CN108083806A - 一种超细结构各向同性石墨及其制备方法 - Google Patents

一种超细结构各向同性石墨及其制备方法 Download PDF

Info

Publication number
CN108083806A
CN108083806A CN201711317365.7A CN201711317365A CN108083806A CN 108083806 A CN108083806 A CN 108083806A CN 201711317365 A CN201711317365 A CN 201711317365A CN 108083806 A CN108083806 A CN 108083806A
Authority
CN
China
Prior art keywords
product
hyperfine structure
isotropic
isotropic graphite
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711317365.7A
Other languages
English (en)
Other versions
CN108083806B (zh
Inventor
陈文来
刘运平
冯俊杰
路培中
郑建华
张胜恩
吴沣
张奇
周浩
李毛
周文生
海国栋
李志越
陈茜茹
靳鹏
吴祖杰
胡延韶
崔强
李飞
王丽杰
邓小红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaifeng Pingmei new carbon material technology Co.,Ltd.
China Pingmei Shenma Energy and Chemical Group Co Ltd
Original Assignee
KAIFENG CARBON CO Ltd CHINA PINGMEI SHENMA GROUP
China Pingmei Shenma Energy and Chemical Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIFENG CARBON CO Ltd CHINA PINGMEI SHENMA GROUP, China Pingmei Shenma Energy and Chemical Group Co Ltd filed Critical KAIFENG CARBON CO Ltd CHINA PINGMEI SHENMA GROUP
Priority to CN201711317365.7A priority Critical patent/CN108083806B/zh
Publication of CN108083806A publication Critical patent/CN108083806A/zh
Application granted granted Critical
Publication of CN108083806B publication Critical patent/CN108083806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种超细结构各向同性石墨及其制备方法。该超细结构各向同性石墨主要由各向同性焦、高纯人造石墨、减摩剂、硬沥青和辅助添加剂制成。首先将各向同性焦、高纯人造石墨和硬沥青粉碎,然后将除减摩剂外的其它原料混匀,得到混合料;混合料混捏成糊料,糊料冷却饧糊;饧糊后的糊料成型,得到生制品;生制品焙烧得到一次焙烧品;一次焙烧品进行浸渍,得到浸渍品;浸渍品再次焙烧,得到二次焙烧品;二次焙烧品送入石墨化炉石墨化处理,得到产品超细结构各向同性石墨。利用本发明制备的超细结构各向同性石墨制品具有机械强度高、硬度高、各向同性度好、组织结构致密、电阻率低等特点。

Description

一种超细结构各向同性石墨及其制备方法
一、技术领域:
本发明涉及一种各向同性石墨及其制备方法,具体是涉及一种超细结构各向同性石墨及其制备方法。
二、背景技术:
各向同性石墨定义为各向同性度在1.0~1.1,它是近年来新兴的一种重要工业原料,是一种高品质的特种石墨,除了具有石墨本身性质外,还具有许多特有的物理化学性能(如:各个方向上的物理性质相同,特性与尺寸、形状、取样方向无关;材料组织结构致密,制品表面硬度高、机械强度高;材料抗热震性能好,在急冷急热工况条件下不易开裂;耐高温、抗氧化性能强)。各向同性石墨已被广泛应用于机械、冶金、原子能、铝电解、化工、宇航、生物等技术领域,已成为当今世界工业发展中不可缺少的一种高性能工程材料。日本所制备的各向同性石墨一般分为细晶粒石墨(平均粒度10~20μm)、超细石墨(平均粒度5~10μm)、极细石墨(平均粒度1~5μm)和特微石墨(平均粒度<1μm)。而我国现行标准只规定了细结构等静压石墨的平均颗粒直径小于43μm。超细结构各向同性石墨是一种高端石墨制品,具有细结构、高强度、内部结构均匀、各向同性等优良特性,主要应用于光伏、模具、机械、冶金、航空、核电尖端科技领域。超细结构各向同性石墨市场处于高速增长期,尤其是光伏半导体未来对石墨需求极具爆发力,预计国内需求年均增速可达25%以上。高端各项同性石墨产品60%以上依靠进口,进入壁垒高,进口替代空间大,行业未来几年供不应求局面仍可持续,各向同性石墨制品具有广泛的应用前景和发展空间,有很好的发展态势。
石墨制品的性质在相当大的程度上依赖于所用原料的性质,原料的性质主要取决于它的微观结构。目前,各向同性石墨主要采用的原料主要有沥青焦、石油焦和天然石墨等,这些原料微观上具有一定取向性,为各向异性焦;而各向同性焦微观上各方向的光学结构均为细镶嵌结构,无单一取向性。各向同性焦机械强度高、致密性好,另外由于原料的各向同性,已为生产各向同性石墨材料奠定了技术基础,是非常适合作为各向同性石墨材料的基本原料。
目前,传统方法是采用各向异性焦为主要原料制备各向同性石墨,制备过程中需要将原料破碎到足够小的颗粒,再进行混捏、压片、破碎筛分、混合、等静压成型、焙烧、浸渍、二次焙烧和石墨化等工序处理,操作强度大。
三、发明内容:
本发明要解决的技术问题是:为了克服现有技术中采用各向异性焦制备各向同性石墨存在的不足之处,本发明提供一种以各向同性焦为主要原料制备超细结构各向同性石墨的方法。本发明采用各向同性焦作为主要原料制备各向同性石墨,极大地简化了生产工艺,使用模压成型或振动成型代替传统方法中价格高昂的等静压成型;利用本发明制备的超细结构各向同性石墨制品具有机械强度高、硬度高、各向同性度好、组织结构致密和电阻率低等特点。
为了解决上述问题,本发明采取的技术方案是:
本发明提供一种超细结构各向同性石墨,以重量百分含量表示,所述超细结构各向同性石墨主要由原料各向同性焦55~60%、高纯人造石墨10~20%、减摩剂1~3%、硬沥青20~30%和辅助添加剂0.5~1.0%制成。
根据上述的超细结构各向同性石墨,所述各向同性焦中固定碳的质量百分含量≥98.5%,灰分质量百分含量≤0.45%,挥发分质量百分含量≤0.5%,水分质量百分含量≤0.4%,S质量百分含量≤0.4%;各向同性焦的真密度≥2.00g/cm3。
根据上述的超细结构各向同性石墨,所述高纯人造石墨的纯度≥99.5%。(本发明采用的高纯人造石墨具有内部结构均匀、各向异性小、机械强度高、耐腐蚀性强及高温特性优异等性能)。
根据上述的超细结构各向同性石墨,所述减摩剂为十八烷酸。
根据上述的超细结构各向同性石墨,所述硬沥青的软化点为108~112℃;硬沥青中甲苯不溶物所占含量为20~25%,喹啉不溶物所占含量为4~8%,β树脂含量≥15%;硬沥青的结焦值≥54%,硬沥青中灰分质量百分含量≤0.5%。
根据上述的超细结构各向同性石墨,所述辅助添加剂为三氧化二铁与四氧化三铁的混合物,二者之间的混合质量比为5:1。
另外,提供一种超细结构各向同性石墨的制备方法,所述制备方法包括以下步骤:
1)首先将原料各向同性焦粉碎至<10μm,高纯人造石墨粉碎至<10μm,硬沥青粉碎至<45μm;
2)将步骤1)粉碎后的各向同性焦、高纯人造石墨、硬沥青和其它原料按照上述超细结构各向同性石墨的配料比例进行配制;
3)将步骤2)配制的除减摩剂以外的其它原料置于气流混合机中混合均匀,得到混合料;
4)将步骤3)所得混合料送入混捏机,加入配制的减摩剂,然后升温至170~200℃条件下进行混捏,混捏时间为40~50分钟,混捏后得到糊料;
5)将步骤4)所得糊料冷却至120~140℃下饧糊20~30分钟,排除水分和挥发分;
6)将步骤5)所得糊料送入成型机,抽真空至10~30mmHg,在150~190MPa下进行成型,得到生制品;
7)将步骤6)所得生制品装入匣钵送入焙烧炉,按照升温曲线进行焙烧,焙烧温度为850~900℃,焙烧后得到一次焙烧品;
8)将步骤7)所得一次焙烧品送入高压浸渍罐中,抽真空至10~30mmHg,加入浸渍剂沥青中,然后在200℃下加压至2.0~3.0MPa,并保持60~90min,得到浸渍品;
9)将步骤8)所得浸渍品送入焙烧炉,在氮气保护下以3~12℃/h的升温速度加热到800~900℃进行焙烧,当温度达到800~900℃时保温16~24h,焙烧后得到二次焙烧品;
10)将步骤9)所得二次焙烧品送入石墨化炉,按照石墨化送电曲线送电,把焙烧品加热到2950~3050℃,当温度达到2950~3050℃时保温10~15h,得到石墨化品,即得到产品超细结构各向同性石墨。
根据上述的超细结构各向同性石墨的制备方法,步骤6)中所得生制品的体积密度为1.58~1.62g/cm3;步骤8)中所述浸渍剂沥青中喹啉不溶物QI含量为0.5~1wt%。
根据上述的超细结构各向同性石墨的制备方法,步骤7)中所述升温曲线的具体过程为:以1.5℃/min的升温速度,由150℃的生制品升温至350℃;接着以0.6℃/min的升温速度,由350℃升温至500℃;以2℃/min的升温速度由500℃升温至650℃,以5℃/min的升温速度由650℃升温至900℃,在900℃条件下保温24h。
根据上述的超细结构各向同性石墨的制备方法,步骤10)中石墨化送电曲线升温过程为:首先以12℃/min的升温速度由室温升温至1200℃,接着以2.5℃/min的升温速度由1200℃升温至1800℃,最后以3℃/min的升温速度由1800℃升温至2950~3050℃。
本发明的积极有益效果:
1、本发明采用各向同性焦作为主要原料制备各向同性石墨,极大地简化了生产工艺,使用模压成型或振动成型代替传统方法中价格高昂的等静压成型。另外,在本发明制备过程中,以各向同性焦为原料制备各向同性石墨,焦颗粒的各向同性程度高,从而降低在焙烧和石墨化工序热处理时因坯体温度梯度的影响而产生微裂纹的几率,有效提高了制品的质量和成品率。
2、利用本发明技术方案选用微观上各方向光学结构的各向同性焦为主要原料制备超细结构各向同性石墨制品,减少了混捏后再制片、破碎筛分、混合工艺,简化了工艺,缩短了生产周期(生产周期由原有6-7月缩短到3个月)、提高了成品率(成品率高达99.7%),降低了生产成本(与现有技术相比,生产成本降低了35%左右)。
3、本发明以各向同性焦为主要原料生产各向同性石墨,减轻了坯料在焙烧、石墨化热处理时温度梯度,坯料内部热应力较小,从而避免了裂纹废品产生,使其成品率提高,也有利于得到均质的最终制品。
4、利用本发明制备的超细结构各向同性石墨制品具有机械强度高、硬度高、各向同性度好、组织结构致密和电阻率低等特点(本发明产品的相关性能指标检测数据详见表1)。
表1本发明产品的相关性能指标检测数据
四、具体实施方式:
以下结合实施例进一步阐述本发明,但并不限制本发明的内容。
以下实施例中采用的各向同性焦中固定碳的质量百分含量≥98.5%,灰分质量百分含量≤0.45%,挥发分质量百分含量≤0.5%,水分质量百分含量≤0.4%,S质量百分含量≤0.4%;各向同性焦的真密度≥2.00g/cm3。采用的硬沥青的软化点为108~112℃;硬沥青中甲苯不溶物所占含量为20~25%,喹啉不溶物所占含量为4~8%,β树脂含量≥15%;硬沥青的结焦值≥54%,硬沥青中灰分质量百分含量≤0.5%。采用的高纯人造石墨的纯度≥99.5%。
实施例1:
本发明超细结构各向同性石墨,以重量百分含量表示,所述超细结构各向同性石墨由原料各向同性焦55%、高纯人造石墨20%、减摩剂十八烷酸1.5%、硬沥青23%和辅助添加剂0.5%制成。
所述辅助添加剂为三氧化二铁与四氧化三铁的混合物,二者之间的混合质量比为5:1。
实施例2:
本发明实施例1超细结构各向同性石墨的制备方法,该制备方法的详细步骤如下:
1)首先将原料各向同性焦粉碎至<10μm,高纯人造石墨粉碎至<10μm,硬沥青粉碎至<45μm;
2)将步骤1)粉碎后的各向同性焦、高纯人造石墨、硬沥青和其它原料按照实施例1所述超细结构各向同性石墨的配料比例进行配制;
3)将步骤2)配制的除减摩剂以外的其它原料置于气流混合机中混合均匀,得到混合料;
4)将步骤3)所得混合料送入混捏机,加入配制的减摩剂,然后升温至180℃条件下进行混捏,混捏时间为45分钟,混捏后得到糊料;
5)将步骤4)所得糊料冷却至130℃下饧糊25分钟,排除水分和挥发分;
6)将步骤5)所得糊料送入成型机,抽真空至20mmHg,在170MPa下进行成型,得到生制品,所得生制品的体积密度为1.60g/cm3
7)将步骤6)所得生制品装入匣钵送入焙烧炉,按照升温曲线进行焙烧,焙烧温度为900℃,焙烧后得到一次焙烧品;
所述升温曲线的具体过程为:以1.5℃/min的升温速度,由150℃的生制品升温至350℃;接着以0.6℃/min的升温速度,由350℃升温至500℃;以2℃/min的升温速度由500℃升温至650℃,以5℃/min的升温速度由650℃升温至900℃,在900℃条件下保温24h;
8)将步骤7)所得一次焙烧品送入高压浸渍罐中,抽真空至20mmHg,加入浸渍剂沥青中(浸渍剂沥青中喹啉不溶物QI含量为0.5~1wt%),然后在200℃下加压至2.5MPa,并保持80min,得到浸渍品;
9)将步骤8)所得浸渍品送入焙烧炉,在氮气保护下以8℃/h的升温速度加热到850℃进行焙烧,当温度达到850℃时保温20h,焙烧后得到二次焙烧品;
10)将步骤9)所得二次焙烧品送入石墨化炉,按照石墨化送电曲线送电,把焙烧品加热到3000℃,当温度达到3000℃时保温12h,得到石墨化品,即得到产品超细结构各向同性石墨;
所述石墨化送电曲线升温过程为:首先以12℃/min的升温速度由室温升温至1200℃,接着以2.5℃/min的升温速度由1200℃升温至1800℃,最后以3℃/min的升温速度由1800℃升温至3000℃。
本发明实施例2所得产品的相关性能检测数据详见表2。
表2本发明实施例2所得产品的相关性能检测数据
实施例3:
本发明超细结构各向同性石墨,以重量百分含量表示,所述超细结构各向同性石墨由原料各向同性焦58%、高纯人造石墨15%、减摩剂十八烷酸1.5%、硬沥青25%和辅助添加剂0.5%制成。
所述辅助添加剂为三氧化二铁与四氧化三铁的混合物,二者之间的混合质量比为5:1。
实施例4:
本发明实施例3超细结构各向同性石墨的制备方法,该制备方法的详细步骤如下:
1)首先将原料各向同性焦粉碎至<10μm,高纯人造石墨粉碎至<10μm,硬沥青粉碎至<45μm;
2)将步骤1)粉碎后的各向同性焦、高纯人造石墨、硬沥青和其它原料按照实施例3所述超细结构各向同性石墨的配料比例进行配制;
3)将步骤2)配制的除减摩剂以外的其它原料置于气流混合机中混合均匀,得到混合料;
4)将步骤3)所得混合料送入混捏机,加入配制的减摩剂,然后升温至170℃条件下进行混捏,混捏时间为50分钟,混捏后得到糊料;
5)将步骤4)所得糊料冷却至120℃下饧糊30分钟,排除水分和挥发分;
6)将步骤5)所得糊料送入成型机,抽真空至10mmHg,在190MPa下进行成型,得到生制品,所得生制品的体积密度为1.62g/cm3
7)将步骤6)所得生制品装入匣钵送入焙烧炉,按照升温曲线进行焙烧,焙烧温度为900℃,焙烧后得到一次焙烧品;
所述升温曲线的具体过程为:以1.5℃/min的升温速度,由150℃的生制品升温至350℃;接着以0.6℃/min的升温速度,由350℃升温至500℃;以2℃/min的升温速度由500℃升温至650℃,以5℃/min的升温速度由650℃升温至900℃,在900℃条件下保温24h;
8)将步骤7)所得一次焙烧品送入高压浸渍罐中,抽真空至10mmHg,加入浸渍剂沥青中(浸渍剂沥青中喹啉不溶物QI含量为0.5~1wt%),然后在200℃下加压至2.0MPa,并保持90min,得到浸渍品;
9)将步骤8)所得浸渍品送入焙烧炉,在氮气保护下以5℃/h的升温速度加热到900℃进行焙烧,当温度达到900℃时保温16h,焙烧后得到二次焙烧品;
10)将步骤9)所得二次焙烧品送入石墨化炉,按照石墨化送电曲线送电,把焙烧品加热到2950℃,当温度达到2950℃时保温15h,得到石墨化品,即得到产品超细结构各向同性石墨;
所述石墨化送电曲线升温过程为:首先以12℃/min的升温速度由室温升温至1200℃,接着以2.5℃/min的升温速度由1200℃升温至1800℃,最后以3℃/min的升温速度由1800℃升温至2950℃。
本发明实施例4所得产品的相关性能检测数据详见表3。
表3本发明实施例4所得产品的相关性能检测数据
实施例5:
本发明超细结构各向同性石墨,以重量百分含量表示,所述超细结构各向同性石墨由原料各向同性焦60%、高纯人造石墨12%、减摩剂十八烷酸1.6%、硬沥青25.8%和辅助添加剂0.6%制成。
所述辅助添加剂为三氧化二铁与四氧化三铁的混合物,二者之间的混合质量比为5:1。
实施例6:
本发明实施例5超细结构各向同性石墨的制备方法,该制备方法的详细步骤如下:
1)首先将原料各向同性焦粉碎至<10μm,高纯人造石墨粉碎至<10μm,硬沥青粉碎至<45μm;
2)将步骤1)粉碎后的各向同性焦、高纯人造石墨、硬沥青和其它原料按照实施例5所述超细结构各向同性石墨的配料比例进行配制;
3)将步骤2)配制的除减摩剂以外的其它原料置于气流混合机中混合均匀,得到混合料;
4)将步骤3)所得混合料送入混捏机,加入配制的减摩剂,然后升温至200℃条件下进行混捏,混捏时间为40分钟,混捏后得到糊料;
5)将步骤4)所得糊料冷却至140℃下饧糊20分钟,排除水分和挥发分;
6)将步骤5)所得糊料送入成型机,抽真空至30mmHg,在160MPa下进行成型,得到生制品,所得生制品的体积密度为1.58g/cm3
7)将步骤6)所得生制品装入匣钵送入焙烧炉,按照升温曲线进行焙烧,焙烧温度为900℃,焙烧后得到一次焙烧品;
所述升温曲线的具体过程为:以1.5℃/min的升温速度,由150℃的生制品升温至350℃;接着以0.6℃/min的升温速度,由350℃升温至500℃;以2℃/min的升温速度由500℃升温至650℃,以5℃/min的升温速度由650℃升温至900℃,在900℃条件下保温24h;
8)将步骤7)所得一次焙烧品送入高压浸渍罐中,抽真空至30mmHg,加入浸渍剂沥青中(浸渍剂沥青中喹啉不溶物QI含量为0.5~1wt%),然后在200℃下加压至3.0MPa,并保持60min,得到浸渍品;
9)将步骤8)所得浸渍品送入焙烧炉,在氮气保护下以10℃/h的升温速度加热到800℃进行焙烧,当温度达到800℃时保温24h,焙烧后得到二次焙烧品;
10)将步骤9)所得二次焙烧品送入石墨化炉,按照石墨化送电曲线送电,把焙烧品加热到3050℃,当温度达到3050℃时保温10h,得到石墨化品,即得到产品超细结构各向同性石墨;
所述石墨化送电曲线升温过程为:首先以12℃/min的升温速度由室温升温至1200℃,接着以2.5℃/min的升温速度由1200℃升温至1800℃,最后以3℃/min的升温速度由1800℃升温至3050℃。
本发明实施例6所得产品的相关性能检测数据详见表4。
表4本发明实施例6所得产品的相关性能检测数据
上面对本发明优选的具体实施方式作出了详细说明,但本发明不局限于所描述的实施方式。对本领域的技术人员而言,在不脱离本发明的原理和精神的情况下对这种实施方式进行多种变化、修改、替换和变形仍落入本发明的保护范围内。

Claims (10)

1.一种超细结构各向同性石墨,其特征在于:以重量百分含量表示,所述超细结构各向同性石墨主要由原料各向同性焦55~60%、高纯人造石墨10~20%、减摩剂1~3%、硬沥青20~30%和辅助添加剂0.5~1.0%制成。
2.根据权利要求1所述的超细结构各向同性石墨,其特征在于:所述各向同性焦中固定碳的质量百分含量≥98.5%,灰分质量百分含量≤0.45%,挥发分质量百分含量≤0.5%,水分质量百分含量≤0.4%,S质量百分含量≤0.4%;各向同性焦的真密度≥2.00g/cm3
3.根据权利要求1所述的超细结构各向同性石墨,其特征在于:所述高纯人造石墨的纯度≥99.5%。
4.根据权利要求1所述的超细结构各向同性石墨,其特征在于:所述减摩剂为十八烷酸。
5.根据权利要求1所述的超细结构各向同性石墨,其特征在于:所述硬沥青的软化点为108~112℃;硬沥青中甲苯不溶物所占含量为20~25%,喹啉不溶物所占含量为4~8%,β树脂含量≥15%;硬沥青的结焦值≥54%,硬沥青中灰分质量百分含量≤0.5%。
6.根据权利要求1所述的超细结构各向同性石墨,其特征在于:所述辅助添加剂为三氧化二铁与四氧化三铁的混合物,二者之间的混合质量比为5:1。
7.一种超细结构各向同性石墨的制备方法,其特征在于,所述制备方法包括以下步骤:
1)首先将原料各向同性焦粉碎至<10μm,高纯人造石墨粉碎至<10μm,硬沥青粉碎至<45μm;
2)将步骤1)粉碎后的各向同性焦、高纯人造石墨、硬沥青和其它原料按照权利要求1所述超细结构各向同性石墨的配料比例进行配制;
3)将步骤2)配制的除减摩剂以外的其它原料置于气流混合机中混合均匀,得到混合料;
4)将步骤3)所得混合料送入混捏机,加入配制的减摩剂,然后升温至170~200℃条件下进行混捏,混捏时间为40~50分钟,混捏后得到糊料;
5)将步骤4)所得糊料冷却至120~140℃下饧糊20~30分钟,排除水分和挥发分;
6)将步骤5)所得糊料送入成型机,抽真空至10~30mmHg,在150~190MPa下进行成型,得到生制品;
7)将步骤6)所得生制品装入匣钵送入焙烧炉,按照升温曲线进行焙烧,焙烧温度为850~900℃,焙烧后得到一次焙烧品;
8)将步骤7)所得一次焙烧品送入高压浸渍罐中,抽真空至10~30mmHg,加入浸渍剂沥青中,然后在200℃下加压至2.0~3.0MPa,并保持60~90min,得到浸渍品;
9)将步骤8)所得浸渍品送入焙烧炉,在氮气保护下以3~12℃/h的升温速度加热到800~900℃进行焙烧,当温度达到800~900℃时保温16~24h,焙烧后得到二次焙烧品;
10)将步骤9)所得二次焙烧品送入石墨化炉,按照石墨化送电曲线送电,把焙烧品加热到2950~3050℃,当温度达到2950~3050℃时保温10~15h,得到石墨化品,即得到产品超细结构各向同性石墨。
8.根据权利要求7所述的超细结构各向同性石墨的制备方法,其特征在于:步骤6)中所得生制品的体积密度为1.58~1.62g/cm3;步骤8)中所述浸渍剂沥青中喹啉不溶物QI含量为0.5~1wt%。
9.根据权利要求7所述的超细结构各向同性石墨的制备方法,其特征在于:步骤7)中所述升温曲线的具体过程为:以1.5℃/min的升温速度,由150℃的生制品升温至350℃;接着以0.6℃/min的升温速度,由350℃升温至500℃;以2℃/min的升温速度由500℃升温至650℃,以5℃/min的升温速度由650℃升温至900℃,在900℃条件下保温24h。
10.根据权利要求7所述的超细结构各向同性石墨的制备方法,其特征在于:步骤10)中石墨化送电曲线升温过程为:首先以12℃/min的升温速度由室温升温至1200℃,接着以2.5℃/min的升温速度由1200℃升温至1800℃,最后以3℃/min的升温速度由1800℃升温至2950~3050℃。
CN201711317365.7A 2017-12-12 2017-12-12 一种超细结构各向同性石墨及其制备方法 Active CN108083806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711317365.7A CN108083806B (zh) 2017-12-12 2017-12-12 一种超细结构各向同性石墨及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711317365.7A CN108083806B (zh) 2017-12-12 2017-12-12 一种超细结构各向同性石墨及其制备方法

Publications (2)

Publication Number Publication Date
CN108083806A true CN108083806A (zh) 2018-05-29
CN108083806B CN108083806B (zh) 2021-04-09

Family

ID=62175195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711317365.7A Active CN108083806B (zh) 2017-12-12 2017-12-12 一种超细结构各向同性石墨及其制备方法

Country Status (1)

Country Link
CN (1) CN108083806B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821770A (zh) * 2018-07-24 2018-11-16 哈尔滨电碳厂 一种高性能石墨密封材料的制备方法
CN111362698A (zh) * 2020-04-28 2020-07-03 湖南大学 一种新型各向同性核级石墨材料及其制备方法
CN112599772A (zh) * 2020-12-14 2021-04-02 河南环宇惠能能源有限公司 回收锂离子动力电池负极材料的方法
CN114804876A (zh) * 2022-03-09 2022-07-29 哈尔滨电碳厂有限责任公司 一种高耐磨端面密封石墨材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358496A (en) * 1976-11-05 1978-05-26 Agency Of Ind Science & Technol Production of graphite substrate for oxidation resistant coating
CN102502603A (zh) * 2011-11-01 2012-06-20 雅安恒圣高纯石墨科技有限责任公司 大规格细颗粒各向同性等静压高纯石墨的生产工艺
CN103011148A (zh) * 2012-12-19 2013-04-03 中国平煤神马集团开封炭素有限公司 一种制备各向同性石墨的方法
CN103620331A (zh) * 2011-05-27 2014-03-05 西格里碳素欧洲公司 通过半石墨化包含C和Si的混合物获得的用于高炉内衬的耐火材料
CN104016333A (zh) * 2014-05-25 2014-09-03 林前锋 一种等静压微晶石墨制品的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358496A (en) * 1976-11-05 1978-05-26 Agency Of Ind Science & Technol Production of graphite substrate for oxidation resistant coating
CN103620331A (zh) * 2011-05-27 2014-03-05 西格里碳素欧洲公司 通过半石墨化包含C和Si的混合物获得的用于高炉内衬的耐火材料
CN102502603A (zh) * 2011-11-01 2012-06-20 雅安恒圣高纯石墨科技有限责任公司 大规格细颗粒各向同性等静压高纯石墨的生产工艺
CN103011148A (zh) * 2012-12-19 2013-04-03 中国平煤神马集团开封炭素有限公司 一种制备各向同性石墨的方法
CN104016333A (zh) * 2014-05-25 2014-09-03 林前锋 一种等静压微晶石墨制品的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUAN LI ET AL: "Wettability of natural microcrystalline graphite filler with pitch in isotropic graphite preparation", 《FUEL》 *
吕柏林等: "石墨摩擦学性能、润滑机理及改性的研究进展", 《材料导报》 *
和凤祥等: ""各向同性石墨原料之各向同性焦"", 《炭素》 *
杜爱芳等: ""高强度各向同性石墨材料的制备与研究"", 《炭素技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821770A (zh) * 2018-07-24 2018-11-16 哈尔滨电碳厂 一种高性能石墨密封材料的制备方法
CN108821770B (zh) * 2018-07-24 2019-09-10 哈尔滨电碳厂 一种高性能石墨密封材料的制备方法
CN111362698A (zh) * 2020-04-28 2020-07-03 湖南大学 一种新型各向同性核级石墨材料及其制备方法
CN112599772A (zh) * 2020-12-14 2021-04-02 河南环宇惠能能源有限公司 回收锂离子动力电池负极材料的方法
CN112599772B (zh) * 2020-12-14 2022-12-27 河南环宇惠能能源有限公司 回收锂离子动力电池负极材料的方法
CN114804876A (zh) * 2022-03-09 2022-07-29 哈尔滨电碳厂有限责任公司 一种高耐磨端面密封石墨材料的制备方法

Also Published As

Publication number Publication date
CN108083806B (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN108083806A (zh) 一种超细结构各向同性石墨及其制备方法
CN104529450B (zh) 一种大规格等静压石墨制品的成型方法
CN104016333B (zh) 一种等静压微晶石墨制品的制备方法
CN105645397B (zh) 一种用于edm的超细结构石墨及其制备方法
CN105884357B (zh) 一种用于热压成型的石墨模具材料及其制备方法
CN108640681A (zh) 一种特种石墨碳材料的制备方法
CN102951634A (zh) 超大规格等静压石墨及其生产方法
CN109133927A (zh) 一种高性能石墨材料的短流程制备方法
CN101798221A (zh) 一种细结构石墨材料及其制备方法
CN116462509B (zh) 一种光伏用等静压石墨及其制备方法和应用
CN103011148A (zh) 一种制备各向同性石墨的方法
CN107935595A (zh) 一种高温气冷堆用石墨砖的制备方法
CN102807207A (zh) 一种细结构的高密度、高强度石墨制品的生产方法
CN102268697B (zh) 一种镁电解用石墨阳极及其制备方法
CN100494507C (zh) 高体密半石墨质阴极炭块及其生产方法
CN108218429A (zh) 一种以高温煤沥青为原料制备高纯石墨材料的方法
CN105271207A (zh) 一种等静压各向同性石墨的制备工艺
CN111087249A (zh) 一种石墨质多孔坩埚及其制备方法
CN107651961B (zh) 一种矿热炉用高功率炭电极及其制备方法
CN109319775B (zh) 一种短流程高密高强各向同性石墨的制备方法
CN108129148A (zh) 一种低膨胀石墨材料的制备方法
CN101914734B (zh) 铝基内原位生长制备尖晶石晶须/铝复合块体材料的方法
CN108863369A (zh) 一种环保型石墨化制品及其生产方法
CN102659100A (zh) 高强度细颗粒碳石墨材料的制备方法
CN106554013B (zh) 一种全石墨质电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: The eastern outskirts of Henan Province City Shunhe District 475002 Village

Patentee after: Kaifeng Pingmei new carbon material technology Co.,Ltd.

Patentee after: CHINA PINGMEI SHENMA ENERGY CHEMICAL GROUP Co.,Ltd.

Address before: The eastern outskirts of Henan Province City Shunhe District 475002 Village

Patentee before: KAIFENG CARBON CO., LTD., CHINA PINGMEI SHENMA Group

Patentee before: CHINA PINGMEI SHENMA ENERGY CHEMICAL GROUP Co.,Ltd.