CN107986374A - 生物吸附材料与树脂基复合材料协同脱除水中氟的方法 - Google Patents

生物吸附材料与树脂基复合材料协同脱除水中氟的方法 Download PDF

Info

Publication number
CN107986374A
CN107986374A CN201711221976.1A CN201711221976A CN107986374A CN 107986374 A CN107986374 A CN 107986374A CN 201711221976 A CN201711221976 A CN 201711221976A CN 107986374 A CN107986374 A CN 107986374A
Authority
CN
China
Prior art keywords
small
water
adsorption material
biological adsorption
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711221976.1A
Other languages
English (en)
Inventor
黄凯
孙建刚
熊略
周洪宇
李亚强
刘俊友
尹衍利
黄瑛
彭隆洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201711221976.1A priority Critical patent/CN107986374A/zh
Publication of CN107986374A publication Critical patent/CN107986374A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了生物吸附材料与树脂基复合材料组合而协同脱除水中氟的方法,所述方法深度脱除水中微量氟,其设计思路在于利用生物吸附材料制作方便、便宜、吸附效果好等突出优势,而将负载型树脂基材料在深度净化方面的独特优势有机结合,构成一种紧密的组合处理方案,充分发挥两种吸附材料的各自不可替代的优势,来实现对地下水源作为饮用水氟超标问题的更好解决。

Description

生物吸附材料与树脂基复合材料协同脱除水中氟的方法
技术领域
本发明属于纳米材料除杂的技术领域,具体涉及一种生物吸附材料与树脂基复合材料协同脱除水中氟的方法。
背景技术
地下水作为饮用水源,其中的氟超标现象在全世界范围内都是一个普遍的问题,比如我国北方、南亚次大陆的广大地区、东部非洲、北美地区等。水中含有适量的氟(<0.5mg/L)有利于防止龋齿,但是超标的水源(>1.5mg/L)长期饮用则会引起氟斑牙、氟骨症。如何高效、安全地净化脱除饮用水源中的超标氟,是一个很值得深入研发的方向。吸附法无疑具有很好的应用前景,但是常见的活性氧化铝、骨炭、稀土金属氧化物等吸附材料,在实用化过程中,仍然存在一些问题需要解决,比如溶损残留的铝如何解决,骨炭的加工性能稳定性和干净性等挑战,以及稀土金属氧化物的工程化操作适用性等,都是现实中需要解决的问题。开发更高效、更容易工程大规模实用化的先进净化技术,一直以来都是该领域的一个热点。
发明内容
为了解决上述问题,本发明提供一种生物吸附材料与树脂基复合材料协同脱除水中氟的方法,所述方法通过将生物吸附材料与树脂基复合材料有机结合,构成一种紧密的组合处理方案,来实现对地下水源进行去氟处理,所述生物吸附材料与树脂基复合材料均可再生循环使用;
进一步地,所述方法包括以下步骤:
1)生物吸附材料的基体制备:选择具有-COOH、酚-OH或-NH2功能团的生物质材料,将其破碎、筛分成过20目筛的粒度,依次在1M NaCl、1M NaOH和1M HCl中浸泡24小时;
2)将步骤1)制备的生物吸附材料,按照1g/5ml~1g/50ml的固液比例,投入到含有高价金属离子的水溶液中,其中金属离子的浓度控制在0.01~1M,pH值控制在1~7之间;
3)分离出其中的生物质吸附颗粒,投入到0.1~1M的NaOH溶液中,固液比例同步骤2)所述,搅拌浸泡10小时后,分离收集固体,水洗至中性后,烘干,制得具有脱除水中氟离子的生物吸附材料;
4)将阳离子树脂材料,按照1g/5ml~1g/50ml的固液比例,投入到含有高价金属离子的水溶液中,其中,高价金属离子的浓度控制在0.01~1M,pH值控制在1~7之间;
5)分离出其中的树脂颗粒,投入到0.1~1M的NaOH溶液中,固液比例同步骤4)所述,搅拌浸泡10小时后,分离收集树脂,水洗至中性后,烘干,制得具有脱除水中氟离子的树脂基吸附材料;
6)组合协同吸附脱除水中氟的操作步骤:取含氟离子1~10mg/L的水,按照1~10g/L的比例,投入步骤3)制备的生物吸附材料,搅拌吸附0.5~5小时后,过滤脱去吸附材料;将以上处理后的滤液以1~10BV/h的流速通过步骤5)制备的离子树脂材料所填充构筑的交换固定床层,直至穿滤出的水中含氟浓度超过1mg/L或1.5mg/L,则停止使用该树脂柱;
进一步地,所述步骤6)中过滤后的交换固定床层采用1~10BV/h流速通以5% NaCl和1MNaOH的混合溶液,溶液量为5BV~10BV单位,完成交换固定床层再生;
进一步地,所述步骤6)中过滤后的生物吸附材料在5% NaCl和1MNaOH的混合溶液进行浸泡2小时,完成生物吸附材料的再生,水洗至中性后可再次用于水的预吸附氟处理,所述混合溶液固液比为1g/5ml;
进一步地,所述步骤4)中阳离子树脂材料的骨架为苯乙烯系或丙烯酸系,阳离子树脂材料的骨架上含有强酸性功能团或者弱酸性功能团;
进一步地,所述步骤3)和5)中的金属氧化物粒度均在10~100nm之间;
进一步地,所述步骤1)中生物质材料包括大蒜皮、柑橘渣和柿子皮;
进一步地,所述步骤2)和4)中所述高价金属包括铁、铝、锆、钛和稀土,高价金属离子的水溶液保持搅拌状态令生物质颗悬浮,温度控制在室温~60摄氏度,保持接触时间1~24小时;
进一步地,其中步骤1)中浸泡过程中每个工序的溶液温度控制在60摄氏度以上,保持搅拌悬浮状态,且每完成一个工序的浸泡,需要经历一次清水洗涤,去除粘附的化学试剂后,再转入到下一道工序;
本发明的有益效果如下:
1)生物吸附材料制备、使用、再生都很方便,且很便宜,用于水源的预处理,可以将其中的氟大部分脱除,虽然深度还不够达到安全饮水的标准,但是大大减小了后级树脂材料吸附脱氟的压力,也显著延长了树脂床层吸附脱氟的达标运行寿命,减小了频繁再生树脂床的次数,因而显著提升了整个组合技术的使用寿命和运行效率;
2)纳米金属氧化物负载型树脂基复合材料,以其将纳米金属氧化物优异的吸附脱氟性能和离子交换树脂成熟的工业操作经验相结合,轻易可实现水中微量元素的深度净化脱除,从而很巧妙地避免了生物吸附材料遇水溶胀、机械强度和刚度不够而不好实施填充柱操作的弊端,实现了水源的深度可控的净化;
3)以上组合方式,真正发挥了生物吸附的独特优点,以及离子交换树脂的工业操作成熟性优点,这一组合设计协同分离净化理念,可以推广到任何相关深度分离和净化问题中去,实现成本和效果的双优化,具有完美的协同净水综合优势。
附图说明
图1为本发明所述生物吸附和离子交换树脂组合深度脱除地下水中氟的原则示意流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。
下面结合附图和具体实施例对本发明作进一步说明,但不作为对本发明的限定。下面为本发明的举出最佳实施例:
如图1所示,本发明提供一种生物吸附材料与树脂基复合材料脱除水中氟的方法,所述方法将生物吸附和纳米材料负载树脂基复合材料吸附协同使用,深度脱除水中微量氟的方法,其设计思路在于利用生物吸附材料制作方便、便宜、吸附效果好等突出优势,而将负载型树脂基材料在深度净化方面的独特优势有机结合,构成一种紧密的组合处理方案,充分发挥两种吸附材料的各自不可替代的优势,来实现对地下水源作为饮用水氟超标问题的更好解决。具体内容包括。
1)生物吸附基体材料的制备:选择具有丰富的天然功能团如-COOH、酚-OH、-NH2等的生物质材料,如大蒜皮、柑橘渣、柿子皮等,将其破碎、筛分成过20目筛的粒度,依次在1MNaCl、1M NaOH、1M HCl中浸泡24小时,其中每个工序的溶液温度控制在60摄氏度以上,保持搅拌悬浮状态,且每完成一个工序的浸泡,需要经历一次清水洗涤,去除粘附的化学试剂后,再转入到下一道工序;
2)负载纳米粒子的生物吸附材料制备:将以上初步改性好的生物吸附材料,按照1g/5ml~1g/50ml的固液比例,投入到含有高价金属离子的水溶液中,这些高价金属离子的浓度控制在0.01~1M,pH值一般控制在1~7之间(具体视金属种类而定),这些高价金属主要指铁、铝、锆、钛、稀土等,保持搅拌状态令生物质颗悬浮,温度控制在室温~60摄氏度均可,保持接触时间1~24小时;然后分离出其中的生物质吸附颗粒,投入到0.1~1M的NaOH溶液中,固液比例同上面所述,搅拌浸泡10小时后,分离收集固体,水洗至中性后,烘干,即可得到具有脱除水中氟离子的生物吸附材料,其中的金属氧化物粒度均在10~100nm之间,因此可谓负载纳米粒子的生物吸附材料。
3)负载纳米粒子的树脂基复合吸附材料制备:将阳离子树脂材料,按照1g/5ml~1g/50ml的固液比例,投入到含有高价金属离子的水溶液中,这些高价金属离子的浓度控制在0.01~1M,pH值一般控制在1~7之间(具体视金属种类而定),这些高价金属主要指铁、铝、锰、锆、钛、稀土等,保持搅拌状态令生物质颗悬浮,温度控制在室温~60摄氏度均可,保持接触时间1~24小时;然后分离出其中的树脂颗粒,投入到0.1~1M的NaOH溶液中,固液比例同上面所述,搅拌浸泡10小时后,分离收集树脂,水洗至中性后,烘干,即可得到具有脱除水中氟离子的树脂基吸附材料,其中的金属氧化物粒度均在10~100nm之间,因此可谓负载纳米粒子的树脂基复合吸附材料。此处的树脂骨架为苯乙烯系或丙烯酸系,树脂骨架上含有强酸性功能团如磺酸基,或者弱酸性功能团如-COOH、磷酸基或酚羟基,载体优先选择D001、D113、Amberlite IR-120、Amberlite IR-200、Amberlite IRA-130等商用树脂品牌。
4)组合协同吸附脱除水中氟的操作步骤:取含氟离子1~10mg/L的水,按照1~10g/L的比例,投入第2)步制备的生物吸附材料,搅拌吸附0.5~5小时后,过滤脱去吸附材料,5%NaCl和1MNaOH的混合溶液进行浸泡2小时,固液比为1g/5ml,即可完成生物吸附材料的再生,水洗至中性后再次用于水的预吸附氟处理;将以上处理后的滤液以1~10BV/h的流速通过第3)步制备的离子树脂材料所填充构筑的交换固定床层,直至穿滤出的水中含氟浓度超过1mg/L(中国国家安全饮水标准)或1.5mg/L(WHO规定的安全饮水标准),则停止使用该树脂柱,然后采用同样的流速通以5% NaCl和1MNaOH的混合溶液,溶液量为5BV~10BV单位再生即可。
本发明在净水方面具有突出的、鲜明的优势,二者结合,可谓相得益彰:
1) 生物吸附材料制备、使用、再生都很方便,且很便宜,用于水源的预处理,可以将其中的氟大部分脱除,虽然深度还不够达到安全饮水的标准,但是大大减小了后级树脂材料吸附脱氟的压力,也显著延长了树脂床层吸附脱氟的达标运行寿命,减小了频繁再生树脂床的次数,因而显著提升了整个组合技术装备的使用寿命和运行效率;
2)纳米金属氧化物负载型树脂基复合材料,以其将纳米金属氧化物优异的吸附脱氟性能和离子交换树脂成熟的工业操作经验相结合,轻易可实现水中微量元素的深度净化脱除,从而很巧妙地避免了生物吸附材料遇水溶胀、机械强度和刚度不够而不好实施填充柱操作的弊端,实现了水源的深度可控的净化。
3)以上组合方式,真正发挥了生物吸附的独特优点,以及离子交换树脂的工业操作成熟性优点,这一组合设计分离净化理念,可以推广到任何相关深度分离和净化问题中去,实现成本和效果的双优化,具有非常完美的协同净水综合优势。
实施例1
称取干燥的大蒜废弃物,破碎、筛分通过80目,抛入1M NaCl中搅拌、加热至50oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次后,加入到1M NaOH溶液中,搅拌、加热至90oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次后,加入到1M HCl溶液中,搅拌、加热至50oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次。以上固液比例均按照1kg/10L配制操作。将大蒜废弃物颗粒,加入到0.1M ZrOCl2溶液中,pH为1.9, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M NaOH溶液搅拌浸泡24小时,即可得到具有脱氟功能的生物吸附材料。以上固液比例均按照1kg/10L配制操作。将D001树脂颗粒,加入到0.1M ZrOCl2溶液中,pH为1.9, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M NaOH溶液搅拌浸泡24小时,即可得到具有脱氟功能的树脂基复合吸附材料。以上固液比例均按照1kg/10L配制操作。取含氟离子10mg/L的水,按照5g/L的比例,投入生物吸附材料,搅拌吸附5小时后,过滤脱去吸附材料,用5% NaCl和1MNaOH的混合溶液进行浸泡2小时,固液比为1kg/5L,收集该生物吸附材料,水洗至中性后再次用于水的预吸附氟处理;将以上处理后的滤液以5BV/h的流速通过离子树脂材料所填充的固定床层,直至穿滤出的水中含氟浓度超过1mg/L,停止使用该树脂柱,然后采用同样的流速通以5% NaCl和1MNaOH的混合溶液,溶液量为5BV单位即可。
实施例2
称取柑橘渣废弃物,破碎、筛分通过80目,抛入1M NaCl中搅拌、加热至60oC,浸泡24小时;将废弃物颗粒收集起来,水洗1次后,加入到1M NaOH溶液中,搅拌、加热至90oC,浸泡24小时;将废弃物颗粒收集起来,水洗1次后,加入到1M HCl溶液中,搅拌、加热至50oC,浸泡24小时;将废弃物颗粒收集起来,水洗1次。以上固液比例均按照1kg/5L配制操作。将废弃物颗粒,加入到0.1M ZrOCl2溶液中,pH为1.9, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M NaOH溶液搅拌浸泡24小时,即可得到具有脱氟功能的生物吸附材料。以上固液比例均按照1kg/10L配制操作。将Amberlite IR-120树脂颗粒,加入到0.1M ZrOCl2溶液中,pH为1.9, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M NaOH溶液搅拌浸泡24小时,即可得到具有脱氟功能的树脂基复合吸附材料。以上固液比例均按照1kg/10L配制操作。取含氟离子5mg/L的水,按照1g/L的比例,投入生物吸附材料,搅拌吸附1小时后,过滤脱去吸附材料,用5% NaCl和1MNaOH的混合溶液进行浸泡2小时,固液比为1kg/2L,收集该生物吸附材料,水洗至中性后再次用于水的预吸附氟处理;将以上处理后的滤液以5BV/h的流速通过离子树脂材料所填充的固定床层,直至穿滤出的水中含氟浓度超过1mg/L,停止使用该树脂柱,然后采用同样的流速通以5% NaCl和1MNaOH的混合溶液,溶液量为5BV单位即可。
实施例3
称取干燥的大蒜废弃物,破碎、筛分通过80目,抛入1M NaCl中搅拌、加热至50oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次后,加入到1M NaOH溶液中,搅拌、加热至90oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次后,加入到1M HCl溶液中,搅拌、加热至50oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次。以上固液比例均按照1kg/10L配制操作。将大蒜废弃物颗粒,加入到0.1M TiOSO4溶液中,pH为2.1, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M NaOH溶液搅拌浸泡24小时,即可得到具有脱氟功能的生物吸附材料。以上固液比例均按照1kg/10L配制操作。将D001树脂颗粒,加入到0.1M TiOSO4溶液中,pH为2.1, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M NaOH溶液搅拌浸泡24小时,即可得到具有脱氟功能的树脂基复合吸附材料。以上固液比例均按照1kg/10L配制操作。取含氟离子10mg/L的水,按照5g/L的比例,投入生物吸附材料,搅拌吸附5小时后,过滤脱去吸附材料,用5% NaCl和1MNaOH的混合溶液进行浸泡2小时,固液比为1kg/5L,收集该生物吸附材料,水洗至中性后再次用于水的预吸附氟处理;将以上处理后的滤液以5BV/h的流速通过离子树脂材料所填充的固定床层,直至穿滤出的水中含氟浓度超过1mg/L,停止使用该树脂柱,然后采用同样的流速通以5% NaCl和1MNaOH的混合溶液,溶液量为5BV单位即可。
实施例4
称取干燥的大蒜废弃物,破碎、筛分通过80目,抛入1M NaCl中搅拌、加热至50oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次后,加入到1M NaOH溶液中,搅拌、加热至90oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次后,加入到1M HCl溶液中,搅拌、加热至50oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次。以上固液比例均按照1kg/10L配制操作。将大蒜废弃物颗粒,加入到0.2M Ce(NO3)3溶液中,pH为2.3, 搅拌、加热至30oC,浸泡18小时;然后过滤、水洗1次,再与0.1M NaOH溶液搅拌浸泡8小时,即可得到具有脱氟功能的生物吸附材料。以上固液比例均按照1kg/5L配制操作。将D113树脂颗粒,加入到0.1M TiOSO4溶液中,pH为2.1, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M NaOH溶液搅拌浸泡24小时,即可得到具有脱氟功能的树脂基复合吸附材料。以上固液比例均按照1kg/10L配制操作。取含氟离子5mg/L的水,按照5g/L的比例,投入生物吸附材料,搅拌吸附5小时后,过滤脱去吸附材料,用5% NaCl和1MNaOH的混合溶液进行浸泡2小时,固液比为1kg/5L,收集该生物吸附材料,水洗至中性后再次用于水的预吸附氟处理;将以上处理后的滤液以5BV/h的流速通过离子树脂材料所填充的固定床层,直至穿滤出的水中含氟浓度超过1mg/L,停止使用该树脂柱,然后采用同样的流速通以5% NaCl和1MNaOH的混合溶液,溶液量为5BV单位即可。
实施例5
称取干燥的柿子皮废弃物,破碎、筛分通过80目,抛入1M NaCl中搅拌、加热至50oC,浸泡24小时;将废弃物颗粒收集起来,水洗1次后,加入到1M NaOH溶液中,搅拌、加热至90oC,浸泡24小时;将废弃物颗粒收集起来,水洗1次后,加入到1M HCl溶液中,搅拌、加热至50oC,浸泡24小时;将废弃物颗粒收集起来,水洗1次。以上固液比例均按照1kg/10L配制操作。将柿子皮废弃物颗粒,加入到0.2M La(NO3)3溶液中,pH为2.5, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M NaOH溶液搅拌浸泡8小时,即可得到具有脱氟功能的生物吸附材料。以上固液比例均按照1kg/10L配制操作。将Amberlite IR-200树脂颗粒,加入到0.1M La(NO3)3溶液中,pH为2.7, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M NaOH溶液搅拌浸泡24小时,即可得到具有脱氟功能的树脂基复合吸附材料。以上固液比例均按照1kg/10L配制操作。取含氟离子5mg/L的水,按照5g/L的比例,投入生物吸附材料,搅拌吸附5小时后,过滤脱去吸附材料,用5% NaCl和1MNaOH的混合溶液进行浸泡2小时,固液比为1kg/5L,收集该生物吸附材料,水洗至中性后再次用于水的预吸附氟处理;将以上处理后的滤液以5BV/h的流速通过离子树脂材料所填充的固定床层,直至穿滤出的水中含氟浓度超过1mg/L,停止使用该树脂柱,然后采用同样的流速通以5% NaCl和1MNaOH的混合溶液,溶液量为5BV单位即可。
实施例6
称取干燥的柿子皮废弃物,破碎、筛分通过80目,抛入1M NaCl中搅拌、加热至50oC,浸泡24小时;将废弃物颗粒收集起来,水洗1次后,加入到1M NaOH溶液中,搅拌、加热至90oC,浸泡24小时;将废弃物颗粒收集起来,水洗1次后,加入到1M HCl溶液中,搅拌、加热至50oC,浸泡24小时;将废弃物颗粒收集起来,水洗1次。以上固液比例均按照1kg/10L配制操作。将柿子皮废弃物颗粒,加入到0.2M FeCl3溶液中,pH为2.3, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M NaOH溶液搅拌浸泡8小时,即可得到具有脱氟功能的生物吸附材料。以上固液比例均按照1kg/10L配制操作。将Amberlite IR-200树脂颗粒,加入到0.1MFe(NO3)3溶液中,pH为2.7, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1MNaOH溶液搅拌浸泡24小时,即可得到具有脱氟功能的树脂基复合吸附材料。以上固液比例均按照1kg/10L配制操作。取含氟离子5mg/L的水,按照5g/L的比例,投入生物吸附材料,搅拌吸附5小时后,过滤脱去吸附材料,用5% NaCl和1MNaOH的混合溶液进行浸泡2小时,固液比为1kg/5L,收集该生物吸附材料,水洗至中性后再次用于水的预吸附氟处理;将以上处理后的滤液以5BV/h的流速通过离子树脂材料所填充的固定床层,直至穿滤出的水中含氟浓度超过1mg/L,停止使用该树脂柱,然后采用同样的流速通以5% NaCl和1MNaOH的混合溶液,溶液量为5BV单位即可。
实施例7
称取干燥的大蒜废弃物,破碎、筛分通过80目,抛入1M NaCl中搅拌、加热至50oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次后,加入到1M NaOH溶液中,搅拌、加热至90oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次后,加入到1M HCl溶液中,搅拌、加热至50oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次。以上固液比例均按照1kg/10L配制操作。将大蒜废弃物颗粒,加入到0.1M AlCl3溶液中,pH为2.6, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M 氨水溶液搅拌浸泡24小时,即可得到具有脱氟功能的生物吸附材料。以上固液比例均按照1kg/10L配制操作。将Amberlite IR-120树脂颗粒,加入到0.1M AlCl3溶液中,pH为2.6, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M 氨水溶液搅拌浸泡24小时,即可得到具有脱氟功能的树脂基复合吸附材料。以上固液比例均按照1kg/10L配制操作。取含氟离子10mg/L的水,按照5g/L的比例,投入生物吸附材料,搅拌吸附5小时后,过滤脱去吸附材料,用5% NaCl和1M氨水的混合溶液进行浸泡2小时,固液比为1kg/5L,收集该生物吸附材料,水洗至中性后再次用于水的预吸附氟处理;将以上处理后的滤液以5BV/h的流速通过离子树脂材料所填充的固定床层,直至穿滤出的水中含氟浓度超过1mg/L,停止使用该树脂柱,然后采用同样的流速通以5% NaCl和1M氨水的混合溶液,溶液量为5BV单位即可。
实施例8
称取干燥的大蒜废弃物,破碎、筛分通过80目,抛入1M NaCl中搅拌、加热至50oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次后,加入到1M NaOH溶液中,搅拌、加热至90oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次后,加入到1M HCl溶液中,搅拌、加热至50oC,浸泡24小时;将大蒜废弃物颗粒收集起来,水洗1次。以上固液比例均按照1kg/10L配制操作。将大蒜废弃物颗粒,加入到0.1M AlCl3溶液中,pH为2.6, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M 氨水溶液搅拌浸泡24小时,即可得到具有脱氟功能的生物吸附材料。以上固液比例均按照1kg/10L配制操作。将Amberlite IRA-130树脂颗粒,加入到0.1M AlCl3溶液中,pH为2.6, 搅拌、加热至30oC,浸泡24小时;然后过滤、水洗1次,再与0.1M 氨水溶液搅拌浸泡24小时,即可得到具有脱氟功能的树脂基复合吸附材料。以上固液比例均按照1kg/10L配制操作。取含氟离子10mg/L的水,按照5g/L的比例,投入生物吸附材料,搅拌吸附5小时后,过滤脱去吸附材料,用5% NaCl和1M氨水的混合溶液进行浸泡2小时,固液比为1kg/5L,收集该生物吸附材料,水洗至中性后再次用于水的预吸附氟处理;将以上处理后的滤液以5BV/h的流速通过离子树脂材料所填充的固定床层,直至穿滤出的水中含氟浓度超过1mg/L,停止使用该树脂柱,然后采用同样的流速通以5% NaCl和1M氨水的混合溶液,溶液量为5BV即可。
以上所述的实施例,只是本发明较优选的具体实施方式的一种,本领域的技术人员在本发明技术方案范围内进行的通常变化和替换都应包含在本发明的保护范围内。

Claims (9)

1.生物吸附材料与树脂基复合材料脱除水中氟的方法,其特征在于,所述方法通过将生物吸附材料与树脂基复合材料有机结合,构成一种紧密的组合处理方案,来实现对地下水源进行去氟处理,所述生物吸附材料与树脂基复合材料均可再生循环使用。
2.根据权利要求1所述的方法,其特征在于,所述方法包括以下步骤:
1)生物吸附材料的基体制备:选择具有-COOH、酚-OH或-NH2功能团的生物质材料,将其破碎、筛分成过20目筛的粒度,依次在1M NaCl、1M NaOH和1M HCl中浸泡24小时;
2)将步骤1)制备的生物吸附材料,按照1g/5ml~1g/50ml的固液比例,投入到含有高价金属离子的水溶液中,其中金属离子的浓度控制在0.01~1M,pH值控制在1~7之间;
3)分离出其中的生物质吸附颗粒,投入到0.1~1M的NaOH溶液中,固液比例同步骤2)所述,搅拌浸泡10小时后,分离收集固体,水洗至中性后,烘干,制得具有脱除水中氟离子的生物吸附材料;
4)将阳离子树脂材料,按照1g/5ml~1g/50ml的固液比例,投入到含有高价金属离子的水溶液中,其中,高价金属离子的浓度控制在0.01~1M,pH值控制在1~7之间;
5)分离出其中的树脂颗粒,投入到0.1~1M的NaOH溶液中,固液比例同步骤4)述,搅拌浸泡10小时后,分离收集树脂,水洗至中性后,烘干,制得具有脱除水中氟离子的树脂基吸附材料;
6)组合协同吸附脱除水中氟的操作步骤:取含氟离子1~10mg/L的水,按照1~10g/L的比例,投入步骤3)制备的生物吸附材料,搅拌吸附0.5~5小时后,过滤脱去吸附材料;将以上处理后的滤液以1~10BV/h的流速通过步骤5)制备的离子树脂材料所填充构筑的交换固定床层,直至穿滤出的水中含氟浓度超过1mg/L或1.5mg/L,则停止使用该树脂柱。
3.根据权利要求2所述的方法,其特征在于,所述步骤6)中过滤后的交换固定床层采用1~10BV/h流速通以5% NaCl和1MNaOH的混合溶液,溶液量为5BV~10BV单位,完成交换固定床层再生。
4.根据权利要求2所述的方法,其特征在于,所述步骤6)中过滤后的生物吸附材料在5%NaCl和1MNaOH的混合溶液进行浸泡2小时,完成生物吸附材料的再生,水洗至中性后可再次用于水的预吸附氟处理,所述混合溶液固液比为1g/5ml。
5.根据权利要求2所述的方法,其特征在于,所述步骤4)中阳离子树脂材料的骨架为苯乙烯系或丙烯酸系,阳离子树脂材料的骨架上含有强酸性功能团或者弱酸性功能团。
6.根据权利要求2所述的方法,其特征在于,所述步骤3)和5)中的金属氧化物粒度均在10~100nm之间。
7.根据权利要求2所述的方法,其特征在于,所述步骤1)中生物质材料包括大蒜皮、柑橘渣和柿子皮。
8.根据权利要求2所述的方法,其特征在于,所述步骤2)和4)中所述高价金属包括铁、铝、锆、钛和稀土,高价金属离子的水溶液保持搅拌状态令生物质颗悬浮,温度控制在室温~60摄氏度,保持接触时间1~24小时。
9.根据权利要求2所述的方法,其特征在于,其中步骤1)中浸泡过程中每个工序的溶液温度控制在60摄氏度以上,保持搅拌悬浮状态,且每完成一个工序的浸泡,需要经历一次清水洗涤,去除粘附的化学试剂后,再转入到下一道工序。
CN201711221976.1A 2017-11-29 2017-11-29 生物吸附材料与树脂基复合材料协同脱除水中氟的方法 Pending CN107986374A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711221976.1A CN107986374A (zh) 2017-11-29 2017-11-29 生物吸附材料与树脂基复合材料协同脱除水中氟的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711221976.1A CN107986374A (zh) 2017-11-29 2017-11-29 生物吸附材料与树脂基复合材料协同脱除水中氟的方法

Publications (1)

Publication Number Publication Date
CN107986374A true CN107986374A (zh) 2018-05-04

Family

ID=62033942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711221976.1A Pending CN107986374A (zh) 2017-11-29 2017-11-29 生物吸附材料与树脂基复合材料协同脱除水中氟的方法

Country Status (1)

Country Link
CN (1) CN107986374A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109289784A (zh) * 2018-10-22 2019-02-01 北京科技大学 利用大蒜秸秆废弃物制作除氟复配吸附材料及应用方法
CN110804111A (zh) * 2019-11-05 2020-02-18 西安蓝深环保科技有限公司 一种除氟高分子材料、其合成方法及其在市政水处理中的应用
CN115448532A (zh) * 2022-08-20 2022-12-09 崇义县金竹矿业有限公司 一种萤石选矿废水的处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269472A (ja) * 1992-03-27 1993-10-19 Kurita Water Ind Ltd アンモニアおよびフッ素イオン含有水の処理方法
CN102001766A (zh) * 2010-10-29 2011-04-06 湖州欣格膜科技有限公司 光伏废水除氟方法
CN102268114A (zh) * 2011-05-24 2011-12-07 南京大学 一种复合功能除氟树脂及其制备方法
CN103395860A (zh) * 2013-08-07 2013-11-20 邱峰 一种净化含氟废水的方法和装置
CN103402624A (zh) * 2010-12-06 2013-11-20 科学与工业研究委员会 用于从水中去除阴离子污染物的有机-无机复合材料及其制备方法
CN104525137A (zh) * 2014-12-04 2015-04-22 安徽农业大学 由茶渣改性制得的除氟生物吸附剂及其制备方法和应用
CN104944501A (zh) * 2015-05-26 2015-09-30 北京科技大学 一种耦合吸附处理高含氟地下水的方法
CN105642241A (zh) * 2014-11-15 2016-06-08 中国科学院理化技术研究所 一种用于除去水中有害阴离子的生物质基吸附材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269472A (ja) * 1992-03-27 1993-10-19 Kurita Water Ind Ltd アンモニアおよびフッ素イオン含有水の処理方法
CN102001766A (zh) * 2010-10-29 2011-04-06 湖州欣格膜科技有限公司 光伏废水除氟方法
CN103402624A (zh) * 2010-12-06 2013-11-20 科学与工业研究委员会 用于从水中去除阴离子污染物的有机-无机复合材料及其制备方法
CN102268114A (zh) * 2011-05-24 2011-12-07 南京大学 一种复合功能除氟树脂及其制备方法
CN103395860A (zh) * 2013-08-07 2013-11-20 邱峰 一种净化含氟废水的方法和装置
CN105642241A (zh) * 2014-11-15 2016-06-08 中国科学院理化技术研究所 一种用于除去水中有害阴离子的生物质基吸附材料及其制备方法
CN104525137A (zh) * 2014-12-04 2015-04-22 安徽农业大学 由茶渣改性制得的除氟生物吸附剂及其制备方法和应用
CN104944501A (zh) * 2015-05-26 2015-09-30 北京科技大学 一种耦合吸附处理高含氟地下水的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109289784A (zh) * 2018-10-22 2019-02-01 北京科技大学 利用大蒜秸秆废弃物制作除氟复配吸附材料及应用方法
CN110804111A (zh) * 2019-11-05 2020-02-18 西安蓝深环保科技有限公司 一种除氟高分子材料、其合成方法及其在市政水处理中的应用
CN115448532A (zh) * 2022-08-20 2022-12-09 崇义县金竹矿业有限公司 一种萤石选矿废水的处理方法
CN115448532B (zh) * 2022-08-20 2023-11-21 崇义县金竹矿业有限公司 一种萤石选矿废水的处理方法

Similar Documents

Publication Publication Date Title
Zhuang et al. Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent
Guo et al. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater
CN107986374A (zh) 生物吸附材料与树脂基复合材料协同脱除水中氟的方法
CN106512936A (zh) 一种水热法制备除氟吸附剂及其应用
Zhang et al. Removal of Cd (II) by modified maifanite coated with Mg-layered double hydroxides in constructed rapid infiltration systems
CN102908997A (zh) 一种复合水处理剂及其制备方法与应用
JP5652559B2 (ja) 磁性粒子を用いた水溶液中のセシウムイオンの除去方法
JP5293863B2 (ja) セシウム吸着剤およびその製造方法
CN110124641B (zh) 一种放射性核素吸附材料及其制备方法和应用
JP5250140B1 (ja) 磁性吸着剤粒子
JP5934738B2 (ja) 吸着剤の造粒方法及び該方法により製造される吸着剤顆粒
CN102527329A (zh) 海藻酸盐/埃洛石纳米管复合多孔球及其制备方法
CN108421536A (zh) 一种埃洛石纳米管/聚吡咯复合吸附剂的制备方法及应用
JP6020449B2 (ja) 水中のセシウムイオンの除去方法及び除去装置
CN113842883B (zh) 一种环境修复用载镧铁碳纳米管薄膜材料及其制备方法与应用
CN109621910A (zh) 纳米零价铁-金属有机框架核壳材料的制备方法及其应用
CN104785198A (zh) 一种碳羟基磷灰石/玻璃粉复合材料及其制备方法和应用
CN107457000B (zh) 一种新型双功能树脂基纳米复合材料制备方法、复合材料及一种水体深度除三价砷的方法
CN103638902A (zh) 一种载镧磁性碳气凝胶微球除氟吸附剂及制备方法
CN108212072A (zh) 一种用于水中铯离子去除的吸附剂及其在Cs吸附中应用
CN105944658A (zh) 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
Zhang et al. Defluorination and regeneration study of lanthanum-doped sewage sludge-based activated carbon
CN106861604A (zh) 一种碳酸钙磁性吸附剂制备方法及其应用
Letechipia et al. Removal of arsenic from semiarid area groundwater using a biosorbent from watermelon peel waste
CN106943998A (zh) 一种用于去除水中亚甲基蓝的磁性活性炭的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180504

RJ01 Rejection of invention patent application after publication