CN108017860B - 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法 - Google Patents

以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法 Download PDF

Info

Publication number
CN108017860B
CN108017860B CN201710928035.5A CN201710928035A CN108017860B CN 108017860 B CN108017860 B CN 108017860B CN 201710928035 A CN201710928035 A CN 201710928035A CN 108017860 B CN108017860 B CN 108017860B
Authority
CN
China
Prior art keywords
composite material
material film
energy storage
film
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710928035.5A
Other languages
English (en)
Other versions
CN108017860A (zh
Inventor
党智敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Hongming Electrician Technology Co ltd
Original Assignee
Nantong Hongming Electrician Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Hongming Electrician Technology Co ltd filed Critical Nantong Hongming Electrician Technology Co ltd
Priority to CN201710928035.5A priority Critical patent/CN108017860B/zh
Publication of CN108017860A publication Critical patent/CN108017860A/zh
Application granted granted Critical
Publication of CN108017860B publication Critical patent/CN108017860B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本申请提供了一种复合材料薄膜及其制造方法,按照配比混合塑料基体和橡胶,并通过熔融拉伸法或溶液浇铸法来制备复合材料薄膜,适量的橡胶组分在塑料基体中均匀分散,它的加入起到了缺陷修饰的作用,使复合材料在电场中的击穿强度以及储能密度得到了很大的提高,该复合材料制备简单,易于工业化生产,且大幅提高了聚合物基体的性能,符合当前市场对于高耐压和高储能密度聚合物基薄膜材料的需求,可以替代薄膜电容器中常用的双向拉伸聚丙烯薄膜,从而提高薄膜电容器的比特性。

Description

以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄 膜的方法
技术领域
本申请属于电介质材料领域,尤其涉及高击穿强度和高储能密度的电介质材料,这种新材料可以极大地提高薄膜电容器的性能。
背景技术
电容器是三大储能元件之一,薄膜电容器是电容器中一个重要分支,在照明系统,家用电器以及电力系统中有广泛的应用,其中电介质薄膜决定着薄膜电容器的性能。薄膜电容器具有安全轻量、成本低、无液体电解质、充放电速度快、自愈性好、电容单体输出电压高、集成组装工艺简单等优点,这类电容器在智能电网调频、新能源汽车以及新式武器等系统中都是关键部件。目前使用的薄膜介质绝大部分是双向拉伸聚丙烯薄膜(BOPP),BOPP作为电容器的薄膜介质具有很多优良的特性,比如低介电损耗(一般是万分之几),因此在能量转换过程中能量损耗小,不易发热,高击穿强度(交流击穿强度在360MV/m左右,直流击穿在590MV/m左右),是综合性能较好的电介质材料。然而聚丙烯作为一种非极性材料,它的介电常数很低,仅有2.2左右,仅比真空的介电常数高1.2倍,制约了储能密度的提高。对于普通线性电介质材料而言,基于储能密度公式,其最大储能密度为:
Figure GSB0000171683560000011
其中W是电介质的储能密度,ε为真空介电常数,我们可以看到最大储能密度不仅与击穿强度(Eb)有关,也受电介质材料的介电常数(εr)的影响,并与介电常数的大小呈正比关系。目前,如何提高薄膜介质的介电常数或击穿强度以提高材料的储能密度成为许多科研单位的一个研究热点,如美国的宾州州立大学、西北大学、凯斯西储大学、美国通用原子系统公司,法国的巴黎中央理工大学,国内的清华大学、上海交通大学、西安交通大学、同济大学等。提高电容器的容量,可以大幅降低电容器的体积和质量:每提高一倍的储能密度和电容容量,就可以将体积减小一半。因此研究大容量薄膜介质电容器具有很重要的意义。
发明内容
本发明的目的是通过熔融拉伸或溶液浇铸的方法制备一种聚合物基复合薄膜,该方法在聚合物基体的基础上提高了击穿强度和储能密度,且在熔融拉伸制备过程中基本不产生污染物,制备工序简单,符合材料节约和环境友好的发展趋势。
该类复合材料薄膜由聚合物基体和橡胶复合而成。聚合物基体为复合材料提供了优良的介电性能,这些材料本身可以很方便的通过熔融拉伸法和流延法加工成型,材料回收再利用也很方便。橡胶在加工过程中被均匀地分散在聚合物基体中,由于两者之间较好的相容性,其分子链缠结在一起,不容易造成缺陷,而且橡胶柔软的分子链可以填充聚合物基体中的空隙,从而减少基体本身缺陷,提高复合材料的击穿强度。
具体实施方式:
下面通过具体实施方案来进一步说明制备高击穿强度和高储能密度的聚合物基复合薄膜的技术方案。有必要指出,以下实施例只用于对本发明作进一步说明,不能理解为对本发明保护范围的限制,该领域的专业技术人员根据本发明的内容做出的一些非本质的改进和调整,仍属于本发明的保护范围。
实施例1溶液浇铸法制备聚合物基复合薄膜
聚合物采用上海三爱富新材料股份有限公司的PVDF粉末,橡胶采用德国拜耳的热塑性聚氨酯(TPU)粒料。
制备工艺:
(1)溶解填料和基体。将体积分数10%的TPU颗粒和90%的PVDF粉末投入到足量的N,N-二甲基甲酰胺中,加热到50摄氏度并搅拌至TPU和PVDF均完全溶解。
(2)高分子溶液浇铸成膜。将(1)中得到的溶液倒入到玻璃片上,用刮刀将溶液刮平成厚度一定的薄膜,然后放入到真空烘箱中室温下抽真空至0.04MPa以下放置15分钟除气,最后将其放入到鼓风烘箱中75摄氏度10小时,将溶剂完全蒸发,将薄膜从玻璃片上剥离,即获得成品膜。
实施例2熔融挤出法制备聚合物基复合薄膜
聚合物采用上海三爱富新材料股份有限公司的PVDF颗粒,橡胶采用德国拜耳的热塑性聚氨酯(TPU)粒料。
制备工艺:
(1)橡胶粒料和聚合物基体共混。将体积分数10%的TPU颗粒和90%的PVDF颗粒放入到高速混合机中混合3分钟,得到PU/PVDF共混粒料。
(2)共混粒料挤出熔融拉伸成膜。将(1)中得到的TPU/PVDF共混粒料投入到挤出机中,在190℃-230℃下,将粒料经熔融塑化,挤出形成薄片,薄片通过80-100℃的冷却辊冷却定型后,再通过130-180℃的预热辊预热,预热后的薄片在150-210℃下拉伸,纵向拉伸比大于3倍,横向拉伸比大于3倍,最后得到成品膜。
从实施例及测试结果看,本发明通过选用橡胶加入到聚合物基体中,制备出的聚合物基复合材料薄膜,其介电性能和储能密度均优于纯聚合物基体,与BOPP相比,其介电常数高得多,且维持了较高的击穿强度,因此提升了储能密度。
附图说明
图1是采用本发明实施例1制备的材料的介电常数随频率变化曲线图
图2是采用本发明实施例1制备的薄膜根据韦伯分布分析得到的击穿强度数据图。

Claims (1)

1.以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法,其特征在于,利用熔融拉伸法将聚合物基体和橡胶制成复合材料薄膜,所述聚合物基体为聚偏氟乙烯,所述橡胶为热塑性聚氨酯颗粒,所述热塑性聚氨酯颗粒在复合材料薄膜中的体积分数为10%,
所述熔融拉伸法制备复合材料薄膜的步骤如下:
(1)橡胶粒料和聚合物基体共混,将体积分数10%的热塑性聚氨酯颗粒和90%的聚偏氟乙烯颗粒放入到高速混合机中混合3分钟,得到TPU/PVDF共混粒料;
(2)共混粒料挤出熔融拉伸成膜,将(1)中得到的TPU/PVDF共混粒料投入到挤出机中,在190℃-230℃下,将粒料经熔融塑化,挤出形成薄片,薄片通过80-100℃的冷却辊冷却定型后,再通过130-180℃的预热辊预热,预热后的薄片在150-210℃下拉伸,纵向拉伸比大于3倍,横向拉伸比大于3倍,最后得到成品膜。
CN201710928035.5A 2017-10-09 2017-10-09 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法 Active CN108017860B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710928035.5A CN108017860B (zh) 2017-10-09 2017-10-09 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710928035.5A CN108017860B (zh) 2017-10-09 2017-10-09 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法

Publications (2)

Publication Number Publication Date
CN108017860A CN108017860A (zh) 2018-05-11
CN108017860B true CN108017860B (zh) 2021-02-23

Family

ID=62079774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710928035.5A Active CN108017860B (zh) 2017-10-09 2017-10-09 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法

Country Status (1)

Country Link
CN (1) CN108017860B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269448B (zh) * 2020-03-20 2021-06-08 清华大学 一种介电薄膜及其制备方法和薄膜电容器
CN114230946B (zh) * 2021-12-28 2023-06-16 清华大学 全有机复合材料薄膜及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074024A1 (ja) * 2008-12-22 2010-07-01 ダイキン工業株式会社 フィルムコンデンサ用フィルムおよびフィルムコンデンサ
CN104277386B (zh) * 2014-09-24 2016-08-24 东莞市长安东阳光铝业研发有限公司 一种膜电容器用聚偏氟乙烯薄膜

Also Published As

Publication number Publication date
CN108017860A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
KR101955911B1 (ko) 분리막 및 그 제조방법
Wu et al. Natural glycyrrhizic acid: improving stress relaxation rate and glass transition temperature simultaneously in epoxy vitrimers
CN108017860B (zh) 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法
CN107828116B (zh) ±500kV直流电缆用抗焦烧绝缘材料及其制备方法
CN102601885A (zh) 一种纵横纵拉伸强化锂离子电池隔膜的制备工艺
CN110148778B (zh) 固态电解质薄膜材料及其制备方法和电池
CN111234382A (zh) 一种聚丙烯复合电介质材料及其制备方法
CN109486473A (zh) 一种多功能相变复合材料及其制备方法
WO2013078890A1 (zh) 一种动力锂电池隔膜的制备方法
CN103578683B (zh) 一种低温用橡胶磁条及其制备方法
CN109265791B (zh) 一种高压直流电缆绝缘材料及其制备方法
CN104845127A (zh) 一种无卤阻燃改性pet/ptt/tpee复合材料
CN102838827A (zh) 适于挤压式一步法的10kv及以下低回缩型硅烷xlpe绝缘料
CN101890764B (zh) 一种热塑性硫化胶的制备方法
CN114142160B (zh) 一种纳米陶瓷-聚丙烯复合电池隔膜及制备方法
CN116120747A (zh) 一种塑料腔体滤波器用导热超低线性膨胀系数pps复合材料及其制备方法
KR20200032931A (ko) 분리막 및 그 제조방법
CN107540935B (zh) 一种聚丙烯回收料组合物及其制备方法
CN107540938B (zh) 一种改性聚丙烯回收料及其制备方法
CN112266581A (zh) 一种耐高温聚合物介电薄膜及其制备方法
CN115141430B (zh) 一种基于碳量子点改性聚丙烯的介电薄膜及制备方法、应用
JP2021055036A (ja) ポリプロピレンフィルムの製造方法、金属層一体型ポリプロピレンフィルムの製造方法、及び、フィルムコンデンサの製造方法
CN112341689B (zh) 一种耐热老化的聚乙烯复合材料
CN113183576B (zh) 有序介观结构pvdf_pmma共混薄膜及其制备系统
KR101653767B1 (ko) 복합 전극용 수지 조성물 및 이를 이용한 복합 전극

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant