CN108017860A - 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法 - Google Patents

以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法 Download PDF

Info

Publication number
CN108017860A
CN108017860A CN201710928035.5A CN201710928035A CN108017860A CN 108017860 A CN108017860 A CN 108017860A CN 201710928035 A CN201710928035 A CN 201710928035A CN 108017860 A CN108017860 A CN 108017860A
Authority
CN
China
Prior art keywords
rubber
film
composite material
energy storage
storage density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710928035.5A
Other languages
English (en)
Other versions
CN108017860B (zh
Inventor
党智敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Hongming Electrical Technology Co Ltd
Original Assignee
Nantong Hongming Electrical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Hongming Electrical Technology Co Ltd filed Critical Nantong Hongming Electrical Technology Co Ltd
Priority to CN201710928035.5A priority Critical patent/CN108017860B/zh
Publication of CN108017860A publication Critical patent/CN108017860A/zh
Application granted granted Critical
Publication of CN108017860B publication Critical patent/CN108017860B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本申请提供了一种复合材料薄膜及其制造方法,按照配比混合塑料基体和橡胶,并通过熔融拉伸法或溶液浇铸法来制备复合材料薄膜,适量的橡胶组分在塑料基体中均匀分散,它的加入起到了缺陷修饰的作用,使复合材料在电场中的击穿强度以及储能密度得到了很大的提高,该复合材料制备简单,易于工业化生产,且大幅提高了聚合物基体的性能,符合当前市场对于高耐压和高储能密度聚合物基薄膜材料的需求,可以替代薄膜电容器中常用的双向拉伸聚丙烯薄膜,从而提高薄膜电容器的比特性。

Description

以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄 膜的方法
技术领域
本申请属于电介质材料领域,尤其涉及高击穿强度和高储能密度的电介质材料,这种新材料可以极大地提高薄膜电容器的性能。
背景技术
电容器是三大储能元件之一,薄膜电容器是电容器中一个重要分支,在照明系统,家用电器以及电力系统中有广泛的应用,其中电介质薄膜决定着薄膜电容器的性能。薄膜电容器具有安全轻量、成本低、无液体电解质、充放电速度快、自愈性好、电容单体输出电压高、集成组装工艺简单等优点,这类电容器在智能电网调频、新能源汽车以及新式武器等系统中都是关键部件。目前使用的薄膜介质绝大部分是双向拉伸聚丙烯薄膜(BOPP),BOPP作为电容器的薄膜介质具有很多优良的特性,比如低介电损耗(一般是万分之几),因此在能量转换过程中能量损耗小,不易发热,高击穿强度(交流击穿强度在360MV/m左右,直流击穿在590MV/m左右),是综合性能较好的电介质材料。然而聚丙烯作为一种非极性材料,它的介电常数很低,仅有2.2左右,仅比真空的介电常数高1.2倍,制约了储能密度的提高。对于普通线性电介质材料而言,基于储能密度公式,其最大储能密度为:
其中W是电介质的储能密度,ε为真空介电常数,我们可以看到最大储能密度不仅与击穿强度(Eb)有关,也受电介质材料的介电常数(εr)的影响,并与介电常数的大小呈正比关系。目前,如何提高薄膜介质的介电常数或击穿强度以提高材料的储能密度成为许多科研单位的一个研究热点,如美国的宾州州立大学、西北大学、凯斯西储大学、美国通用原子系统公司,法国的巴黎中央理工大学,国内的清华大学、上海交通大学、西安交通大学、同济大学等。提高电容器的容量,可以大幅降低电容器的体积和质量:每提高一倍的储能密度和电容容量,就可以将体积减小一半。因此研究大容量薄膜介质电容器具有很重要的意义。
发明内容
本发明的目的是通过熔融拉伸或溶液浇铸的方法制备一种聚合物基复合薄膜,该方法在聚合物基体的基础上提高了击穿强度和储能密度,且在熔融拉伸制备过程中基本不产生污染物,制备工序简单,符合材料节约和环境友好的发展趋势。
该类复合材料薄膜由聚合物基体和橡胶复合而成。聚合物基体为复合材料提供了优良的介电性能,这些材料本身可以很方便的通过熔融拉伸法和流延法加工成型,材料回收再利用也很方便。橡胶在加工过程中被均匀地分散在聚合物基体中,由于两者之间较好的相容性,其分子链缠结在一起,不容易造成缺陷,而且橡胶柔软的分子链可以填充聚合物基体中的空隙,从而减少基体本身缺陷,提高复合材料的击穿强度。
具体实施方式:
下面通过具体实施方案来进一步说明制备高击穿强度和高储能密度的聚合物基复合薄膜的技术方案。有必要指出,以下实施例只用于对本发明作进一步说明,不能理解为对本发明保护范围的限制,该领域的专业技术人员根据本发明的内容做出的一些非本质的改进和调整,仍属于本发明的保护范围。
实施例1溶液浇铸法制备聚合物基复合薄膜
聚合物采用上海三爱富新材料股份有限公司的PVDF粉末,橡胶采用德国拜耳的热塑性聚氨酯(TPU)粒料。
制备工艺:
(1)溶解填料和基体。将体积分数10%的TPU颗粒和90%的PVDF粉末投入到足量的N,N- 二甲基甲酰胺中,加热到50摄氏度并搅拌至TPU和PVDF均完全溶解。
(2)高分子溶液浇铸成膜。将(1)中得到的溶液倒入到玻璃片上,用刮刀将溶液刮平成厚度一定的薄膜,然后放入到真空烘箱中室温下抽真空至0.04MPa以下放置15分钟除气,最后将其放入到鼓风烘箱中75摄氏度10小时,将溶剂完全蒸发,将薄膜从玻璃片上剥离,即获得成品膜。
实施例2熔融挤出法制备聚合物基复合薄膜
聚合物采用上海三爱富新材料股份有限公司的PVDF颗粒,橡胶采用德国拜耳的热塑性聚氨酯(TPU)粒料。
制备工艺:
(1)橡胶粒料和聚合物基体共混。将体积分数10%的TPU颗粒和90%的PVDF颗粒放入到高速混合机中混合3分钟,得到PU/PVDF共混粒料。
(2)共混粒料挤出熔融拉伸成膜。将(1)中得到的TPU/PVDF共混粒料投入到挤出机中,在190℃-230℃下,将粒料经熔融塑化,挤出形成薄片,薄片通过80-100℃的冷却辊冷却定型后,再通过130-180℃的预热辊预热,预热后的薄片在150-210℃下拉伸,纵向拉伸比大于3倍,横向拉伸比大于3倍,最后得到成品膜。
从实施例及测试结果看,本发明通过选用橡胶加入到聚合物基体中,制备出的聚合物基复合材料薄膜,其介电性能和储能密度均优于纯聚合物基体,与BOPP相比,其介电常数高得多,且维持了较高的击穿强度,因此提升了储能密度。
附图说明
图1是采用本发明实施例1制备的材料的介电常数随频率变化曲线图
图2是采用本发明实施例1制备的薄膜根据韦伯分布分析得到的击穿强度数据图。

Claims (7)

1.以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法,其特征在于,在熔融拉伸法或溶液浇铸法制备聚合物薄膜的过程中加入橡胶,提高材料在电场下的击穿强度和储能密度,该复合材料制备的薄膜可以作为电介质薄膜制备高性能的薄膜电容器。
2.根据权利要求1所述的聚合物基复合材料主要包括:聚合物基体和橡胶。
3.根据权利要求2所述的聚合物基体作为复合材料基本结构单元为以下物质中的一种或多种聚合物:聚偏氟乙烯(PVDF)及其共聚物,聚苯乙烯(PS),聚甲基丙烯酸甲酯(PMMA),聚丙烯(PP),聚对苯二甲酸乙二醇酯(PET),聚碳酸酯(PC),聚苯硫醚(PPS)以及以上材料的改性物。
4.根据权利要求2所述的橡胶作为复合材料的功能单元为以下物质中的一种或多种橡胶:聚氨酯(PU),苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS),三元乙丙橡胶(EPDM),丁腈橡胶(NBR),丁苯橡胶(SBR),丙烯酸酯(ACR)以及以上橡胶的改性物。
5.根据权利要求1至4所述的高击穿强度和高储能密度的聚合物基复合材料薄膜的制备方法,包括以下步骤:(1)将橡胶均匀分散到聚合物基体中,得到共混物;(2)将共混物制备成薄膜。
6.根据权利要求5所述的制备方法,其特征在于,步骤(1)中橡胶所占的体积分数为1%至50%,橡胶与聚合物基体共混的方式为溶液共混或熔融共混。
7.根据权利要求5所述的制备方法,其特征在于,步骤(2)中复合材料薄膜制备的方法为熔融拉伸成膜或溶液浇铸成膜。
CN201710928035.5A 2017-10-09 2017-10-09 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法 Active CN108017860B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710928035.5A CN108017860B (zh) 2017-10-09 2017-10-09 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710928035.5A CN108017860B (zh) 2017-10-09 2017-10-09 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法

Publications (2)

Publication Number Publication Date
CN108017860A true CN108017860A (zh) 2018-05-11
CN108017860B CN108017860B (zh) 2021-02-23

Family

ID=62079774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710928035.5A Active CN108017860B (zh) 2017-10-09 2017-10-09 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法

Country Status (1)

Country Link
CN (1) CN108017860B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269448A (zh) * 2020-03-20 2020-06-12 清华大学 一种介电薄膜及其制备方法和薄膜电容器
CN114230946A (zh) * 2021-12-28 2022-03-25 清华大学 全有机复合材料薄膜及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265361A (zh) * 2008-12-22 2011-11-30 大金工业株式会社 膜电容器用膜和膜电容器
CN104277386A (zh) * 2014-09-24 2015-01-14 东莞市长安东阳光铝业研发有限公司 一种膜电容器用聚偏氟乙烯薄膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265361A (zh) * 2008-12-22 2011-11-30 大金工业株式会社 膜电容器用膜和膜电容器
CN104277386A (zh) * 2014-09-24 2015-01-14 东莞市长安东阳光铝业研发有限公司 一种膜电容器用聚偏氟乙烯薄膜

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MING-SHENG ZHENG等: ""Enhanced breakdown strength of poly(vinylidene fluoride) utilizing rubber nanoparticles for energy storage application"", 《APPL. PHYS. LETT.》 *
MING-SHENG ZHENG等: ""Polyurethane induced high breakdown strength and high energy storage density in polyurethane/poly(vinylidene fluoride) composite films"", 《APPL. PHYS. LETT.》 *
贡长生主编: "《现代工业化学》", 30 June 2008, 华中科技大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269448A (zh) * 2020-03-20 2020-06-12 清华大学 一种介电薄膜及其制备方法和薄膜电容器
CN111269448B (zh) * 2020-03-20 2021-06-08 清华大学 一种介电薄膜及其制备方法和薄膜电容器
CN114230946A (zh) * 2021-12-28 2022-03-25 清华大学 全有机复合材料薄膜及其制备方法与应用

Also Published As

Publication number Publication date
CN108017860B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN105175842B (zh) 一种兼具高效导热性和优异力学性能的高分子基绝缘导热复合材料
Li et al. Tailoring the polarity of polymer shell on BaTiO3 nanoparticle surface for improved energy storage performance of dielectric polymer nanocomposites
Wang et al. Flexible cellulose/PVDF composite films with improved breakdown strength and energy density for dielectric capacitors
CN108017860A (zh) 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法
Borah et al. Dynamic mechanical, thermal, physico-mechanical and morphological properties of LLDPE/EMA blends
CN111234382A (zh) 一种聚丙烯复合电介质材料及其制备方法
Sun et al. In situ microfibrillar morphology and properties of polypropylene/polyamide/carbon black composites prepared through multistage stretching extrusion
WO2013078890A1 (zh) 一种动力锂电池隔膜的制备方法
CN109942932A (zh) 一种耐温高压电缆绝缘料及其制备方法
CN109486473A (zh) 一种多功能相变复合材料及其制备方法
CN104987659A (zh) 一种耐高温抗静电的导电聚合物复合材料及其制备方法和应用
CN104327351A (zh) 一种微孔聚乙烯膜
CN104262769A (zh) 耐高温型一步法硅烷交联聚乙烯绝缘料及其制备方法
CN106633303A (zh) 高直流击穿场强的纳米复合交联聚乙烯绝缘材料及其制备方法
CN111697189A (zh) 聚烯烃微孔基膜及其制备方法、隔膜和电池
CN108530726A (zh) 一种低温度敏感性的绝缘材料及其制备方法
CN109265791B (zh) 一种高压直流电缆绝缘材料及其制备方法
Fan et al. Improved dielectric properties achieved by blending PP and PVDF
CN105602066A (zh) 一种聚乙烯/尼龙复合材料及其制备方法
Wang et al. Dielectric film with high energy density based on polypropylene/maleic anhydride-grafted polypropylene/boron nitride nanosheet ternary system
CN104497544B (zh) 一种电力电容器壳体
CN113903597A (zh) 一种碳量子点/聚合物介电复合材料及其制备方法和应用
CN116535854B (zh) 一种二元共混的高温储能聚合物介电薄膜及其制备方法
CN109244333A (zh) 一种交联锂离子电池隔膜及其制备方法
CN108314859B (zh) 具有高介电性能的三元共混物基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant