、0至5、大于1、或者1.5至3.75、或者1至6、或者1.1至5.7,以及其间的所有子范围。在其他实施方式中,0<RxO-Al2O3<15。在其他实施方式中,x=2且R2O-Al2O3<15,<5,<0,-8至0,或者-8至-1,以及其间的所有子范围。在其他实施方式中,R2O-Al2O3<0。在其他实施方式中,x=2,以及R2O-Al2O3-MgO>-10,>-5,0至-5,0至-2,>-2,-5至5,-4.5至4,以及其间的所有范围和子范围。在其他实施方式中,x=2且R2O/Al2O3是0至4,0至3.25,0.5至3.25,0.95至3.25,以及其间的所有子范围。这些比例对于建立玻璃制品的可制造性以及确定其透射性能起到关键作用。例如,RxO-Al2O3近似等于或者大于0的玻璃会倾向于具有更好的熔融质量,但是如果RxO-Al2O3的值变得太大,则透射曲线会受到负面影响。类似地,如果RxO-Al2O3(例如,R2O-Al2O3)处于上文所述的给定范围内,则玻璃在可见光谱中可能会具有高透射,同时维持可熔性且抑制玻璃的液相线温度。类似地,上文所述的R2O-Al2O3-MgO的值也可帮助抑制玻璃的液相线温度。
在一个或多个实施方式中且如上文所述,示例性玻璃可具有低浓度的当在玻璃基质中时产生可见光吸收的元素。此类吸收剂包括过渡元素,例如Ti、V、Cr、Mn、Fe、Co、Ni和Cu,以及具有部分填充的f轨道的稀土元素,包括Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er和Tm。在它们中,用于玻璃熔融的常规原材料中最丰富的是Fe、Cr和Ni。铁是砂石(SiO2来源)中的常见污染物,并且也是铝、镁和钙的原材料源中的典型污染物。铬和镍通常以低浓度存在于常见玻璃原材料中,但是可能存在于各种砂矿石,并且必须被控制在低浓度。此外,经由与不锈钢的接触(例如,当原材料或碎玻璃进行颚式破碎,由于不锈钢内衬的混合器或者螺旋进料机的腐蚀,或者熔融单元自身与结构钢材的无意接触),可能会引入铬和镍。具体来说,在一些实施方式中,铁浓度可以小于50ppm,更具体地,小于40ppm、或者小于25ppm,以及具体地,Ni和Cr的浓度可以小于5ppm,更具体地,小于2ppm。在其他实施方式中,上文所列出的所有其他吸收剂的浓度可以分别小于1ppm。在各种实施方式中,玻璃包括小于或等于1ppm的Co、Ni和Cr,或者小于1ppm的Co、Ni和Cr。在各种实施方式中,玻璃中存在的过渡元素(V、Cr、Mn、Fe、Co、Ni和Cu)可以小于或等于0.1重量%。在一些实施方式中,Fe的浓度可以小于约50ppm、小于约40ppm、小于约30ppm、小于约20ppm,或者小于约10ppm。在其他实施方式中,Fe+30Cr+35Ni<约60ppm,<约50ppm,<约40ppm,<约30ppm,<约20ppm,或者<约10ppm。
在其他实施方式中,发现添加不导致300nm至650nm的吸收和吸收带<约300nm的某些过渡金属氧化物会防止来自成形工艺的网络缺陷,并且会防止当固化墨时的UV暴露之后的色中心(例如,吸收300nm至650nm的光),因为玻璃网络中的过渡金属氧化物的键合会吸收光而不是允许光断开玻璃网络的基础键合。因此,示例性实施方式可以包含如下过渡金属氧化物中的任意一种或组合来使得UV色中心的形成最小化:约为0.1摩尔%至约3.0摩尔%氧化锌;约为0.1摩尔%至约1.0摩尔%钛氧化物;约为0.1摩尔%至约1.0摩尔%氧化钒;约为0.1摩尔%至约1.0摩尔%氧化铌;约为0.1摩尔%至约1.0摩尔%锰氧化物;约为0.1摩尔%至约1.0摩尔%氧化锆;约为0.1摩尔%至约1.0摩尔%氧化砷;约为0.1摩尔%至约1.0摩尔%锡氧化物;约为0.1摩尔%至约1.0摩尔%氧化钼;约为0.1摩尔%至约1.0摩尔%氧化锑;约为0.1摩尔%至约1.0摩尔%氧化铈;以及任意上文所列的过渡金属氧化物之间的所有子范围。在一些实施方式中,示例性玻璃可以含有0.1摩尔%至小于或不超过约3.0摩尔%的氧化锌、钛氧化物、氧化钒、氧化铌、锰氧化物、氧化锆、氧化砷、锡氧化物、氧化钼、氧化锑和氧化铈的任意组合。
即使是在过渡金属的浓度处于上文所述范围内的情况下,也可能存在导致不合乎希望的吸收的基质和氧化还原效应。例如,本领域技术人员众所周知的是,玻璃中的铁以两种价态存在,+3或三价铁状态,以及+2或二价铁状态。在玻璃中,Fe3+在近似380、420和435nm产生吸收,而Fe2+主要在IR波长吸收。因此,根据一个或多个实施方式,可能有利的是迫使尽可能多的铁成为二价铁状态,以实现可见波长的高透射。实现其的一种非限制性方法是向玻璃批料添加天然具有还原性的成分。此类成分可以包括碳、烃、或者某些准金属(例如,硅、硼或铝)的还原形式。无论是如何实现的,如果铁水平落在所述范围内,根据一个或多个实施方式,至少10%的铁是二价铁状态(更具体来说,大于20%的铁是二价铁状态),则在短波长处可以产生改善的透射。因此,在各种实施方式中,玻璃中的铁浓度在玻璃片中产生小于1.1dB/500mm的衰减。此外,在各种实施方式中,对于硼硅酸盐玻璃,当(Li2O+Na2O+K2O+Rb2O+Cs2O+MgO+ZnO+CaO+SrO+BaO)/Al2O3的比例是0至4时,V+Cr+Mn+Fe+Co+Ni+Cu的浓度在玻璃片中产生小于或等于2dB/500mm的光衰减。
玻璃基质中,铁的价态和配位状态还会受到玻璃的本体组成影响。例如,已经检查了在高温情况下,SiO2-K2O-Al2O3体系的熔融玻璃中的铁氧化还原比例与空气中的情况相当。发现作为Fe3+的铁部分随着K2O/(K2O+Al2O3)比例而增加,这在实际情况下会转变成短波长的较大吸收。在对于该基质效应的研究中,发现(Li2O+Na2O+K2O+Rb2O+Cs2O)/Al2O3和(MgO+CaO+ZnO+SrO+BaO)/Al2O3的比例对于硼硅酸盐玻璃的透射最大化也会是重要的。因此,对于上文所述的RxO范围,对于给定铁含量,示例性波长处的透射会最大化。这部分是由于较高的Fe2+分数,以及部分是由于与铁配位环境相关的基质效应。
玻璃粗糙度
图3显示估算的光泄露(dB/m)与LGP的RMS粗糙度之间的关系。参见图3,会显示出表面散射对于LGP起到一定作用,因为光在其表面上反弹多次。图3中的曲线显示光泄露(dB/m)与LGP的RMS粗糙度的关系。图3显示,为了得到低于1dB/m,表面质量需要优于约0.6nm RMS。可以通过使用熔合拉制工艺或者使用浮法之后进行抛光,来实现该粗糙度水平。该模型假定粗糙度的作用如同朗伯散射表面,这意味着我们仅考虑了高空间频率粗糙度。因此,应该考虑功率谱密度并且仅考虑高于约20微米-1的频率来计算粗糙度。可以通过原子力显微镜(AFM);通过具有商业系统(如Zygo公司制造的那些的)白光干涉测量法;或者通过具有商业系统(如Keyence公司提供的那些的)激光共聚焦显微镜来测量表面粗糙度。可以通过制备除了表面粗糙度之外相同的一系列样品,然后如下文所述分别测量内部透射率来测量来自表面的散射。样品之间的内部透射率差异可归结于由于粗糙表面所诱发的散射损耗。
UV加工
在示例性玻璃的加工中,也可以使用紫外(UV)光。例如,通常通过在玻璃上打印白色点来制造光提取特征,并使用UV来干燥墨水。此外,可以由聚合物层制造提取特征,在其上具有一些特定结构,并且需要UV暴露来进行聚合。已经发现,玻璃的UV暴露会对透射造成明显影响。根据一个或多个实施方式,可以在用于LGP的玻璃的玻璃加工过程中使用过滤器,来消除所有低于约400nm的波长。一种可能的过滤器是与目前暴露的那种使用相同的玻璃的情况。
玻璃波度
在某种意义上来说,玻璃波度略微不同于粗糙度,因为其频率低得多(mm或更大范围)。因此,波度对于提取光没有贡献,因为角度非常小,但是这改变了提取特征的效率,因为效率与光导厚度相关。通常来说,光提取效率与波导厚度成反比。因此,为了保持高频图像亮度波动低于5%(这是由人体闪耀感知分析得到的人体感知阈值),玻璃的厚度需要恒定在小于5%之内。示例性实施方式可以具有小于0.3um、小于0.2um、小于1um、小于0.08um、或者小于0.06um的A侧波度。
图4显示对于将2mm厚的LED耦合入2mm厚的LGP,预期耦合(无菲涅尔损耗)与LGP和LED之间的距离的关系。参见图4,在示例性实施方式中,光注入通常涉及将LGP放置成直接靠近一个或多个发光二极管(LED)。根据一个或多个实施方式,从LED到LGP的光有效耦合涉及使用厚度或高度小于或等于玻璃的厚度的LED。因此,根据一个或多个实施方式,可以控制从LED到LGP的距离,从而改善LED光注入。图4显示预期耦合(没有菲涅耳损耗)与距离的关系,并且考虑将2mm高度的LED耦合入2mm厚的LGP。根据图4,距离应该<约0.5mm,从而保持耦合>约80%。当使用塑料(例如PMMA)作为常规LGP材料时,使得LGP与LED物理接触是稍微有问题的。首先,需要最小距离以允许材料膨胀。此外,LED倾向于被明显加热,并且在物理接触的情况下,PMMA会接近其Tg(对于PMMA是105℃)。当使得PMMA与LED接触时,测得温度提升约为LED的50℃附近。因此,对于PMMA LGP,需要最小空气间隙,这劣化了耦合,如图4所示。根据采用玻璃LGP的本文主题的实施方式,玻璃的加热不是问题,因为玻璃的Tg要高得多,并且物理接触实际上可能是优势,因为玻璃的导热系数足够大,使得LGP作为一种额外的热消散机制。
图5显示LED到玻璃LGP的耦合机制。参见图5,假定LED靠近朗伯发射器,并且假定玻璃的折射率约为1.5,则角度α会保持小于41.8度(即(1/1.5)),而角度β会保持大于48.2度(90-α)。由于全内反射(TIR)角度约为41.8度,这意味着所有的光留在内部被引导,并且耦合接近100%。在LED注入的水平,注入面可能引起部分扩散,这会增加光传播进入LGP的角度。在该角度变得大于TIR角度的事件中,光可能从LGP泄露出来,导致耦合损耗。但是,不引入明显损耗的条件是,光发生散射的角度应该小于48.2-41.8=+/-6.4度(散射角<12.8度)。因此,根据一个或多个实施方式,LGP的多个边缘可具有镜面抛光以改善LED耦合和TIR。在一些实施方式中,4个边缘中的3个可以具有镜面抛光。当然,这些角度仅仅是示例性的,并且不应限制本文所附的权利要求的范围,因为示例性散射角可以<20度、<19度、<18度、<17度、<16度、<14度、<13度、<12度、<11度、或者<10度。此外,反射中的示例性扩散角可以<15度、<14度、<13度、<12度、<11度、<10度、<9度、<8度、<7度、<6度、<5度、<4度、或者<3度,但不限于此。
图6显示从表面拓扑计算得到的预期角度能量分布图。参见图6,显示了仅经过研磨边缘的典型织构,其中,粗糙度振幅较高(约为1nm),但是特殊频率较低(约为20微米),导致低散射角。此外,该附图显示了从表面拓扑计算得到的预期角度能量分布。可以看出,散射角可以远小于12.8度半峰值全宽(FWHM)。
从表面定义而言,表面可以表征为局部斜率分布θ(x,y),其可以通过例如对表面轮廓取倒数计算得到。玻璃中的角偏转可以计算为第一近似值如下:
θ’(x,y)=θ(x,y)/n
因此,表面粗糙度上的条件是θ(x,y)<n*6.4度,TIR在2个相邻边缘。
图7显示在玻璃LGP的两个相邻边缘的光的全内反射。参见图7,注入到第一边缘130的光可以入射到与注入边缘相邻的第二边缘140以及与注入边缘相邻的第三边缘150,其中,第二边缘140与第三边缘150相对。第二和第三边缘也可具有低粗糙度,从而入射光经受来自与第一边缘相邻的两个边缘的全内反射(TIR)。在光在这些界面处发生扩散或者部分扩散的事件中,光可能从这些边缘中的每一个发生泄漏,从而使得图像边缘看上去较暗。在一些实施方式中,光可以从沿着第一边缘130布置的LED阵列200注入到第一边缘130中。LED的位置可以距离光注入边缘小于0.5mm。根据一个或多个实施方式,LED的厚度或高度可以小于或等于玻璃片的厚度,以提供与导光板100的充分光耦合。如参照图1所述,图7显示单边缘130注入光,但是要求保护的本文主题不应限于此,因为示例性实施方式100的任意一个或多个边缘可以注入光。例如,在一些实施方式中,第一边缘130及其相对边缘都可注入光。其他实施方式可在第二边缘140及其相对边缘150注入光,而不是在第一边缘130和/或其相对边缘。根据一个或多个实施方式,在反射中,两个边缘140、150可以具有低于6.4度的扩散角,从而粗糙度形状上的条件表示为θ(x,y)<6.4/2=3.2度。
LCD面板刚度
LCD面板的一个属性是整体厚度。在制造更薄结构的常规尝试中,缺乏足够的刚度已经成为严重的问题。但是,可以用示例性玻璃LGP来增加刚度,因为玻璃的弹性模量比PMMA要大得多。在一些实施方式中,从刚度观点考虑,为了获得最大益处,可以将面板的所有元件在边缘处粘结在一起。
图8是具有根据一个或多个实施方式的LGP的示例性LCD面板的横截面图。参见图8,提供了面板结构500的示例性实施方式。该结构包括安装在背板550上的LGP 100,光可以通过其移动并被再导向到LCD或观察者。结构元件555可以将LGP 100与背板550固定,并在LGP的背面和背板的面之间产生间隙。可以在LGP 100的背面和背板550之间布置反射和/或扩散膜540,从而使得光再循环回通过LGP 100。可以与LGP的光注入边缘130相邻布置多个LED、有机发光二极管(OLED)或者冷阴极荧光灯(CCFL),其中,LED的宽度与LGP 100的厚度相同,并且与LGP 100处于相同高度。在其他实施方式中,LED的宽度和/或高度比LGP 100的厚度更大。常规LCD可采用封装了颜色转换荧光体的LED或CCFL来产生白光。可以与LGP 100的正面相邻布置一个或多个背光膜570。LCD面板580还可布置在具有结构元件585的LGP100的正面上,以及背光膜570可以位于LGP100和LCD面板580之间的间隙中。然后,来自LGP100的光可以穿过膜570,这会将高角度光背散射以及将低角度光反射回反射器膜540进行再循环,并且可以起到以正向方向(例如,朝向使用者的方向)浓缩光。斜面520或者其他结构部件可以将组件层保持在原位。可以使用液晶层(未示出),并且其可以包含电光材料,在施加了电场之后,其结构发生转动,导致任何通过它的光发生偏振旋转。可以包括其他光学组件,例如棱镜膜、偏振器或者TFT阵列等。根据各种实施方式,本文所揭示的呈角度滤光器可与透明导光板在透明显示器装置中配对。在一些实施方式中,LGP可以(采用光学透澈粘合剂OCA或者压敏粘合剂PSA)与结构粘结,其中,LGP放置成与面板的一些结构元件光学接触。换言之,一些光可以经由粘合剂从光导泄露出来。这种泄露光会发生散射或者被这些结构元件吸收。如上文所解释的那样,如果制备恰当的话,LED耦合进入LGP的第一边缘以及光需要以TIR反射的两个相邻边缘可以避免该问题。
LGP的示例性宽度和高度通常取决于相应的LCD面板的尺寸。应注意的是,本文主题的实施方式可适用于任意尺寸LCD面板,无论是小的显示器(<40”对角线)或者大的显示器(>40”对角线)。LGP的示例性尺寸包括但不限于20”、30”、40”、50”、60”对角线,或者更大的情况。
图9是具有根据另一个实施方式的LGP的示例性LCD面板的横截面图。参见图9,其他实施方式可以采用反射层。在一些实施方式中的损耗可以通过在LGP和环氧化物之间插入反射表面,通过玻璃的金属化(使用例如,银)或者反射墨的喷墨印刷,来最小化。在其他实施方式中,LGP可以层叠高度反射膜(例如,3M公司制造的强化镜面反射器膜)。
图10显示具有根据其他实施方式的粘合垫的LGP。参见图10,可以使用粘合垫代替连续粘合剂,其中,垫600显示为一系列暗色方块。因此,为了限制与结构元件光学连接的LGP的表面,所示的实施方式可以每50mm采用5x5mm的方块垫,以提供足够的粘附,其中,提取的光小于4%。当然,垫600可以是圆形或者其他多边形形式,并且可以以任意阵列或间距提供,并且该描述不应限制本文所述的权利要求的范围。
色移补偿
在现有玻璃中,虽然铁浓度的降低使得吸收和黄色偏移最小化,但是难以完全消除这种情况。对于PMMA,对于约为700mm的传播距离,测得的Δx、Δy是0.0021和0.0063。在具有本文所述的组成范围的示例性玻璃中,色移Δy<0.015,以及在示例性实施方式中,小于0.0021和小于0.0063。例如,在一些实施方式中,测得的色移是0.007842,以及在其他实施方式中,测得的色移是0.005827。在其他实施方式中,示例性玻璃片可以包括小于0.015的色移Δy,例如,约为0.001-0.015(例如,约0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.010、0.011、0.012、0.013、0.014、或0.015)。在其他实施方式中,透明基材可以包括小于0.008、小于约0.005或者小于约0.003的色移。色移可以通过如下方式表征:对于给定照明源,采用用于颜色测量的CIE 1931标准,沿着长度L测量x和/或y色度坐标中的变化。对于示例性玻璃导光板,色移Δy可以记录为Δy=y(L2)-y(L1),其中,L2和L1是沿着远离源发射(例如,LED或者其他等)的方向的面板或基材的Z位置,以及其中,L2-L1=0.5米。本文所述的示例性导光板的Δy<0.015,Δy<0.005,Δy<0.003,或者Δy<0.001。导光板的色移可以通过如下方式评估:测量导光板的光学吸收,使用光学吸收来计算LGP在0.5m上的内透射,以及然后将得到的透射曲线乘以用于LCD背光中的典型LED源(例如,Nichia NFSW157D-E)。然后可以使用CIE色匹配函数来计算该光谱的(X,Y,Z)三色值。然后,这些值与它们之和进行标准化,以提供(x,y)色度坐标。LED光谱的(x,y)值乘以0.5m LGP透射与初始LED光谱的(x,y)值之间的差异是对于导光材料的色移贡献的评估。为了解决残留色移,可以实施数种示例性解决方案。在一个实施方式中,可以采用导光蓝色涂料。通过光导蓝色涂覆,可以人为地增加红色和绿色吸收,并增加蓝色的光提取。因此,知道存在多少差分色吸收的情况下,可以反过来计算蓝色涂料图案,并将其用于补偿色移。在一个或多个实施方式中,可以采用浅表面散射特征来提取光,效率取决于波长。例如,当光路差等于一半波长时,方格光栅具有最大效率。因此,可以使用示例性织构来优先提取蓝色,并且可以作为光提取主织构的补充。在其他实施方式中,也可以采用图像加工。例如,可以应用图像过滤器,其会在靠近光发生注入的边缘衰减蓝色。这可能需要对LED自身的颜色进行偏移,以保持正确的白色颜色。在其他实施方式中,可以使用像素几何学,通过调节面板中RGB像素的表面比例并增加增加蓝色像素表面远离光发生注入的边缘,来解决色移。
实施例和玻璃组合物
除了示例性组合物之外,可以对在衰减最为强烈的可见光波长处进行鉴定,来评估每种元素的衰减影响。在下表1所示的例子中,已经通过实验确定了各种过渡金属的吸收系数与Al2O3-RxO浓度的关系(但是,出于简短的目的,仅显示了改性剂Na2O)。
表1
dB/ppm/500mm
Al2O3>Na2O Al2O3=Na2O Al2O3<Na2O
V 0.119 0.109 0.054
Cr 2.059 1.869 9.427
Mn 0.145 0.06 0.331
Fe 0.336 0.037 0.064
Co 1.202 2.412 3.7
Ni 0.863 0.617 0.949
Cu 0.108 0.092 0.11
除了V(钒)例外,对于Al2O3=Na2O(或者更通常来说对于Al2O3~RxO)浓度的玻璃,得到最小衰减。在各种情况下,可假定过渡金属具有两种或更多种价态(例如,Fe可以同时是+2或者+3),从而这些各种价态的氧化还原比例在一定程度上可能受到本体组成的影响。过渡金属对于所谓的“晶体场”或“配体场”效应的响应是不同的,其源自在其部分填充的d轨道中的电子与周围阴离子(在该情况下,氧)的相互作用,特别是如果在最接近周围的阴离子数量(也称作配位数量)发生改变的情况下。因此,可能氧化还原比例和晶体场效应都对该结果具有贡献。
各种过渡金属的吸收系数还可用于确定玻璃组合物在可见光谱(即,380-700nm)之间的路径长度上的衰减并解决负感(solarization)问题,如下表2所示和下文更详细所述。
表2
当然,表2所鉴定的值仅是示例性的,不应限制本文所附权利要求的范围。例如,还出人意料地发现,当Fe+30Cr+35Ni<60ppm时,可以获得高透射玻璃。在一些实施方式中,Fe的浓度可以小于约50ppm、小于约40ppm、小于约30ppm、小于约20ppm,或者小于约10ppm。在其他实施方式中,Fe+30Cr+35Ni<约50ppm,<约40ppm,<约30ppm,<约20ppm,或者<约10ppm。还出乎意料地发现,添加不导致300nm至650nm的吸收和吸收带<约300nm的某些过渡金属氧化物会防止来自成形工艺的网络缺陷,并且会防止当固化墨时的UV暴露之后的色中心(例如,吸收300nm至650nm的光),因为玻璃网络中的过渡金属氧化物的键合会吸收光而不是允许光断开玻璃网络的基础键合。因此,示例性实施方式可以包含如下过渡金属氧化物中的任意一种或组合来使得UV色中心的形成最小化:约为0.1摩尔%至约3.0摩尔%氧化锌;约为0.1摩尔%至约1.0摩尔%钛氧化物;约为0.1摩尔%至约1.0摩尔%氧化钒;约为0.1摩尔%至约1.0摩尔%氧化铌;约为0.1摩尔%至约1.0摩尔%锰氧化物;约为0.1摩尔%至约1.0摩尔%氧化锆;约为0.1摩尔%至约1.0摩尔%氧化砷;约为0.1摩尔%至约1.0摩尔%锡氧化物;约为0.1摩尔%至约1.0摩尔%氧化钼;约为0.1摩尔%至约1.0摩尔%氧化锑;约为0.1摩尔%至约1.0摩尔%氧化铈;以及任意上文所列的过渡金属氧化物之间的所有子范围。在一些实施方式中,示例性玻璃可以含有0.1摩尔%至小于或不超过约3.0摩尔%的氧化锌、钛氧化物、氧化钒、氧化铌、锰氧化物、氧化锆、氧化砷、锡氧化物、氧化钼、氧化锑和氧化铈的任意组合。
表3A、3B、4A和4B提供了制备用于本文主题的实施方式的玻璃的一些示例性非限制性的例子。
表3A
表3B
重量% 摩尔%
SiO2 74.521 76.27
SiO2(扩散(diff)) 74.431
Al2O3 7.214 4.36
B2O3 0 0
Li2O 0 0
Na2O 10.197 10.13
K2O 0.003 0
ZnO 1.577 1.19
MgO 4.503 6.88
CaO 0.03 0.03
SrO 1.69 1
BaO 0.031 0.01
SnO2 0.224 0.09
Fe2O3
表4A
表4B
重量% 摩尔%
SiO2 73.38 76.17
SiO2(扩散(diff)) 73.823
Al2O3 7.15 4.35
B2O3 0 0
Li2O 0 0
Na2O 8.55 8.56
K2O 2.40 1.58
ZnO 1.57 1.2
MgO 4.50 6.92
CaO 0.05 0.05
SrO 1.74 1.04
BaO 0 0
SnO2 0.22 0.09
Fe2O3
因此,本文所述的示例性组合物可用于实现约为525-575℃、约为540-570℃、或者约为545-565℃的应变点范围,以及其间的所有子范围。在一个实施方式中,应变点约为547℃,以及在另一个实施方式中,应变点约为565℃。示例性退火点范围可以约为575-625℃、约为590-620℃,以及其间的所有子范围。在一个实施方式中,退火点约为593℃,以及在另一个实施方式中,退火点约为618℃。玻璃的示例性软化点范围约为800-890℃、约为820-880℃、或者约为835-875℃,以及其间的所有子范围。在一个实施方式中,软化点约为836.2℃,以及在另一个实施方式中,软化点约为874.7℃。示例性玻璃组合物的密度范围可以约为1.95gm/cc@20C至约为2.7gm/cc@20C、约为2.1gm/cc@20C至约为2.4gm/cc@20C、或者约为2.3gm/cc@20C至约为2.4gm/cc@20C,以及其间的所有子范围。在一个实施方式中,密度约为2.389gm/cc@20C,以及在另一个实施方式中,密度约为2.388gm/cc@20C。对于示例性实施方式,CTE(0-300℃)可以约为30x 10-7/℃至约为95x 10-7/℃、约为50x 10-7/℃至约为80x10-7/℃、或者约为55x 10-7/℃至约为80x 10-7/℃,以及其间的所有子范围。在一个实施方式中,CTE约为55.7x 10-7/℃,以及在另一个实施方式中,CTE约为69x 10-7/℃。
本文所述的某些实施方式和组合物已经提供了从400-700nm的大于90%、大于91%、大于92%、大于93%、大于94%、以及甚至大于95%的内透射。可以通过将穿过样品透射的光与从源发射的光进行对比,来测量内透射率。可以将宽带非相干光以圆柱形方式聚焦到待测材料的端部上。从远侧发射的光可以通过与光谱仪耦合的积分球纤收集,并形成样品数据。通过如下方式获得参比数据:在测试下,从系统去除材料;将积分球直接位移到聚焦光学件前面;以及收集通过相同设备的光作为参比数据。然后得到给定波长下的吸收:
0.5m上的内透射率如下:
因此,本文所述的示例性实施方式对于500mm的长度,在450nm处可具有大于85%、大于90%、大于91%、大于92%、大于93%、大于94%、以及甚至大于95%的内透射率。本文所述的示例性实施方式对于500mm的长度,在550nm处还可具有大于90%、大于91%、大于92%、大于93%、大于94%、以及甚至大于96%的内透射率。本文所述的其他实施方式对于500mm的长度,在630nm处可具有大于85%、大于90%、大于91%、大于92%、大于93%、大于94%、以及甚至大于95%的透射率。
在一个或多个实施方式中,LGP的宽度至少约为1270mm且厚度约为0.5-3.0mm,其中,LGP每500mm的透射率至少为80%。在各种实施方式中,LGP的厚度约为1-8mm,且板宽度约为1100-1300mm。
在一个或多个实施方式中,LGP可以经过强化。例如,可以在用于LGP的示例性玻璃片中提供某些特性,例如中等压缩应力(CS)、高压缩层深度(DOL)和/或中等中心张力(CT)。一种示例性工艺包括通过制备能够进行离子交换的玻璃片来对玻璃进行化学强化。接着,可以使玻璃片经受进行离子交换过程,这之后,玻璃片可以经受退火过程,如果需要的话。当然,如果从离子交换步骤得到的玻璃片的CS和DOL是所需水平的话,则不需要退火步骤。在其他实施方式中,可以使用酸蚀刻过程来增加恰当的玻璃表面上的CS。离子交换过程可涉及:使得玻璃片经受熔盐浴,所述熔盐浴包括KNO3,优选较纯的KNO3,具有约为400-500℃范围内的一种或多种第一温度和/或持续约为1-24小时,例如但不限于约为8小时的第一时间段。注意的是,其他盐浴组成也是可以的,并且本领域技术人员会考虑这些替代方式。因此,所揭示的KNO3不应限制所附权利要求书的范围。该示例性离子交换过程可以在玻璃片的表面处产生初始CS,进入玻璃片内的初始DOL,以及在玻璃片内的初始CT。然后,退火可以产生所需的最终CS、最终DOL和最终CT。
实施例
在下文中陈述以下示例以说明根据所公开主题的方法和结果。这些示例不是为了包括本文中所公开主题的所有实施方式,而是为了说明代表性的方法和结果。这些示例不是为了排除对本领域普通技术人员显而易见的本文的等价物和变化。
已经进行了诸多努力,以确保数值(例如数量、温度等)的精确性,但是必须考虑到存在一些误差和偏差。除非另有说明,否则,温度用℃表示或是环境温度,压力为大气压或接近大气压。组合物自身基于氧化物以摩尔%给出,且已标准化至100%。存在例如成分浓度、温度、压力之类的反应条件的多种变化和组合和可用来优化从所描述的过程获得的产物纯净度和产量的其它反应范围和条件。仅需要合理的和常规的实验方法来优化这样的工艺条件。
根据玻璃领域的常规技术确定本文和下表5所列出的玻璃性质。因此,在25-300℃温度范围的线性热膨胀系数(CTE)用x 10-7/℃来表示,且退火点用℃来表示。这些是由纤维伸长技术(分别为ASTM参考文献E228-85和C336)确定的。密度通过阿基米德法(ASTM C693)测量,单位为g/cm3。采用Fulcher等式,代入通过旋转筒粘度计测得的高温粘度数据,计算熔化温度(定义为玻璃熔体证实具有200泊的粘度时的温度)(ASTM C965-81),单位为℃。
采用ASTM C829-81的标准梯度舟液相线法,测量玻璃的液相线温度,单位为℃。这涉及将粉碎的玻璃颗粒置于铂舟中,将舟放入具有梯度温度区的炉中,在适当温度区域对舟加热24小时,通过用显微镜检测的方式确定玻璃内部出现晶体的最高温度。更具体地,将玻璃样品以一片的方式从Pt舟取出,使用极化光学显微镜进行检测来确定在靠着Pt和空气界面、以及样品内部形成的晶体的位置和性质。因为炉的梯度是熟知的,可较好地估计温度与位置的关系,在5-10℃之内。将在样品的内部部分观察到晶体的温度看作代表玻璃的液相线(用于对应的测试时间段)。测试有时进行更长的时间(例如72小时),从而观察更缓慢生长的相。由液相线温度和Fulcher等式的系数确定液相线粘度,单位为泊。如果包括的话,则采用ASTM E1875-00e1所述的通用类型的共振超声光谱技术确定杨氏模量值,单位是GPa。
采用市售可得的沙作为二氧化硅源(其研磨至使得90重量%通过标准U.S.100网筛)来制备本文表格中的示例性玻璃。氧化铝是氧化铝源,方镁石是MgO来源,石灰石是CaO来源,碳酸锶、硝酸锶或其混合物是SrO来源,碳酸钡是BaO来源,以及锡(IV)氧化物是SnO2来源。原材料彻底混合,装载到悬在通过碳化硅灼热棒(glowbar)加热的炉中的铂容器内,在1600-1650℃的温度熔化并搅拌数小时以确保均质化,递送通过位于铂容器底座的孔。所得到的玻璃饼在退火点或者接近退火点退火,然后经受各种实验方法以确定物理、粘度和液相线性质。
这些方法不是唯一的,可以采用本领域技术人员众所周知的标准方法来制备本文表格中的玻璃。此类方法包括连续的熔融法,例如会在连续熔融过程中进行的那样,其中通过气体、通过电力或其组合来加热在连续熔融过程中所使用的熔融器。
适用于生产示例性玻璃的原材料包括:市售可得的沙作为SiO2的来源;氧化铝、氢氧化铝、水合物形式的氧化铝、以及各种铝硅酸盐、硝酸盐和卤化物作为Al2O3的来源;硼酸、无水硼酸和氧化硼作为B2O3的来源;方镁石、白云石(也是CaO的来源)、氧化镁、碳酸镁、氢氧化镁以及各种形式的硅酸镁、铝硅酸镁、硝酸镁和卤化镁作为MgO的来源;石灰石、文石、白云石(也是MgO的来源)、钙硅石和各种形式的硅酸钙、铝硅酸钙、硝酸钙和卤化钙作为CaO的来源;以及锶和钡的氧化物、碳酸盐、硝酸盐和卤化物。如果需要化学澄清剂的话,可以如下方式添加锡:作为SnO2,作为与其他玻璃主成分的混合氧化物(例如,CaSnO3),或者作为氧化状态SnO、草酸锡、卤化锡或者本领域技术人员已知的其他含锡化合物。
本文表格中的玻璃可含有SnO2作为澄清剂,但是也可以使用其他化学澄清剂以获得对于显示器应用具有足够质量的玻璃。例如,示例性玻璃可使用As2O3、Sb2O3、CeO2、Fe2O3和卤化物中的任意一种或其组合作为故意添加来促进澄清,且任意这些可与实施例所示的SnO2化学澄清剂联用。在它们中,通常认为As2O3和Sb2O3是有害材料,进行废料流控制,例如在玻璃制造过程或TFT面板加工中可能产生的废料流。因此,希望将As2O3和Sb2O3的浓度单独或组合地限制在不大于0.005摩尔%。
除了故意结合到示例性玻璃中的元素,元素周期表中的几乎所有稳定元素都在玻璃中以某些水平存在,通过原材料中低水平的污染物,通过制造过程中的耐火材料和贵金属的高温腐蚀,或者通过低水平的故意引入来精细调节最终玻璃的属性。例如,通过与富锆耐火材料的相互作用,可能引入锆作为污染物。又例如,可能通过与贵金属的相互作用引入铂和铑。又例如,可作为原料中的不确定物(tramp)引入铁或故意添加铁来增强对气态内含物的控制。又例如,可引入锰来控制颜色或来增强对气态内含物的控制。
氢不可避免地以羟基阴离子(OH-)的形式存在,其存在可通过标准红外光谱技术探知。溶解的氢氧离子显著且非线性地影响示例性玻璃的退火点,因此为了获得所需的退火点,可能需要调节主要氧化物成分的浓度来进行补偿。可在一定程度上通过选择原料或选择熔融系统来控制氢氧离子浓度。例如,硼酸是氢氧根的主要来源,用硼氧化物取代硼酸可以是控制最终玻璃中的氢氧根浓度的有用方法。相同的理由也适用于其它潜在原材料,包括氢氧离子、水合物或含物理吸附或化学吸附水分子的化合物。如果在熔融过程中使用了燃烧器,那么还可通过天然气和相关烃燃烧的燃烧产物来引入氢氧离子,因此可能希望将熔融中使用的能量从燃烧器转换成电极,以进行补偿。或者,可替代地使用调节主要氧化物成分的反复过程,从而补偿溶解的氢氧离子的不利影响。
天然气中通常存在硫,并且可能是许多碳酸盐、硝酸盐、卤化物和氧化物原材料中的不确定成分。处于SO2形式时,硫会是麻烦的气态内含物来源。通过控制原材料中硫的水平,以及通过将低水平的相当的还原多价阳离子结合到玻璃基质中,可以明显的程度控制形成SO2富集缺陷的趋势。虽然不希望受到理论的限制,但看上去主要通过溶解在玻璃中的硫酸盐(SO4 )的还原来产生富SO2气态内含物。看上去示例性玻璃的钡浓度提升增加了熔融的早期阶段中玻璃中硫的保留,但是如上所述,需要钡来获得低液相线温度,进而获得高的T35k-T液相和高的液相线粘度。故意将原材料中的硫水平控制到低水平是减少溶解在玻璃中的硫(假设为硫酸盐)的有用手段。具体来说,在批料材料中,以重量计,硫优选小于200ppm,更优选小于100ppm。
还原多价物也可用于控制示例性玻璃形成SO2气泡的趋势。虽然不希望受到理论的限制,但是这些元素作为潜在的电子供体,其抑制硫酸盐还原的电动势。硫酸盐还原可以写作半反应形式,例如SO4=→SO2+O2+2e-,其中,e-表示电子。半反应的“平衡常数”是Keq=[SO2][O2][e-]2/[SO4=],其中,括号表示化学活性。理想地,希望促进反应从而由SO2、O2和2e-产生硫酸盐。在熔融早期阶段添加硝酸盐、过氧化物或其它富氧原材料可有助于但也可不利于硫酸盐还原,这可抵销起初添加它们的益处。SO2在大多数玻璃中具有非常低的溶解度,因此添加至玻璃熔融过程是不实际的。可通过还原多价物“加入”电子。例如,用于亚铁离子(Fe2+)的合适的供电子半反应可表达为2Fe2+→2Fe3++2e-
该电子“活性”可促进硫酸盐还原反应向左侧进行,使得玻璃中的SO4 稳定化。合适的还原多价物包括但不限于,Fe2+、Mn2+、Sn2+、Sb3+、As3+、V3+、Ti3+,以及本领域技术人员熟知的其他那些。在每种情况下,最小化此类成分的浓度从而避免对玻璃颜色的不利影响可能是重要的,或者在As和Sb的情况下,以避免此类成分处于高到足以使终端用户工艺中的废料管理复杂化的水平。
除了示例性玻璃的主要氧化物成分以及上文所述的次要或不确定组分,可能以各种水平存在卤化物,作为通过原材料的选择引入的污染物,或者作为故意使用的成分来消除玻璃中的气态内含物。作为澄清剂,可以小于或等于约0.4摩尔%的水平包含卤化物,尽管如果可能的话通常希望使用更低的量,以避免尾气处理设备的腐蚀。在一些实施方式中,对于各单个卤化物,单个卤化物元素的浓度以重量计低于约200ppm,或者所有卤化物元素之和以重量计低于约800ppm。
除了这些主要氧化物成分、次要成分和不确定成分、多价物和卤化物澄清剂,可用的是包括低浓度的其他无色氧化物成分以实现所需的物理、负感、光学或粘弹性性质。此类氧化物包括,但不限于:TiO2、ZrO2、HfO2、Nb2O5、Ta2O5、MoO3、WO3、ZnO、In2O3、Ga2O3、Bi2O3、GeO2、PbO、SeO3、TeO2、Y2O3、La2O3、Gd2O3以及本技术领域技术人员已知的其它那些。通过调节示例性玻璃的主要氧化物成分的相对比例,可以添加高至约2摩尔%-3摩尔%的水平的此类无色氧化物,而不对退火点、T35k-T液相线或液相线粘度造成不可接受的影响。例如,一些实施方式可以包含如下过渡金属氧化物中的任意一种或组合来使得UV色中心的形成最小化:约为0.1摩尔%至约3.0摩尔%氧化锌;约为0.1摩尔%至约1.0摩尔%钛氧化物;约为0.1摩尔%至约1.0摩尔%氧化钒;约为0.1摩尔%至约1.0摩尔%氧化铌;约为0.1摩尔%至约1.0摩尔%锰氧化物;约为0.1摩尔%至约1.0摩尔%氧化锆;约为0.1摩尔%至约1.0摩尔%氧化砷;约为0.1摩尔%至约1.0摩尔%锡氧化物;约为0.1摩尔%至约1.0摩尔%氧化钼;约为0.1摩尔%至约1.0摩尔%氧化锑;约为0.1摩尔%至约1.0摩尔%氧化铈;以及任意上文所列的过渡金属氧化物之间的所有子范围。在一些实施方式中,示例性玻璃可以含有0.1摩尔%至小于或不超过约3.0摩尔%的氧化锌、钛氧化物、氧化钒、氧化铌、锰氧化物、氧化锆、氧化砷、锡氧化物、氧化钼、氧化锑和氧化铈的任意组合。
表5显示了具有本文所述的高可透性的玻璃的例子(样品1-106)。
表5
其他实施例可包括如下组合物,以摩尔%计。
如上表所述,在一些实施方式中,示例性玻璃制品会包括玻璃片,所述玻璃片具有:具有宽度和高度的正面,与正面相对的背面,以及正面与背面之间的厚度,形成绕着正面和背面的四个边缘,其中,玻璃片包含:约为65.79摩尔%至约78.17摩尔%SiO2、约为2.94摩尔%至约12.12摩尔%Al2O3、约为0摩尔%至约11.16摩尔%B2O3、约为0摩尔%至约2.06摩尔%Li2O、约为3.52摩尔%至约13.25摩尔%Na2O、约为0摩尔%至约4.83摩尔%K2O、约为0摩尔%至约3.01摩尔%ZnO、约为0摩尔%至约8.72摩尔%MgO、约为0摩尔%至约4.24摩尔%CaO、约为0摩尔%至约6.17摩尔%SrO、约为0摩尔%至约4.3摩尔%BaO、和约为0.07摩尔%至约0.11摩尔%SnO2。在一些实施方式中,玻璃制品包括色移<0.008。在一些实施方式中,玻璃制品包括色移<0.005。在一些实施方式中,玻璃制品包括RxO/Al2O3为0.95-3.23,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃制品包括RxO/Al2O3为1.18-5.68,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,以及x是1。在一些实施方式中,玻璃制品包括RxO-Al2O3-MgO为-4.25至4.0,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃的应变温度约为522-590℃。在一些实施方式中,玻璃的退火温度约为566-641℃。在一些实施方式中,玻璃的软化温度约为800-914℃。在一些实施方式中,玻璃的CTE约为49.6x 10-7/℃至约80x 10-7/℃。在一些实施方式中,玻璃的密度约为2.34gm/cc@20C至约2.53gm/cc@20C。在一些实施方式中,玻璃制品是导光板。在一些实施方式中,板厚度约为0.2-8mm。在一些实施方式中,厚度变化小于5%。在一些实施方式中,由熔合拉制工艺、狭缝拉制工艺或者浮法工艺制造导光板。在一些实施方式中,玻璃包含小于1ppm的Co、Ni和Cr中的每一个。在一些实施方式中,Fe的浓度小于约50ppm、小于约20ppm、或者小于约10ppm。在一些实施方式中,Fe+30Cr+35Ni<约60ppm,<约40ppm,<约20ppm,或者<约10ppm。在一些实施方式中,对于长度至少500mm的情况,在450nm处的透射率大于或等于85%,对于长度至少500mm的情况,在550nm处的透射率大于或等于90%,或者对于长度至少500mm的情况,在630nm处的透射率大于或等于85%,及其组合。在一些实施方式中,玻璃片经过化学强化。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了包含玻璃片的玻璃制品,所述玻璃片具有:具有宽度和高度的正面,与正面相对的背面,以及正面与背面之间的厚度,形成绕着正面和背面的四个边缘,其中,玻璃片包含:约为66摩尔%至约78摩尔%SiO2、约为4摩尔%至约11摩尔%Al2O3、约为4摩尔%至约11摩尔%B2O3、约为0摩尔%至约2摩尔%Li2O、约为4摩尔%至约12摩尔%Na2O、约为0摩尔%至约2摩尔%K2O、约为0摩尔%至约2摩尔%ZnO、约为0摩尔%至约5摩尔%MgO、约为0摩尔%至约2摩尔%CaO、约为0摩尔%至约5摩尔%SrO、约为0摩尔%至约2摩尔%BaO、和约为0摩尔%至约2摩尔%SnO2。在一些实施方式中,玻璃制品包括色移<0.008。在一些实施方式中,玻璃制品包括色移<0.005。在一些实施方式中,玻璃制品包括RxO/Al2O3为0.95-3.23,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃制品包括RxO/Al2O3为1.18-5.68,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,以及x是1。在一些实施方式中,玻璃制品包括RxO-Al2O3-MgO为-4.25至4.0,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃的应变温度约为522-590℃。在一些实施方式中,玻璃的退火温度约为566-641℃。在一些实施方式中,玻璃的软化温度约为800-914℃。在一些实施方式中,玻璃的CTE约为49.6x 10-7/℃至约80x 10-7/℃。在一些实施方式中,玻璃的密度约为2.34gm/cc@20C至约2.53gm/cc@20C。在一些实施方式中,玻璃制品是导光板。在一些实施方式中,板厚度约为0.2-8mm。在一些实施方式中,厚度变化小于5%。在一些实施方式中,由熔合拉制工艺、狭缝拉制工艺或者浮法工艺制造导光板。在一些实施方式中,玻璃包含小于1ppm的Co、Ni和Cr中的每一个。在一些实施方式中,Fe的浓度小于约50ppm、小于约20ppm、或者小于约10ppm。在一些实施方式中,Fe+30Cr+35Ni<约60ppm,<约40ppm,<约20ppm,或者<约10ppm。在一些实施方式中,对于长度至少500mm的情况,在450nm处的透射率大于或等于85%,对于长度至少500mm的情况,在550nm处的透射率大于或等于90%,或者对于长度至少500mm的情况,在630nm处的透射率大于或等于85%,及其组合。在一些实施方式中,玻璃片经过化学强化。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了包含玻璃片的玻璃制品,所述玻璃片具有:具有宽度和高度的正面,与正面相对的背面,以及正面与背面之间的厚度,形成绕着正面和背面的四个边缘,其中,玻璃片包含:约为72摩尔%至约80摩尔%SiO2、约为3摩尔%至约7摩尔%Al2O3、约为0摩尔%至约2摩尔%B2O3、约为0摩尔%至约2摩尔%Li2O、约为6摩尔%至约15摩尔%Na2O、约为0摩尔%至约2摩尔%K2O、约为0摩尔%至约2摩尔%ZnO、约为2摩尔%至约10摩尔%MgO、约为0摩尔%至约2摩尔%CaO、约为0摩尔%至约2摩尔%SrO、约为0摩尔%至约2摩尔%BaO、和约为0摩尔%至约2摩尔%SnO2。在一些实施方式中,玻璃制品包括色移<0.008。在一些实施方式中,玻璃制品包括色移<0.005。在一些实施方式中,玻璃制品包括RxO/Al2O3为0.95-3.23,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃制品包括RxO/Al2O3为1.18-5.68,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,以及x是1。在一些实施方式中,玻璃制品包括RxO-Al2O3-MgO为-4.25至4.0,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,以及x是2。在一些实施方式中,玻璃的应变温度约为522-590℃。在一些实施方式中,玻璃的退火温度约为566-641℃。在一些实施方式中,玻璃的软化温度约为800-914℃。在一些实施方式中,玻璃的CTE约为49.6x 10-7/℃至约80x 10-7/℃。在一些实施方式中,玻璃的密度约为2.34gm/cc@20C至约2.53gm/cc@20C。在一些实施方式中,玻璃制品是导光板。在一些实施方式中,板厚度约为0.2-8mm。在一些实施方式中,厚度变化小于5%。在一些实施方式中,由熔合拉制工艺、狭缝拉制工艺或者浮法工艺制造导光板。在一些实施方式中,玻璃包含小于1ppm的Co、Ni和Cr中的每一个。在一些实施方式中,Fe的浓度小于约50ppm、小于约20ppm、或者小于约10ppm。在一些实施方式中,Fe+30Cr+35Ni<约60ppm,<约40ppm,<约20ppm,或者<约10ppm。在一些实施方式中,对于长度至少500mm的情况,在450nm处的透射率大于或等于85%,对于长度至少500mm的情况,在550nm处的透射率大于或等于90%,或者对于长度至少500mm的情况,在630nm处的透射率大于或等于85%,及其组合。在一些实施方式中,玻璃片经过化学强化。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了玻璃制品,其包含玻璃片,所述玻璃片具有:约为60-80摩尔%的SiO2、约为0-15摩尔%的Al2O3、约为0-15摩尔%的B2O3、以及约为2-50摩尔%的RxO,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,并且x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,并且x是1,以及其中,Fe+30Cr+35Ni<约60ppm。在一些实施方式中,玻璃的色移<0.008。在一些实施方式中,玻璃的色移<0.005。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了玻璃制品,其包含玻璃片,所述玻璃片具有:约为60-80摩尔%的SiO2、约为0-15摩尔%的Al2O3、约为0-15摩尔%的B2O3、以及约为2-50摩尔%的RxO,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,并且x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,并且x是1,以及其中,玻璃的色移<0.008。在一些实施方式中,玻璃的色移<0.005。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了玻璃制品,其包含玻璃片,所述玻璃片具有:约为65.79-78.17摩尔%的SiO2、约为2.94-12.12摩尔%的Al2O3、约为0-11.16摩尔%的B2O3、以及约为3.52-42.39摩尔%的RxO,其中,R是Li、Na、K、Rb、Cs中的任意一种或多种,并且x是2;或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种,并且x是1,以及其中,玻璃的色移<0.008。在一些实施方式中,玻璃的色移<0.005。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了玻璃制品,其包含玻璃片,所述玻璃片具有:约为60摩尔%至约81摩尔%SiO2、约为0摩尔%至约2摩尔%Al2O3、约为0摩尔%至约15摩尔%MgO、约为0摩尔%至约2摩尔%Li2O、约为9摩尔%至约15摩尔%Na2O、约为0摩尔%至约1.5摩尔%K2O、约为7摩尔%至约14摩尔%CaO、约为0摩尔%至约2摩尔%SrO,以及其中,Fe+30Cr+35Ni<约60ppm。在一些实施方式中,玻璃的色移<0.008。在一些实施方式中,玻璃的色移<0.005。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
在其他实施方式中,提供了玻璃制品,其包含玻璃片,所述玻璃片具有:约为60摩尔%至约81摩尔%SiO2、约为0摩尔%至约2摩尔%Al2O3、约为0摩尔%至约15摩尔%MgO、约为0摩尔%至约2摩尔%Li2O、约为9摩尔%至约15摩尔%Na2O、约为0摩尔%至约1.5摩尔%K2O、约为7摩尔%至约14摩尔%CaO、和约为0摩尔%至约2摩尔%SrO,其中,玻璃的色移<0.008。在一些实施方式中,玻璃的色移<0.005。在其他实施方式中,玻璃包含:约为0.1摩尔%至约3.0摩尔%ZnO、约为0.1摩尔%至约1.0摩尔%TiO2、约为0.1摩尔%至约1.0摩尔%V2O3、约为0.1摩尔%至约1.0摩尔%Nb2O5、约为0.1摩尔%至约1.0摩尔%MnO、约为0.1摩尔%至约1.0摩尔%ZrO2、约为0.1摩尔%至约1.0摩尔%As2O3、约为0.1摩尔%至约1.0摩尔%SnO2、约为0.1摩尔%至约1.0摩尔%MoO3、约为0.1摩尔%至约1.0摩尔%Sb2O3、或者约为0.1摩尔%至约1.0摩尔%CeO2。在其他实施方式中,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
应理解,多个揭示的实施方式可涉及与特定实施方式一起描述的特定特征、元素或步骤。应理解的是,虽然结合一个具体的实施方式描述了具体特征、元素或步骤,但是不同实施方式可以以各种未示出的组合或变换形式相互交换或结合。
还应理解的是,本文所用的冠词“该”、“一个”或“一种”表示“至少一个(一种)”,不应局限为“一个(一种)”,除非明确有相反的说明。因此,例如,提到的“一个环”包括具有两个或更多个这样的环的例子,除非文中另行明确指明。类似地,“多个”或“阵列”旨在表示不止“一个”。因此,“多个液滴”包括两个或更多个此类液滴,例如三个或更多个此类液滴等,以及“环阵列”包括两个或更多个此类液滴,例如三个或更多个此类环等。
本文中,范围可以表示为从“约”一个具体值和/或到“约”另一个具体值的范围。当表述这种范围时,例子包括自某一具体值始和/或至另一具体值止。类似地,当使用先行词“约”表示数值为近似值时,应理解,具体数值构成另一个方面。还应理解的是,每个范围的端点值在与另一个端点值有关和与另一个端点值无关时,都是有意义的。
本文所用术语“基本”、“基本上”及其变化形式旨在表示所描述的特征与数值或描述相等同或近似相同。例如,“基本平坦”表面旨在表示平坦或近似平坦的表面。此外,如上文所定义,“基本上类似”旨在表示两个值是相等或者近似相等的。在一些实施方式中,“基本上类似”可表示数值相互在约为10%之内,例如相互在约为5%之内,或者相互在约为2%之内。
除非另有表述,否则都不旨在将本文所述的任意方法理解为需要使其步骤以具体顺序进行。因此,当方法权利要求实际上没有陈述为其步骤遵循一定的顺序或者其没有在权利要求书或说明书中以任意其他方式具体表示步骤限于具体的顺序,都不旨在暗示该任意特定顺序。
虽然会用过渡语“包括”来公开特定实施方式的各种特征、元素或步骤,但是应理解的是,这暗示了包括可采用过渡语“由......构成”、“基本由......构成”描述在内的替代实施方式。因此,例如,对包含A+B+C的装置的隐含的替代性实施方式包括装置由A+B+C组成的实施方式和装置主要由A+B+C组成的实施方式。
对本领域的技术人员而言,显而易见的是,可以在不偏离本文的范围和精神的情况下对本文进行各种修改和变动。因为本领域的技术人员可以想到所述实施方式的融合了本公开精神和实质的各种改良组合、子项组合和变化,应认为本文包括所附权利要求书范围内的全部内容及其等同内容。

Claims (95)

1.一种玻璃制品,所述玻璃制品包括:
玻璃片,所述玻璃片具有正面和背面以及所述正面与所述背面之间的厚度,所述正面具有宽度和高度,所述背面与所述正面相对,围绕所述正面和背面形成4个边缘,
其中,所述玻璃片包含:
约65.79-78.17摩尔%SiO2
约2.94-12.12摩尔%Al2O3
约0-11.16摩尔%B2O3
约0-2.06摩尔%Li2O,
约3.52-13.25摩尔%Na2O,
约0-4.83摩尔%K2O,
约0-3.01摩尔%ZnO,
约0-8.72摩尔%MgO,
约0-4.24摩尔%的CaO,
约0-6.17摩尔%SrO,
约0-4.3摩尔%BaO,和
约0.07-0.11摩尔%SnO2
2.如权利要求1所述的玻璃制品,其特征在于,玻璃的色移<0.008。
3.如权利要求1所述的玻璃制品,其特征在于,玻璃的色移<0.005。
4.如权利要求1所述的玻璃制品,其特征在于,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,x=2且RxO/Al2O3是0.95-3.23。
5.如权利要求1所述的玻璃制品,其特征在于,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,RxO/Al2O3是1.18-5.68。
6.如权利要求1所述的玻璃制品,其特征在于,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,x=2且RxO-Al2O3-MgO是-4.25至4.0。
7.如权利要求1所述的玻璃制品,其特征在于,玻璃的应变温度约为522-590℃。
8.如权利要求1所述的玻璃制品,其特征在于,玻璃的退火温度约为566-641℃。
9.如权利要求1所述的玻璃制品,其特征在于,玻璃的软化温度约为800-914℃。
10.如权利要求1所述的玻璃制品,其特征在于,玻璃的CTE约为49.6x 10-7/℃至约80x10-7/℃。
11.如权利要求1所述的玻璃制品,其特征在于,玻璃的密度约为2.34gm/cc@20C至约2.53gm/cc@20C。
12.如权利要求1所述的玻璃制品,其中,所述玻璃制品是导光板。
13.如权利要求12所述的玻璃制品,其特征在于,板厚度约为0.2-8mm。
14.如权利要求12所述的玻璃制品,其特征在于,厚度变化小于5%。
15.如权利要求12所述的玻璃制品,其特征在于,所述导光板由熔合拉制工艺、狭缝拉制工艺或者浮法工艺制造。
16.如权利要求1所述的玻璃制品,其特征在于,玻璃包含小于1ppm的Co、Ni和Cr中的每一个。
17.如权利要求1所述的玻璃制品,其特征在于,Fe浓度<约50ppm。
18.如权利要求1所述的玻璃制品,其特征在于,Fe浓度<约20ppm。
19.如权利要求1所述的玻璃制品,其特征在于,Fe浓度<约10ppm。
20.如权利要求1所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约60ppm。
21.如权利要求1所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约40ppm。
22.如权利要求1所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约20ppm。
23.如权利要求1所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约10ppm。
24.如权利要求1所述的玻璃制品,其特征在于,对于长度至少500mm的情况,在450nm处的透射率大于或等于85%,对于长度至少500mm的情况,在550nm处的透射率大于或等于90%,或者对于长度至少500mm的情况,在630nm处的透射率大于或等于85%,及其组合。
25.如权利要求1所述的玻璃制品,其特征在于,玻璃片经过化学强化。
26.如权利要求1-25中任一项所述的玻璃制品,其特征在于,玻璃包含:
约0.1-3.0摩尔%ZnO;
约0.1-1.0摩尔%TiO2
约0.1-1.0摩尔%V2O3
约0.1-1.0摩尔%Nb2O5
约0.1-1.0摩尔%MnO;
约0.1-1.0摩尔%ZrO2
约0.1-1.0摩尔%As2O3
约0.1-1.0摩尔%SnO2
约0.1-1.0摩尔%MoO3
约0.1-1.0摩尔%Sb2O3;或
约0.1-1.0摩尔%CeO2
27.如权利要求26所述的玻璃制品,其特征在于,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
28.一种玻璃制品,所述玻璃制品包括:
玻璃片,所述玻璃片具有正面和背面以及所述正面与所述背面之间的厚度,所述正面具有宽度和高度,所述背面与所述正面相对,围绕所述正面和背面形成4个边缘,
其中,所述玻璃片包含:
约66-78摩尔%SiO2
约4-11摩尔%Al2O3
约4-11摩尔%B2O3
约0-2摩尔%Li2O,
约4-12摩尔%Na2O,
约0-2摩尔%K2O,
约0-2摩尔%ZnO,
约0-5摩尔%MgO,
约0-2摩尔%的CaO,
约0-5摩尔%SrO,
约0-2摩尔%BaO,和
约0-2摩尔%SnO2
29.如权利要求28所述的玻璃制品,其特征在于,玻璃的色移<0.008。
30.如权利要求28所述的玻璃制品,其特征在于,玻璃的色移<0.005。
31.如权利要求28所述的玻璃制品,其特征在于,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,x=2且RxO/Al2O3是0.95-3.23。
32.如权利要求28所述的玻璃制品,其特征在于,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,RxO/Al2O3是1.18-5.68。
33.如权利要求28所述的玻璃制品,其特征在于,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,x=2且RxO-Al2O3-MgO是-4.25至4.0。
34.如权利要求28所述的玻璃制品,其特征在于,玻璃的应变温度约为522-590℃。
35.如权利要求28所述的玻璃制品,其特征在于,玻璃的退火温度约为566-641℃。
36.如权利要求28所述的玻璃制品,其特征在于,玻璃的软化温度约为800-914℃。
37.如权利要求28所述的玻璃制品,其特征在于,玻璃的CTE约为49.6x 10-7/℃至约80x10-7/℃。
38.如权利要求28所述的玻璃制品,其特征在于,玻璃的密度约为2.34gm/cc@20C至约2.53gm/cc@20C。
39.如权利要求28所述的玻璃制品,其中,所述玻璃制品是导光板。
40.如权利要求39所述的玻璃制品,其特征在于,板厚度约为0.2-8mm。
41.如权利要求39所述的玻璃制品,其特征在于,厚度变化小于5%。
42.如权利要求39所述的玻璃制品,其特征在于,所述导光板由熔合拉制工艺、狭缝拉制工艺或者浮法工艺制造。
43.如权利要求28所述的玻璃制品,其特征在于,玻璃包含小于1ppm的Co、Ni和Cr中的每一个。
44.如权利要求28所述的玻璃制品,其特征在于,Fe浓度<约50ppm。
45.如权利要求28所述的玻璃制品,其特征在于,Fe浓度<约20ppm。
46.如权利要求28所述的玻璃制品,其特征在于,Fe浓度<约10ppm。
47.如权利要求28所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约60ppm。
48.如权利要求28所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约40ppm。
49.如权利要求28所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约20ppm。
50.如权利要求28所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约10ppm。
51.如权利要求28所述的玻璃制品,其特征在于,对于长度至少500mm的情况,在450nm处的透射率大于或等于85%,对于长度至少500mm的情况,在550nm处的透射率大于或等于90%,或者对于长度至少500mm的情况,在630nm处的透射率大于或等于85%,及其组合。
52.如权利要求28所述的玻璃制品,其特征在于,玻璃片经过化学强化。
53.如权利要求28-52中任一项所述的玻璃制品,其特征在于,玻璃包含:
约0.1-3.0摩尔%ZnO;
约0.1-1.0摩尔%TiO2
约0.1-1.0摩尔%V2O3
约0.1-1.0摩尔%Nb2O5
约0.1-1.0摩尔%MnO;
约0.1-1.0摩尔%ZrO2
约0.1-1.0摩尔%As2O3
约0.1-1.0摩尔%SnO2
约0.1-1.0摩尔%MoO3
约0.1-1.0摩尔%Sb2O3;或
约0.1-1.0摩尔%CeO2
54.如权利要求53所述的玻璃制品,其特征在于,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
55.一种玻璃制品,所述玻璃制品包括:
玻璃片,所述玻璃片具有正面和背面以及所述正面与所述背面之间的厚度,所述正面具有宽度和高度,所述背面与所述正面相对,围绕所述正面和背面形成4个边缘,
其中,所述玻璃片包含:
约72-80摩尔%SiO2
约3-7摩尔%Al2O3
约0-2摩尔%B2O3
约0-2摩尔%Li2O,
约6-15摩尔%Na2O,
约0-2摩尔%K2O,
约0-2摩尔%ZnO,
约2-10摩尔%MgO,
约0-2摩尔%的CaO,
约0-2摩尔%SrO,
约0-2摩尔%BaO,和
约0-2摩尔%SnO2
56.如权利要求55所述的玻璃制品,其特征在于,玻璃的色移<0.008。
57.如权利要求55所述的玻璃制品,其特征在于,玻璃的色移<0.005。
58.如权利要求55所述的玻璃制品,其特征在于,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,x=2且RxO/Al2O3是0.95-3.23。
59.如权利要求55所述的玻璃制品,其特征在于,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,RxO/Al2O3是1.18-5.68。
60.如权利要求55所述的玻璃制品,其特征在于,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,x=2且RxO-Al2O3-MgO是-4.25至4.0。
61.如权利要求55所述的玻璃制品,其特征在于,玻璃的应变温度约为522-590℃。
62.如权利要求55所述的玻璃制品,其特征在于,玻璃的退火温度约为566-641℃。
63.如权利要求55所述的玻璃制品,其特征在于,玻璃的软化温度约为800-914℃。
64.如权利要求55所述的玻璃制品,其特征在于,玻璃的CTE约为49.6x 10-7/℃至约80x10-7/℃。
65.如权利要求55所述的玻璃制品,其特征在于,玻璃的密度约为2.34gm/cc@20C至约2.53gm/cc@20C。
66.如权利要求55所述的玻璃制品,其中,所述玻璃制品是导光板。
67.如权利要求66所述的玻璃制品,其特征在于,板厚度约为0.2-8mm。
68.如权利要求66所述的玻璃制品,其特征在于,厚度变化小于5%。
69.如权利要求66所述的玻璃制品,其特征在于,所述导光板由熔合拉制工艺、狭缝拉制工艺或者浮法工艺制造。
70.如权利要求55所述的玻璃制品,其特征在于,玻璃包含小于1ppm的Co、Ni和Cr中的每一个。
71.如权利要求55所述的玻璃制品,其特征在于,Fe浓度<约50ppm。
72.如权利要求55所述的玻璃制品,其特征在于,Fe浓度<约20ppm。
73.如权利要求55所述的玻璃制品,其特征在于,Fe浓度<约10ppm。
74.如权利要求55所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约60ppm。
75.如权利要求55所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约40ppm。
76.如权利要求55所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约20ppm。
77.如权利要求55所述的玻璃制品,其特征在于,Fe+30Cr+35Ni<约10ppm。
78.如权利要求55所述的玻璃制品,其特征在于,对于长度至少500mm的情况,在450nm处的透射率大于或等于85%,对于长度至少500mm的情况,在550nm处的透射率大于或等于90%,或者对于长度至少500mm的情况,在630nm处的透射率大于或等于85%,及其组合。
79.如权利要求55所述的玻璃制品,其特征在于,玻璃片经过化学强化。
80.如权利要求55-79中任一项所述的玻璃制品,其特征在于,玻璃包含:
约0.1-3.0摩尔%ZnO;
约0.1-1.0摩尔%TiO2
约0.1-1.0摩尔%V2O3
约0.1-1.0摩尔%Nb2O5
约0.1-1.0摩尔%MnO;
约0.1-1.0摩尔%ZrO2
约0.1-1.0摩尔%As2O3
约0.1-1.0摩尔%SnO2
约0.1-1.0摩尔%MoO3
约0.1-1.0摩尔%Sb2O3;或
约0.1-1.0摩尔%CeO2
81.如权利要求80所述的玻璃制品,其特征在于,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
82.一种玻璃制品,所述玻璃制品包括:
玻璃片,其具有:约60-80摩尔%的SiO2
约0-15摩尔%的Al2O3
约0-15摩尔%的B2O3,和
约2-50摩尔%的RxO,
其中,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,Fe+30Cr+35Ni<约60ppm。
83.如权利要求82所述的玻璃制品,其特征在于,玻璃的色移<0.015。
84.如权利要求82所述的玻璃制品,其特征在于,玻璃的色移<0.008。
85.一种玻璃制品,所述玻璃制品包括:
玻璃片,其具有:约60-80摩尔%SiO2
约0-15摩尔%Al2O3
约0-15摩尔%B2O3,和
约2-50摩尔%RxO,
其中,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,玻璃的色移<0.008。
86.如权利要求85所述的玻璃制品,其特征在于,玻璃的色移<0.005。
87.一种玻璃制品,所述玻璃制品包括:
玻璃片,其具有:约65.79-78.17摩尔%SiO2
约2.94-12.12摩尔%Al2O3
约0-11.16摩尔%B2O3,和
约3.52-42.39摩尔%RxO,
其中,R是Li、Na、K、Rb、Cs中的任意一种或多种并且x是2,或者R是Zn、Mg、Ca、Sr或Ba中的任意一种或多种并且x是1,以及
其中,玻璃的色移<0.015。
88.如权利要求87所述的玻璃制品,其特征在于,玻璃的色移<0.005。
89.一种玻璃制品,所述玻璃制品包括:
玻璃片,其具有:约60-81摩尔%SiO2
约0-2摩尔%Al2O3
约0-15摩尔%MgO,
约0-2摩尔%Li2O,
约9-15摩尔%Na2O,
约0-1.5摩尔%K2O,
约7-14摩尔%CaO,
约0-2摩尔%SrO,以及
其中,Fe+30Cr+35Ni<约60ppm。
90.如权利要求89所述的玻璃制品,其特征在于,玻璃的色移<0.008。
91.如权利要求89所述的玻璃制品,其特征在于,玻璃的色移<0.005。
92.一种玻璃制品,所述玻璃制品包括:
玻璃片,其具有:约60-81摩尔%SiO2
约0-2摩尔%Al2O3
约0-15摩尔%MgO,
约0-2摩尔%Li2O,
约9-15摩尔%Na2O,
约0-1.5摩尔%K2O,
约7-14摩尔%CaO,和
约0-2摩尔%SrO,
其中,玻璃的色移<0.008。
93.如权利要求92所述的玻璃制品,其特征在于,玻璃的色移<0.005。
94.如权利要求89-93中任一项所述的玻璃制品,其特征在于,玻璃包含:
约0.1-3.0摩尔%ZnO;
约0.1-1.0摩尔%TiO2
约0.1-1.0摩尔%V2O3
约0.1-1.0摩尔%Nb2O5
约0.1-1.0摩尔%MnO;
约0.1-1.0摩尔%ZrO2
约0.1-1.0摩尔%As2O3
约0.1-1.0摩尔%SnO2
约0.1-1.0摩尔%MoO3
约0.1-1.0摩尔%Sb2O3;或
约0.1-1.0摩尔%CeO2
95.如权利要求94所述的玻璃制品,其特征在于,玻璃包含:0.1摩尔%至不超过约3.0摩尔%的如下任意一种或组合:ZnO、TiO2、V2O3、Nb2O5、MnO、ZrO2、As2O3、SnO2、MoO3、Sb2O3、和CeO2
CN201680062028.5A 2015-10-22 2016-10-18 高透射玻璃 Active CN108139058B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562245006P 2015-10-22 2015-10-22
US62/245,006 2015-10-22
US201662362331P 2016-07-14 2016-07-14
US62/362,331 2016-07-14
PCT/US2016/057445 WO2017070066A1 (en) 2015-10-22 2016-10-18 High transmission glasses

Publications (2)

Publication Number Publication Date
CN108139058A true CN108139058A (zh) 2018-06-08
CN108139058B CN108139058B (zh) 2021-03-23

Family

ID=57241166

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680062028.5A Active CN108139058B (zh) 2015-10-22 2016-10-18 高透射玻璃
CN201680061998.3A Active CN108349783B (zh) 2015-10-22 2016-10-21 具有玻璃基材部分的用于荧光检测方法的基材

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201680061998.3A Active CN108349783B (zh) 2015-10-22 2016-10-21 具有玻璃基材部分的用于荧光检测方法的基材

Country Status (8)

Country Link
US (2) US11242279B2 (zh)
EP (2) EP3365595B1 (zh)
JP (3) JP6949014B2 (zh)
KR (2) KR102642779B1 (zh)
CN (2) CN108139058B (zh)
PL (1) PL3365289T3 (zh)
TW (1) TWI806821B (zh)
WO (2) WO2017070066A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566875A (zh) * 2018-08-06 2021-03-26 康宁股份有限公司 微流体装置和制造微流体装置的方法
CN114436537A (zh) * 2022-04-06 2022-05-06 武汉荣佳达光电科技有限公司 一种显示用oled玻璃板及其制备方法
US11752500B2 (en) 2018-04-27 2023-09-12 Corning Incorporated Microfluidic devices and methods for manufacturing microfluidic devices

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019528548A (ja) 2016-07-15 2019-10-10 コーニング インコーポレイテッド 積層構造を有する照明ユニット
US20190185367A1 (en) * 2016-08-11 2019-06-20 Corning Incorporated Method and apparatus for laminated backlight unit
WO2018053078A1 (en) * 2016-09-16 2018-03-22 Corning Incorporated High transmission glasses with alkaline earth oxides as a modifier
JP7133563B2 (ja) 2017-03-31 2022-09-08 コーニング インコーポレイテッド 高透過ガラス
CN111094842A (zh) * 2017-08-29 2020-05-01 康宁公司 具有2d局部调光的直下式背光单元
KR20200105514A (ko) * 2018-01-18 2020-09-07 코닝 인코포레이티드 Ag-Na 이온 교환을 이용한 고-전송 유리에 형성된 저-손실 도파관
TWI814817B (zh) * 2018-05-01 2023-09-11 美商康寧公司 低鹼金屬高透射玻璃
DE102018112069A1 (de) 2018-05-18 2019-11-21 Schott Ag Verwendung eines Flachglases in elektronischen Bauteilen
DE102018112070A1 (de) 2018-05-18 2019-11-21 Schott Ag Flachglas, Verfahren zu dessen Herstellung sowie dessen Verwendung
KR20220011724A (ko) 2019-05-23 2022-01-28 코닝 인코포레이티드 음의 컬러 시프트 유리들 및 도광판들
US11680005B2 (en) * 2020-02-12 2023-06-20 Owens-Brockway Glass Container Inc. Feed material for producing flint glass using submerged combustion melting
US11951713B2 (en) 2020-12-10 2024-04-09 Corning Incorporated Glass with unique fracture behavior for vehicle windshield
CN112851117B (zh) * 2021-01-19 2022-09-09 吉林师范大学 一种铽离子掺杂钆硼硅酸盐的闪烁玻璃及其制备方法
DE202022104982U1 (de) 2022-09-05 2023-02-01 Schott Ag Nicht flaches Formglas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030303A (zh) * 2011-10-10 2013-04-10 肖特公开股份有限公司 具有触感特性的经涂覆的玻璃基材或玻璃陶瓷基材
CN104230165A (zh) * 2013-06-21 2014-12-24 肖特玻璃科技(苏州)有限公司 可钢化无色变的硼铝硅酸盐玻璃
US20150064474A1 (en) * 2013-08-30 2015-03-05 Corning Incorporated Ion Exchangeable Glass, Glass Ceramics and Methods for Making the Same
CN104556685A (zh) * 2013-10-24 2015-04-29 中国南玻集团股份有限公司 铝硅酸盐玻璃及强化玻璃
CN104619664A (zh) * 2012-09-14 2015-05-13 旭硝子株式会社 化学强化用玻璃、化学强化玻璃以及化学强化用玻璃的制造方法
CN104703937A (zh) * 2012-07-17 2015-06-10 康宁股份有限公司 用于3-D成形的可离子交换的含Li玻璃组合物
WO2015127583A1 (en) * 2014-02-25 2015-09-03 Schott Ag Chemically toughened glass article with low coefficient of thermal expansion
CN106573820A (zh) * 2014-06-19 2017-04-19 康宁股份有限公司 铝硅酸盐玻璃

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015909A (en) 1989-12-29 1991-05-14 Circon Corporation Glass composition and method for manufacturing a high performance microchannel plate
US5264722A (en) 1992-06-12 1993-11-23 The United States Of America As Represented By The Secretary Of The Navy Nanochannel glass matrix used in making mesoscopic structures
DE4235311C2 (de) 1992-10-20 1997-10-02 Dieter Pfaff Bilirubin-Kalibriermittel zur photometrischen Bilirubinbestimmung
US7071133B2 (en) * 1993-11-16 2006-07-04 Ppg Industries Ohio, Inc. Colored glass compositions and-automotive vision panels with-reduced transmitted-color shift
DE69825722T2 (de) 1998-02-04 2005-08-25 Corning Inc. Substrat zum Drucken einer Matrize
US6953758B2 (en) * 1998-05-12 2005-10-11 Ppg Industries Ohio, Inc. Limited visible transmission blue glasses
US6440531B1 (en) 1999-05-13 2002-08-27 Nippon Sheet Glass Co., Ltd Hydrofluoric acid etched substrate for information recording medium
DE10025465C2 (de) 1999-05-25 2003-03-27 Eckhart Watzke Lithiumoxidarmes Borosilicatglas und seine Verwendung
US20020015952A1 (en) 1999-07-30 2002-02-07 Anderson Norman G. Microarrays and their manufacture by slicing
DE60143703D1 (de) 2000-04-19 2011-02-03 Corning Inc Mehrfachlochplatte und ihr herstellungsverfahren
JP3357652B2 (ja) 2000-05-25 2002-12-16 日本板硝子株式会社 Dna分析用ガラスキャピラリ及びその製造方法
DE10108992C2 (de) 2001-02-23 2003-04-03 Schott Glas Solarisationsstabiles Borosilicatglas und seine Verwendungen
US7538050B2 (en) 2002-02-05 2009-05-26 Nippon Electric Glass Co., Ltd. Glass composition
JP4466813B2 (ja) 2002-03-14 2010-05-26 日本電気硝子株式会社 ガラスプリフォームおよびその製造方法
US20050048571A1 (en) 2003-07-29 2005-03-03 Danielson Paul S. Porous glass substrates with reduced auto-fluorescence
EP1729884A1 (en) 2004-01-30 2006-12-13 Corning Incorporated Multiwell plate and method for making multiwell plate using a low cytotoxicity photocurable adhesive
US20050064209A1 (en) 2004-02-17 2005-03-24 Daniel Haines Low-fluorescent, chemically durable hydrophobic patterned substrates for the attachment of biomolecules
JP2006126179A (ja) 2004-10-01 2006-05-18 Asahi Glass Co Ltd 分析チップ用ガラス基板および分析チップ
US20060073081A1 (en) 2004-10-01 2006-04-06 Asahi Glass Company, Limited Analytical chip glass substrate and analytical chip
US7838452B2 (en) * 2005-04-05 2010-11-23 Nippon Sheet Glass Company, Limited Ultraviolet ray transmitting glass composition and glass article making use of the same
CN101213150B (zh) 2005-06-29 2011-09-28 日本电气硝子株式会社 光学玻璃
US8062900B2 (en) 2005-12-30 2011-11-22 Corning Incorporated Optically readable microplate
JP2007292556A (ja) 2006-04-24 2007-11-08 Nippon Sheet Glass Co Ltd マイクロプレート
CN101454252A (zh) 2006-05-25 2009-06-10 日本电气硝子株式会社 强化玻璃及其制造方法
CN102432171B (zh) 2006-06-08 2014-12-31 Hoya株式会社 供信息记录介质用基板使用的玻璃及化学强化玻璃
CN101522584B (zh) 2006-10-10 2012-12-05 日本电气硝子株式会社 钢化玻璃基板
JP5875133B2 (ja) 2006-10-10 2016-03-02 日本電気硝子株式会社 強化ガラス基板
FR2908048B1 (fr) 2006-11-08 2009-02-06 Sopro Sa Dispositif d'insufflation de gaz permettant une utilisation optimale et securitaire des recipients de gaz sous pression
JP5467490B2 (ja) 2007-08-03 2014-04-09 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
JP5743125B2 (ja) 2007-09-27 2015-07-01 日本電気硝子株式会社 強化ガラス及び強化ガラス基板
US8647995B2 (en) 2009-07-24 2014-02-11 Corsam Technologies Llc Fusion formable silica and sodium containing glasses
US8802581B2 (en) 2009-08-21 2014-08-12 Corning Incorporated Zircon compatible glasses for down draw
CN102249542B (zh) 2010-05-18 2015-08-19 肖特玻璃科技(苏州)有限公司 用于3d精密模压和热弯曲的碱金属铝硅酸盐玻璃
WO2011145661A1 (ja) 2010-05-19 2011-11-24 旭硝子株式会社 化学強化用ガラスおよびディスプレイ装置用ガラス板
US8440583B2 (en) * 2010-05-27 2013-05-14 Ppg Industries Ohio, Inc. Blue glass composition
CN103189324B (zh) * 2010-10-27 2016-01-20 旭硝子株式会社 玻璃板及其制造方法
JP5834793B2 (ja) 2010-12-24 2015-12-24 旭硝子株式会社 化学強化ガラスの製造方法
TW201245080A (en) 2011-03-17 2012-11-16 Asahi Glass Co Ltd Glass for chemical strengthening
US20140248495A1 (en) * 2011-09-29 2014-09-04 Central Glass Company, Limited Chemically strengthened glass and method for producing same
IN2014DN07444A (zh) 2012-02-29 2015-04-24 Corning Inc
US8664130B2 (en) 2012-04-13 2014-03-04 Corning Incorporated White, opaque β-spodumene/rutile glass-ceramic articles and methods for making the same
JP6168288B2 (ja) 2012-06-13 2017-07-26 日本電気硝子株式会社 強化ガラス及び強化ガラス板
US9764980B2 (en) * 2013-03-22 2017-09-19 Nippon Sheet Glass Company, Limited Glass composition, glass composition for chemical strengthening, strengthened glass article, and cover glass for display
EP2986453B1 (en) * 2013-04-18 2019-05-01 Brook One Corporation Burnthrough resistant laminate film
GB2515566A (en) * 2013-06-28 2014-12-31 Queen Mary & Westfield College Leucite glass ceramics
CN105555966B (zh) 2013-07-31 2020-09-25 株式会社日立高新技术 核酸分析用流动池和核酸分析装置
WO2015068741A1 (ja) * 2013-11-08 2015-05-14 旭硝子株式会社 ガラス板、導光板ユニット、面状発光装置、および、液晶表示装置
CN106414358B (zh) * 2013-11-20 2021-08-13 康宁股份有限公司 耐划痕的硼铝硅酸盐玻璃
CN103755153B (zh) 2014-01-22 2016-03-30 南通天盛实验器材有限公司 一种制备高醛基官能团密度生物芯片用基片的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030303A (zh) * 2011-10-10 2013-04-10 肖特公开股份有限公司 具有触感特性的经涂覆的玻璃基材或玻璃陶瓷基材
CN104703937A (zh) * 2012-07-17 2015-06-10 康宁股份有限公司 用于3-D成形的可离子交换的含Li玻璃组合物
CN104619664A (zh) * 2012-09-14 2015-05-13 旭硝子株式会社 化学强化用玻璃、化学强化玻璃以及化学强化用玻璃的制造方法
CN104230165A (zh) * 2013-06-21 2014-12-24 肖特玻璃科技(苏州)有限公司 可钢化无色变的硼铝硅酸盐玻璃
US20150064474A1 (en) * 2013-08-30 2015-03-05 Corning Incorporated Ion Exchangeable Glass, Glass Ceramics and Methods for Making the Same
CN104556685A (zh) * 2013-10-24 2015-04-29 中国南玻集团股份有限公司 铝硅酸盐玻璃及强化玻璃
WO2015127583A1 (en) * 2014-02-25 2015-09-03 Schott Ag Chemically toughened glass article with low coefficient of thermal expansion
CN106573820A (zh) * 2014-06-19 2017-04-19 康宁股份有限公司 铝硅酸盐玻璃

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11752500B2 (en) 2018-04-27 2023-09-12 Corning Incorporated Microfluidic devices and methods for manufacturing microfluidic devices
CN112566875A (zh) * 2018-08-06 2021-03-26 康宁股份有限公司 微流体装置和制造微流体装置的方法
CN114436537A (zh) * 2022-04-06 2022-05-06 武汉荣佳达光电科技有限公司 一种显示用oled玻璃板及其制备方法
CN114436537B (zh) * 2022-04-06 2022-06-21 武汉荣佳达光电科技有限公司 一种显示用oled玻璃板及其制备方法

Also Published As

Publication number Publication date
PL3365289T3 (pl) 2024-01-29
TW201730124A (zh) 2017-09-01
US11186516B2 (en) 2021-11-30
US20180305240A1 (en) 2018-10-25
JP7150116B2 (ja) 2022-10-07
CN108139058B (zh) 2021-03-23
EP3365289B1 (en) 2023-11-22
JP2018532684A (ja) 2018-11-08
JP2018532683A (ja) 2018-11-08
TWI806821B (zh) 2023-07-01
US20180312425A1 (en) 2018-11-01
WO2017070500A1 (en) 2017-04-27
KR102575863B1 (ko) 2023-09-08
CN108349783A (zh) 2018-07-31
KR102642779B1 (ko) 2024-03-05
JP6949014B2 (ja) 2021-10-13
KR20230085952A (ko) 2023-06-14
EP3365595B1 (en) 2020-12-23
KR20180067671A (ko) 2018-06-20
US11242279B2 (en) 2022-02-08
EP3365595A1 (en) 2018-08-29
TW202340111A (zh) 2023-10-16
EP3365289A1 (en) 2018-08-29
CN108349783B (zh) 2021-10-22
JP2022003011A (ja) 2022-01-11
WO2017070066A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
CN108139058A (zh) 高透射玻璃
US11001521B2 (en) Aluminosilicate glasses
CN109843816A (zh) 用于层叠背光单元的方法和设备
JP2019511984A (ja) 複合導光板
TWI792533B (zh) 高透射性玻璃
JP7145147B2 (ja) アルカリ土類酸化物を改質剤として含む高透過性ガラス
CN112119048A (zh) 低碱金属高透射玻璃

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant