CN108003920B - 一种用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法 - Google Patents

一种用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法 Download PDF

Info

Publication number
CN108003920B
CN108003920B CN201711133814.2A CN201711133814A CN108003920B CN 108003920 B CN108003920 B CN 108003920B CN 201711133814 A CN201711133814 A CN 201711133814A CN 108003920 B CN108003920 B CN 108003920B
Authority
CN
China
Prior art keywords
metal oxide
fuel
desulfurizer
adsorption
catalytic adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711133814.2A
Other languages
English (en)
Other versions
CN108003920A (zh
Inventor
肖静
苗广
廖能
任晓玲
吴立琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dipuwo Technology Shenzhen Co ltd
South China University of Technology SCUT
Original Assignee
Dipuwo Technology Shenzhen Co ltd
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dipuwo Technology Shenzhen Co ltd, South China University of Technology SCUT filed Critical Dipuwo Technology Shenzhen Co ltd
Publication of CN108003920A publication Critical patent/CN108003920A/zh
Application granted granted Critical
Publication of CN108003920B publication Critical patent/CN108003920B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0341Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/045Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法。其特征在于,所述燃料氧化脱硫方法是将有机过氧化物加入含有机硫的燃料中混合,得到含有机过氧化物的燃料;将所述含有机过氧化物的燃料通过负载型金属氧化物双功能催化吸附脱硫剂的固定床床层,室温下进行催化氧化吸附耦合反应0.5~2 h,实现燃料的反应性深度吸附脱硫;所述脱硫剂包括载体以及负载在载体上的金属氧化物,所述金属氧化物为ZnO、CuO、CeO2、CrO3、MoO3中的一种或多种,所述脱硫剂中金属氧化物的质量百分数为5~15 wt.%。脱硫剂同时具备催化和吸附两个功能,且再生利用率高。

Description

一种用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化 脱硫方法
技术领域
本发明属于燃料脱硫领域,具体涉及一种用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法。
背景技术
含硫燃料在燃烧过程向环境排放大量的污染物,如SO2,NOx以及颗粒物PM2.5的排放等,对环境造成严重污染。因此,世界各国相继颁布了严格的燃料含硫标准,如何有效的生产清洁燃料已成为全球石化企业研究的一个重要课题。
当前,炼油厂主要使用的燃料脱硫技术是加氢脱硫,其存在的主要问题是:需要在较高的反应温度(300-400℃)和压力(3-6MPa)下进行,需大量消耗氢气,而且难脱除燃料中有空间位阻效应的硫化物,如四六二甲基二苯并噻吩(4,6-DMDBT)等[1]([1]Song,C.S.AnOverview of New Approaches to Deep Desulfurization for Ultra-clean Gasoline,Diesel Fuel and Jet Fuel.Catal.Today 2003,86,211-263.),因而用于超清洁燃料(<1ppmw-S)的生产效率低且能耗大。因此,研发低能耗高选择性的超深度脱硫技术具有重大的国家需求和现实意义。
吸附脱硫因不消耗氢气、可在常温常压条件下,将硫化物吸附在固体多孔吸附剂表面从而获得清洁燃料,是一种极具应用前景的燃料脱硫技术([2]Xiao,J.;Li,Z.;Liu,B.;Xia,Q.B.;Yu,M.X.Adsorption of Benzothiophene and Dibenzothiophene on Ion-impregnated Activated Carbons and Ion-Exchanged Y Zeolites.EnergyFuels 2008,22,3858-3863.)。然而,当前的吸附脱硫技术应用于燃料超深度脱硫所面临的瓶颈问题之一是:由于燃料中其他组分的竞争吸附,导致吸附脱硫的选择性低[3]([3]Xiao,J.;Song,C.S.;Ma,X.L.;Li,Z.Effects of Aromatics,Diesel Additives,Nitrogen Compounds,and Moisture on Adsorptive Desulfurization of Diesel Fuel over ActivatedCarbon.Ind.Eng.Chem.Res.2012,51,3436-3443.),从而导致深度脱硫困难,因而吸附剂的脱硫吸附量很低。因而急需开发高吸附选择性和高吸附容量的新型燃料脱硫吸附材料,和基于该材料的低能耗可循环的新型脱硫工艺。
CN102059094A公开了CuO和CrO3用于活性炭吸附脱硫中的应用,CN103540342A公开了一种用于吸附脱硫的流化床反应器极其应用,所采用的吸附脱硫催化剂是采用ZnO和Ni/Co的复配,其应用原理同样知识吸附。CN10363879A公开了一种船用柴油机脱硫填料塔,填料层表面负载有CrO3-SnO2催化剂,其所针对的是SOX气体。
发明内容
为了克服现有技术的缺点与不足,本发明的首要目的在于发明一种用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法。该技术操作简单,可在常温常压下进行,不需消耗氢气,可应用于燃料深度脱硫获超清洁燃料(<10或<1ppmw-S),材料的脱硫效率高且可再生循环使用。
本发明的目的至少通过如下技术方案之一实现。
一种用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法,所述燃料氧化脱硫方法是将有机过氧化物加入含有机硫的燃料中混合,得到含有机过氧化物的燃料;将所述含有机过氧化物的燃料通过负载型金属氧化物双功能催化吸附脱硫剂的固定床床层,室温下进行催化氧化吸附耦合反应0.5~2h,实现燃料的反应性深度吸附脱硫;
所述脱硫剂包括载体以及负载在载体上的金属氧化物,所述脱硫剂中金属氧化物为ZnO、CuO、MoO3、CeO2、CrO3中的一种或多种,所述脱硫剂中金属氧化物的质量百分数为5~15wt.%。
优选的,所述含有机硫的燃料为柴油或汽油;所述有机过氧化物为过氧化氢异丙苯或过氧苯甲酸或过氧化氢叔丁醇;所述有机过氧化物、燃料中有机硫的摩尔比为5~18:1。
优选的,所述负载型金属氧化物双功能催化吸附脱硫剂的比表面积在100~800m2/g范围,孔径尺寸在1.5~10nm范围,孔容在0.2~0.8cm3/g范围。
优选的,所述负载型金属氧化物双功能催化吸附脱硫剂的制备方法是将金属氧化物的前驱体负载在载体材料上,再将前驱体和载体的混合物通过煅烧得到所述的负载型金属氧化物双功能催化吸附脱硫剂,所述前驱体负载在载体材料上的方法包括浸渍法、机械混合法、溶胶凝胶法、气相沉积法、化学沉淀法;所述煅烧的方法是在空气氛围中以1-5℃/min升温速率升温至380-450℃,煅烧时间为3.5-5.5h。
优选的,所述金属氧化物为ZnO和CuO两种复配,所述ZnO和CuO的质量比为:ZnO:CuO=5-15:1-5。
优选的,所述金属氧化物为ZnO、CuO和CeO2三种复配,所述ZnO、CuO和CeO2的质量比为:ZnO:CuO:CeO2=5-15:1-5:1-5。
优选的,所述金属氧化物为ZnO、CuO、CeO2和CrO3四种复配,或ZnO、CuO、MoO3和CrO3四种复配,所述ZnO、CuO、CeO2和CrO3的质量比为:CrO3:MnO:ZnO:CeO2=5-15:1-5:1-5:1-5;或ZnO、CuO、MoO3和CrO3的质量比为:ZnO:CuO:MoO3:CrO3=5-15:1-5:1-5:1-5。
优选的,所述ZnO的前驱体为硝酸锌;所述CuO的前驱体为硝酸铜或氯化铜;所述MoO3的前驱体为钼酸铵;所述CeO2的前驱体为硝酸铈、硝酸铈铵;所述CrO3的前驱体为硝酸铬或氯化铬。
所述所述载体材料为硅胶、硅铝分子筛、纯硅分子筛或氧化铝。
优选的,将已经吸附脱硫反应后的负载型金属氧化物双功能催化吸附脱硫剂固定床床层先通氮气热处理进行油品回收,后通空气对所述脱硫剂固定床床层进行热再生,脱硫剂固定床床层即可循环使用;所述热再生温度为300~650℃;再生时间为2~6h。
本发明的有益效果:
(1)负载型金属氧化物双功能催化吸附脱硫剂同时具备催化和吸附两个功能。以燃料中添加的有机过氧化物为氧化剂,在常温常压下,可在负载型金属氧化物双功能催化吸附脱硫剂表面将燃料中的有机硫转化成极性较强的有机硫砜,脱硫剂中的金属氧化物可催化氧化反应;与此同时,所产生的有机硫砜会在负载型金属氧化物双功能催化吸附脱硫剂表面发生较强的吸附,从而实现燃料高效深度脱硫。
(2)该脱硫方法采用负载型金属氧化物为双功能催化吸附材料,添加有机过氧化物为氧化剂,脱硫成本低。
(3)本发明一步法催化和吸附耦合脱硫技术,工艺简单,可在常温常压下操作,能耗低。
(4)本发明中的负载型金属氧化物双功能催化吸附材料可再生循环使用。
(5)本发明中过氧化物和燃料中有机硫以及负载型金属氧化物双功能催化吸附脱硫剂合适的配比可以使燃料中的有机硫脱除效率更高,因为脱硫剂过少,脱硫剂催化氧化和吸附会饱和而达不到有效脱除燃料中有机硫的目的,如果脱硫剂或者过氧化物过多,不能有效发挥脱硫剂和过氧化物的作用,增加脱硫成本。
(6)本发明的负载型金属氧化物双功能催化吸附脱硫剂的比表面积、孔径尺寸、孔容等性能参数优越,更利于催化氧化吸附脱硫。
(7)本发明在研究负载型金属氧化物双功能催化吸附脱硫剂的基础上还研究了不同金属氧化物的复配对于燃料中的应用效果具有优越的效果。
具体实施方式
下面对本发明的具体实施方式作进一步说明:
(1)负载型金属氧化物双功能催化吸附脱硫剂。负载型金属氧化物双功能催化吸附脱硫剂的制备方法是将金属氧化物的前驱体负载在载体材料上,再将前驱体和载体的混合物通过煅烧得到所述的负载型金属氧化物双功能催化吸附脱硫剂,所述前驱体负载在载体材料上的方法包括浸渍法、机械混合法、溶胶凝胶法、气相沉积法、化学沉淀法。
(2)负载型金属氧化物双功能催化吸附脱硫剂的燃料脱硫方法。将有机过氧化物加入含有机硫的燃料中混合,得到含有机过氧化物的燃料;将上述燃料通过负载型金属氧化物双功能催化吸附脱硫剂固定床床层,进行室温下的催化氧化吸附耦合反应,从而实现燃料的反应性深度吸附脱硫;先通氮气热处理进行油品回收,后通空气对负载型金属氧化物双功能催化吸附脱硫剂固定床床层进行热再生,催化吸附脱硫剂固定床床层即可循环使用。
实施例1
(1)负载型ZnO双功能催化吸附脱硫剂的制备:
按ZnO/载体质量比为10wt.%的比例称取0.204g Zn(NO3)2.6H2O溶于0.375mL的去离子水中;称取0.5g活化后的工业级MCM-41分子筛,在超声氛围下充分搅拌并逐滴滴加Zn(NO3)2溶液,滴加结束后继续超声45min;将混合物放入100℃烘箱干燥2h;干燥后收集粉末于坩埚中,在马弗炉中以1.5℃/min的升温速率升至400℃时煅烧4h,自然降温至室温制得负载型ZnO双功能催化吸附脱硫剂。
(2)负载型ZnO双功能催化吸附脱硫剂的燃料脱硫方法:
按有机过氧化物和有机硫的摩尔比为6的比例将过氧化氢异丙苯加入柴油中混合,得到含有机过氧化物的柴油;将上述柴油通过负载型ZnO双功能催化吸附脱硫剂固定床床层,进行室温下的催化氧化吸附耦合反应0.5h,从而实现燃料的反应性深度吸附脱硫;将热氮气通过反应后的负载型ZnO双功能催化吸附脱硫剂固定床床层进行油品回收,后通空气对负载型ZnO双功能催化吸附脱硫剂固定床床层在500℃下进行热再生4h,催化吸附材料固定床床层即可循环使用。该工艺可将50ppmw-S的国IV柴油处理到9ppmw-S获国V超清洁柴油,处理量为80L/kg-催化吸附脱硫剂。
实施例2
(1)负载型CuO双功能催化吸附脱硫剂的制备:
将CuO的前驱体为硝酸铜1.0g前驱体溶于去离子水,按CuO/载体质量比为10wt.%的比例将CuO的前驱体溶液均匀负载到硅胶载体材料上,超声浸渍,充分混合;将混合物放入烘箱干燥,研磨,在空气的氛围中以1.5℃/min的升温速率至400℃下煅烧4h,便制得负载型CuO双功能催化吸附脱硫剂。
(2)负载型CuO双功能催化吸附脱硫剂的燃料脱硫新工艺:
按有机过氧化物和有机硫的摩尔比为16的比例将过氧苯甲酸加入柴油中混合,得到含有机过氧化物的柴油;将上述柴油通过负载型CuO双功能催化吸附脱硫剂固定床床层,进行室温下的催化氧化吸附耦合反应1h,从而实现燃料的反应性深度吸附脱硫;将热氮气通过反应后的负载型CuO双功能催化吸附脱硫剂固定床床层进行油品回收,后通空气对负载型CuO双功能催化吸附脱硫剂固定床床层在400℃下进行热再生4h,催化吸附材料固定床床层即可循环使用。该工艺可将10ppmw-S的国V柴油处理到1ppmw-S获零硫柴油,处理量为120L/kg-催化吸附脱硫剂。
实施例3
(1)负载型ZnO/CuO双功能催化吸附脱硫剂的制备:
将ZnO前驱体硝酸锌和CuO前驱体硝酸铜按质量比为5:1混合,共计2.0g溶于去离子水中,按(ZnO和CuO)/载体质量比为15wt.%的比例将ZnO和CuO的前驱体溶液均匀负载到硅铝分子筛载体材料上,超声浸渍,充分混合;将混合物放入烘箱干燥,研磨,在空气的氛围中以1.5℃/min的升温速率升至400℃下煅烧5h,便制得负载型ZnO/CuO双功能催化吸附脱硫剂。
(2)负载型ZnO/CuO双功能催化吸附脱硫剂的燃料脱硫新工艺:
按有机过氧化物和有机硫的摩尔比为8的比例将过氧化氢异丙苯加入汽油中混合,得到含有机过氧化物的汽油;将上述汽油通过负载型ZnO和CuO双功能催化吸附脱硫剂固定床床层,进行室温下的催化氧化吸附耦合反应1.5h,从而实现燃料的反应性深度吸附脱硫;将热氮气通过反应后的负载型ZnO/CuO双功能催化吸附脱硫剂固定床床层进行油品回收,后通空气对负载型ZnO/CuO双功能催化吸附脱硫剂固定床床层在500℃下进行热再生3h,催化吸附材料固定床床层即可循环使用。该工艺可将50ppmw-S的国IV汽油处理到10ppmw-S获国V超清洁汽油,处理量为50L/kg-催化吸附材料。
实施例4
(1)负载型ZnO/CuO/CeO2复配双功能催化吸附脱硫剂的制备:
按金属氧化物/载体质量比为15wt.%的比例称取0.09g ZnO/CuO/CeO2的前驱体硝酸锌、硝酸铜、硝酸铈,其中ZnO:CuO:CeO2=5:1:1,以及0.5g纯硅分子筛分别置于两个瓷舟中,并暴露在50℃氮气氛围中吹扫30min;在管式炉中控制氮气流速为50mL/min,以2℃/min的升温速率加热两个瓷舟,待其升到400℃维持4h后降温得到负载型ZnO/CuO/CeO2复配双功能催化吸附脱硫剂。
(2)负载型ZnO/CuO/CeO2复配双功能催化吸附脱硫剂的燃料脱硫新工艺:
按有机过氧化物和有机硫的摩尔比为10的比例将过氧苯甲酸加入汽油中混合,得到含有机过氧化物的汽油;将上述汽油通过负载型ZnO/CuO/CeO2复配双功能催化吸附脱硫剂固定床床层,进行室温下的催化氧化吸附耦合反应2h,从而实现燃料的反应性深度吸附脱硫;将热氮气通过反应后的负载型ZnO/CuO/CeO2双功能催化吸附脱硫剂固定床床层进行油品回收,后通空气对负载型ZnO/CuO/CeO2复配双功能催化吸附脱硫剂固定床床层在500℃下进行热再生6h,催化吸附材料固定床床层即可循环使用。该工艺可将10ppmw-S的国V汽油处理到1ppmw-S获国零硫汽油,处理量为30L/kg-催化吸附材料。
实施例5
(1)负载型ZnO/CuO/CeO2/Cr2O3双功能催化吸附脱硫剂的制备:
将ZnO/CuO/CeO2/Cr2O3的前驱体硝酸锌、硝酸铜、硝酸铈、硝酸铬前驱体1.0g溶于去离子水中,其中ZnO:CuO:CeO2:Cr2O3=5:1:1:1,按(ZnO/CuO/CeO2/Cr2O3)/载体质量比为12wt.%的比例将ZnO/CuO/CeO2/Cr2O3的前驱体溶液均匀负载到纯硅分子筛载体材料上,超声浸渍,充分混合;将混合物放入烘箱干燥,研磨,在空气的氛围中以1.5℃/min的升温速率升至400℃下煅烧2h,便制得负载型ZnO/CuO/CeO2/Cr2O3双功能催化吸附脱硫剂。
(2)负载型ZnO/CuO/CeO2/Cr2O3双功能催化吸附脱硫剂的燃料脱硫新工艺:
按有机过氧化物和有机硫的摩尔比为15的比例将过氧化氢异丙苯加入柴油中混合,得到含有机过氧化物的柴油;将上述柴油通过负载型ZnO/CuO/CeO2/Cr2O3双功能催化吸附脱硫剂固定床床层,进行室温下的催化氧化吸附耦合反应1h,从而实现燃料的反应性深度吸附脱硫;将热氮气通过反应后的负载型ZnO/CuO/CeO2/Cr2O3双功能催化吸附脱硫剂固定床床层进行油品回收,后通空气对负载型ZnO/CuO/CeO2/Cr2O3双功能催化吸附脱硫剂固定床床层在400℃下进行热再生2h,催化吸附材料固定床床层即可循环使用。该工艺可将10ppmw-S的国V柴油处理到1ppmw-S获零硫柴油,处理量为130L/kg-催化吸附材料。
实施例6
(1)负载型ZnO/CuO/CeO2/MoO3双功能催化吸附脱硫剂的制备:
将ZnO/CuO/CeO2/MoO3的前驱体硝酸锌、硝酸铜、硝酸铈、钼酸铵前驱体1.0g溶于去离子水中,其中ZnO:CuO:CeO2:MoO3=5:1:1:2,按(ZnO/CuO/CeO2/MoO3)/载体质量比为12wt.%的比例将ZnO/CuO/CeO2/Cr2O3的前驱体溶液均匀负载到硅铝分子筛载体材料上,超声浸渍,充分混合;将混合物放入烘箱干燥,研磨,在空气的氛围中以1.5℃/min的升温速率升至400℃下煅烧2h,便制得负载型ZnO/CuO/CeO2/MoO3双功能催化吸附脱硫剂。
(2)负载型ZnO/CuO/CeO2/MoO3双功能催化吸附脱硫剂的燃料脱硫新工艺:
按有机过氧化物和有机硫的摩尔比为9的比例将过氧化氢异丙苯加入柴油中混合,得到含有机过氧化物的柴油;将上述柴油通过负载型ZnO/CuO/CeO2/MoO3双功能催化吸附脱硫剂固定床床层,进行室温下的催化氧化吸附耦合反应1h,从而实现燃料的反应性深度吸附脱硫;将热氮气通过反应后的负载型ZnO/CuO/CeO2/MoO3双功能催化吸附脱硫剂固定床床层进行油品回收,后通空气对负载型ZnO/CuO/CeO2/MoO3双功能催化吸附脱硫剂固定床床层在400℃下进行热再生2h,催化吸附材料固定床床层即可循环使用。该工艺可将50ppmw-S的国V柴油处理到5ppmw-S获零硫柴油,处理量为50L/kg-催化吸附材料。
实施例7
本发明提出一种负载型金属氧化物双功能催化吸附脱硫的燃料脱硫方法,其孔隙结构、燃油脱硫性能和再生性能如下:
(1)孔隙结构
采用美国Micromeritics ASAP 2010型比表面积和孔隙分布测试仪测试了本发明制备的系列负载型金属氧化物双功能催化吸附脱硫的比表面积(SBET)、孔径分布(Poresize)和孔容(VTotal),结果如表1所示。表1示出,其中实施例1-5负载型金属氧化物双功能催化吸附材料的比表面积在100~800m2/g范围,孔径尺寸在1.5~10nm范围,孔容在0.2~0.8cm3/g范围,其中对比例1-11是调整了样品中相应的变量对比,检测孔结构数据。
表1本发明不同金属/Si摩尔比的金属-Si-O双功能催化吸附剂的孔结构参数
Figure GDA0001608649920000071
Figure GDA0001608649920000081
从上述表1的结果得知,实施例1和2和对比例1-3表明,采用本发明中金属氧化物和载体的质量配比得到孔结构参数更优异;从实施例3-5与实施例1-2对比可以看出,采用本发明的多元复配比的效果比单元要好;从实施例3-5与对比例4-11可以看出,采用多元复配时,每种金属氧化物在本发明的合理配比下效果更优。
(2)燃油脱硫性能(超低硫燃油产率)的测定
应用ANTEK 9000系列硫氮元素分析仪检测燃油中总硫含量,仪器测量误差为<0.5ppmw-S,超低硫燃油产率(L/kg-催化吸附材料)为负载型金属氧化物双功能催化吸附脱硫剂在1ppmw-S时的透过吸附量。表2示出实施例应用负载型金属氧化物双功能催化吸附脱硫剂进行反应性催化吸附耦合脱硫的吸附透过曲线。它显示,表2实施例1-5和对比例1-11的超低硫燃油(<1ppmw-S)产率分别为L/kg-催化吸附材料。其中表3中是调整了有机过氧化物与燃料中有机硫的比例以及脱硫剂与有机硫的比例,用以研究最有效率的脱硫参数。
表2
Figure GDA0001608649920000082
Figure GDA0001608649920000091
从上述表2可以看出,实施例1-6的脱硫吸附产率明显高于对比例1-3,从实施例3-6与对比例4-13可以看出,采用多元复配时,每种金属氧化物在本发明的合理配比下效果脱硫吸附产率更好。
表3
Figure GDA0001608649920000092
Figure GDA0001608649920000101
从表3结果可得知,从实施例1-6与对比例14-31可以看出,有机过氧化物与燃料中有机硫的比例以及脱硫剂与有机硫的比例在本发明的合理配比下效果脱硫吸附产率更好。
(3)负载型金属氧化物双功能催化吸附脱硫剂循环再生性能的测定
将热氮气通过反应后的负载型金属氧化物双功能催化吸附脱硫剂床层进行油品回收,后通空气对负载型金属氧化物双功能催化吸附脱硫剂床层在一定温度下进行热再生,催化吸附材料床层即可循环使用。表4示出实施例1-6应用负载型金属氧化物双功能催化吸附脱硫剂三次循环使用的超低硫燃油产率,效果见表4。它显示,负载型金属氧化物双功能催化吸附脱硫剂可经过热空气氧化的方法完全再生循环使用。
表4
产率L/kg-催化吸附材料 再生后产率L/kg-催化吸附材料
实施例1 80 79
实施例2 120 118
实施例3 150 150
实施例4 30 30
实施例5 130 128
实施例6 50 50
从表4结果可以看出,本发明制备的负载型金属氧化物双功能催化吸附脱硫剂在燃料中脱硫方法中可以再生利用,再生后的效果几乎与原生相同,再生利用率达到98%以上。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (5)

1.一种用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法,其特征在于,将有机过氧化物加入含有机硫的燃料中混合,得到含有机过氧化物的燃料;将所述含有机过氧化物的燃料通过负载型金属氧化物双功能催化吸附脱硫剂的固定床床层,室温下进行催化氧化吸附耦合反应0.5~2 h,实现燃料的反应性深度吸附脱硫;
所述脱硫剂包括载体以及负载在载体上的金属氧化物,所述金属氧化物为ZnO、CuO、CeO2和Cr2O3四种复配,所述ZnO、CuO、CeO2和Cr2O3的质量比为:ZnO:CuO:CeO2:Cr2O3= 5:1:1:1;所述脱硫剂中金属氧化物质量占载体质量的12wt.%,所述载体材料为纯硅分子筛;
所述负载型金属氧化物双功能催化吸附脱硫剂的比表面积为380 m2/g,孔径尺寸为6.0nm,孔容为0.5 cm3/g。
2.根据权利要求1所述的用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法,其特征在于,所述含有机硫的燃料为柴油或汽油;所述有机过氧化物为过氧化氢异丙苯、过氧苯甲酸或过氧化氢叔丁醇;所述有机过氧化物与燃料中有机硫的摩尔比为5~18:1。
3.根据权利要求1所述的用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法,其特征在于,所述负载型金属氧化物双功能催化吸附脱硫剂的制备方法是将金属氧化物的前驱体负载在载体材料上,再将前驱体和载体的混合物通过煅烧得到所述的负载型金属氧化物双功能催化吸附脱硫剂,所述前驱体负载在载体材料上的方法包括浸渍法、机械混合法、溶胶凝胶法、气相沉积法、化学沉淀法。
4.根据权利要求1所述的用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法,其特征在于,所述ZnO的前驱体为硝酸锌;所述CuO的前驱体为硝酸铜或氯化铜;所述CeO2的前驱体为硝酸铈、硝酸铈铵;所述CrO3的前驱体为硝酸铬或氯化铬。
5.根据权利要求1所述的用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法,其特征在于,将已经吸附脱硫反应后的负载型金属氧化物双功能催化吸附脱硫剂固定床床层先通氮气热处理进行油品回收,后通空气对所述脱硫剂固定床床层进行热再生,脱硫剂固定床床层即可循环使用;所述热再生温度为300~650 ℃;再生时间为2~6 h。
CN201711133814.2A 2017-07-18 2017-11-16 一种用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法 Active CN108003920B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017105868349 2017-07-18
CN201710586834 2017-07-18

Publications (2)

Publication Number Publication Date
CN108003920A CN108003920A (zh) 2018-05-08
CN108003920B true CN108003920B (zh) 2020-12-04

Family

ID=62052527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711133814.2A Active CN108003920B (zh) 2017-07-18 2017-11-16 一种用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法

Country Status (1)

Country Link
CN (1) CN108003920B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109569516B (zh) * 2018-12-29 2020-09-15 内蒙古金达威药业有限公司 一种混合吸附剂及其应用和多不饱和脂肪酸的处理方法和设备
CN110479363A (zh) * 2019-08-29 2019-11-22 太原理工大学 一种高性能ZnCr/SAPO-34双功能催化剂的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195445A (ja) * 2002-12-17 2004-07-15 Toshiaki Kabe 有機硫黄化合物を含有する液体の酸化方法、酸化触媒、酸化脱硫方法および酸化脱硫装置
CN101805632A (zh) * 2010-03-31 2010-08-18 南开大学 氧化硅负载的钼系催化剂用于柴油催化氧化脱硫的方法
CN104919025A (zh) * 2012-11-09 2015-09-16 沙特阿拉伯石油公司 氧化性脱硫方法和使用气态氧化剂增强的进料的系统
CN105112089A (zh) * 2015-09-15 2015-12-02 华东理工大学 一种燃料油低温氧化脱硫的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844518B1 (fr) * 2002-09-16 2006-05-12 Inst Francais Du Petrole Procede de desulfuration sans consommation d'hydrogene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195445A (ja) * 2002-12-17 2004-07-15 Toshiaki Kabe 有機硫黄化合物を含有する液体の酸化方法、酸化触媒、酸化脱硫方法および酸化脱硫装置
CN101805632A (zh) * 2010-03-31 2010-08-18 南开大学 氧化硅负载的钼系催化剂用于柴油催化氧化脱硫的方法
CN104919025A (zh) * 2012-11-09 2015-09-16 沙特阿拉伯石油公司 氧化性脱硫方法和使用气态氧化剂增强的进料的系统
CN105112089A (zh) * 2015-09-15 2015-12-02 华东理工大学 一种燃料油低温氧化脱硫的方法

Also Published As

Publication number Publication date
CN108003920A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
Wang et al. Insights into co-doping effect of Sm and Fe on anti-Pb poisoning of Mn-Ce/AC catalyst for low-temperature SCR of NO with NH3
Yao et al. Research progress on the catalytic elimination of atmospheric molecular contaminants over supported metal-oxide catalysts
CN109833847B (zh) 一种镍氧化物改性的多孔氮化硼吸附剂及其制备方法
CN108003920B (zh) 一种用负载型金属氧化物双功能催化吸附脱硫剂的燃料氧化脱硫方法
CN108187605A (zh) 一种负载型氢氧化物高选择性汽油吸附深度脱硫剂及其制备方法
CN104667861B (zh) 一种用于汽油的脱硫吸附剂及汽油的脱硫方法
Ren et al. Purification of yellow phosphorus tail gas for the removal of PH 3 on the spot with flower-shaped CuO/AC
Feng et al. Mechanistic investigation of Sm doping effects on SO2 resistance of W-Zr-ZSM-5 catalyst for NH3-SCR
CN104525100B (zh) 一种负载型TiO2双功能催化吸附材料及其制备方法与燃料脱硫工艺
CN112844317B (zh) 一种高分散金属或金属氧化物掺杂吸附剂、制备方法及其应用
CN109894118B (zh) 一种镍基加氢催化剂及其应用
CN109721027B (zh) 甲烷硫化氢重整反应制氢的方法
Jin et al. Ultra-deep desulfurization via reactive adsorption on nickel and zinc species supported on activated carbon
CN112705244B (zh) 一种三维有序介孔钼基催化剂及其制备方法和应用
Wang et al. Efficient removal of HCN through catalytic hydrolysis and oxidation on Cu/CoSPc/Ce metal-modified activated carbon under low oxygen conditions
CN109248689B (zh) 一种大孔氧化物催化剂
CN106492797B (zh) 一种Ag2O@Ti-Ce-O双功能催化吸附脱硫剂及其制备方法和应用
CN112138625B (zh) 一种用于超深度脱除焦炉煤气中噻吩的吸附脱硫剂及其制备方法
CN105536689A (zh) 一种负载型脱砷剂及其制备方法
CN104028217A (zh) 一种汽油高选择性吸附脱硫剂及制备方法和应用
CN115301217B (zh) 一种深度脱除高炉煤气中硫化氢和羰基硫的吸附剂及其制备方法和应用
CN104028215B (zh) 一种汽油高选择性吸附脱硫剂及其制备方法和应用
CN113797930B (zh) 用于脱硫的复合材料及其制备方法与脱硫工艺
KR102223603B1 (ko) 일산화탄소의 선택적 흡착을 위한 흡착제 제조 방법
Hu et al. Metal-organic framework assisted preparation of α-Fe2O3 for selective catalytic reduction of NOX with NH3

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant