CN107895648A - 纳米CuS粉体与多壁碳纳米管复合电极的制备方法 - Google Patents

纳米CuS粉体与多壁碳纳米管复合电极的制备方法 Download PDF

Info

Publication number
CN107895648A
CN107895648A CN201711125736.1A CN201711125736A CN107895648A CN 107895648 A CN107895648 A CN 107895648A CN 201711125736 A CN201711125736 A CN 201711125736A CN 107895648 A CN107895648 A CN 107895648A
Authority
CN
China
Prior art keywords
carbon nanotube
walled carbon
preparation
combination electrode
cus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711125736.1A
Other languages
English (en)
Inventor
郑威
张易楠
张兢煜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201711125736.1A priority Critical patent/CN107895648A/zh
Publication of CN107895648A publication Critical patent/CN107895648A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

本发明提供了一种纳米CuS粉体与多壁碳纳米管复合电极的制备方法,首先配置一定浓度的Cu(CH3COO)2乙醇溶液,然后将Na2S、多壁碳纳米管加入到乙醇中,在高速搅拌的条件下,向其逐滴加入Cu(CH3COO)2乙醇溶液,加入一定量后,离心,干燥,得到复合粉体,将复合粉体与粘结剂、分散剂、乙醇混合,并在水浴锅中不断搅拌,最后在基体上通过旋涂以及热处理等过程,获得纳米CuS粉体与多壁碳纳米管复合电极。本发明提供的制备纳米CuS粉体与多壁碳纳米管复合电极的方法,一步形成复合粉体,制备方法简单,具有极好的光电性能,适合批量生产,极大的降低了对电极的制备成本,具有很好的市场前景。

Description

纳米CuS粉体与多壁碳纳米管复合电极的制备方法
技术领域
本发明属于电池中的电极领域,涉及一种纳米CuS粉体与多壁碳纳米管复合电极的制备方法。
背景技术
随着科技的发展,电池的种类越来越多,应用的领域也越来越广泛,人们致力于制造充电更快,电能储量更大的电池。电极作为电池重要的一部分,引起了人们越来越多的关注。
碳纳米管作为一种碳材料具有优异的光电性能,稳定性高,常用作电极材料,并且碳纳米管能够相互交结,形成网状结构,更有利于电子的传输。但是碳纳米管作为对电极,经组装形成的太阳能电池,其光电性能仍然比贵金属Pt作为对电极组装的电池低,然而稳定性却比贵金属Pt好很多。
金属硫化物半导体,具有良好物理、化学性能,是一种新的作为对电极的材料。CuS在聚硫化物电解液系统中展现出非常高的电催化活性,并且在量子点太阳能电池中,与多硫化物电解液、量子点光阳极同为硫元素的体系,避免了三者之间的相互作用,进而提高光电性能。
因此,将多壁碳纳米管与CuS结合在一起,利用碳纳米管的稳定性以及导电性,加上CuS的优良的电催化性能,利用简单的方法将其结合一起,形成复合粉体,使其达到协同效应,得到操作简单,成本低的电极。
发明内容
本发明的目的在于提供一种稳定性比Pt好,制备工艺简单,成本比贵金属Pt低,适合工业化生产的纳米CuS粉体与多壁碳纳米管复合电极的制备方法。本发明提供的纳米CuS粉体与多壁碳纳米管复合电极的制备方法,首先制备纳米CuS与多壁碳纳米管复合粉体,然后制备溶胶,最终在基体上通过旋涂以及热处理等过程,得到电极。本发明提供的纳米CuS粉体与多壁碳纳米管复合电极的制备,生产工艺简单,适合批量化生产,具有优良的电学性能,稳定性高,尤其在太阳能电池领域。
为了实现上述发明的目的,本发明采用以下技术方案予以实现:
纳米CuS粉体与多壁碳纳米管复合电极的制备方法,它包括以下步骤:
(1) 将酸处理的多壁碳纳米管加入到无水乙醇中,再向其加入Na2S,充分搅拌,并配置一定浓度的Cu(CH3COO)2乙醇溶液,逐滴加入上述混合物中,在超声下强烈搅拌一段时间,离心,干燥,得到复合粉体;
(2) 将复合粉体置于无水乙醇中搅拌,加入适量的分散剂以及粘结剂,并在水浴锅中强烈搅拌,得到胶体;
(3) 将胶体均匀的涂覆在事先清洗好的FTO导电玻璃上形成薄膜;
(4)待制备好的薄膜干燥后,将涂有薄膜的玻璃基体放入马弗炉中热处理2 h得到纳米CuS粉体与多壁碳纳米管复合电极。
进一步的,所述步骤(1)中的Cu(CH3COO)2乙醇溶液浓度为0.001-0.1mol/L。
进一步的,所述步骤(2)中的纳米CuS与多壁碳纳米管复合粉体与无水乙醇的质量比为1:800-1500。
进一步的,所述步骤(2)中的OP乳化剂在无水乙醇中的用量为5-15 phr。
进一步的,所述步骤(2)中的乙基纤维素的无水乙醇溶液浓度为0.5-3g / ml。
进一步的,所述步骤(2)中的水浴锅温度为50-80℃。
具体实施方式
本实施例所述的纳米CuS粉体与多壁碳纳米管复合电极的制备方法包括以下步骤:
1 将200 mg酸处理的多壁碳纳米管加入到20 ml乙醇中,充分搅拌,并将37.53 mg的Na2S加入其中,继续搅拌;
2 取31.20 mg Cu(CH3COO)2溶于5 ml乙醇溶液,超声震荡30 min,然后以每秒一滴的速率加入到上述溶液中,并强烈搅拌2 h,离心,干燥,得到复合粉体;
3 取40 mg复合粉体加入到20 ml无水乙醇中,超声震荡0.5 h,加入1.4 ml的OP乳化剂做分散剂,继续超声震荡0.5 h,加入0.2 g乙基纤维素为粘结剂制备悬浮溶液,在70 ℃的水浴锅中强烈搅拌2 h后得到胶体;
4 通过旋涂法,将上述溶液均匀的涂覆在FTO导电玻璃上,待其晾干,在400 ℃的马弗炉中烧结2 h,最终得到所需的纳米CuS粉体与多壁碳纳米管复合电极。

Claims (6)

1.纳米CuS粉体与多壁碳纳米管复合电极的制备方法,其特征在于它包括以下步骤:
(1) 将酸处理的多壁碳纳米管分散到无水乙醇中,不断搅拌,所述多壁碳纳米管与乙醇的质量比为1:500-1000;将Na2S加入到上述混合物中,充分搅拌,并配置一定浓度的Cu(CH3COO)2乙醇溶液,向上述混合物中逐滴加入Cu(CH3COO)2乙醇溶液,并在超声下强力搅拌,离心,干燥,得到纳米CuS与多壁碳纳米管复合粉体;
(2) 将多壁碳纳米管与CuS纳米复合粉体分散到乙醇中,并加入适量的OP乳化剂做为分散剂,乙基纤维素做为粘结剂制备悬浮溶液,在一定温度下水浴锅中搅拌后得到胶体;
(3) 通过旋涂法,将上述溶液均匀的涂覆在玻璃基底上,干燥,烧结,得到均匀的纳米CuS粉体与多壁碳纳米管复合电极。
2.根据权利要求书1中所述的纳米CuS粉体与多壁碳纳米管复合电极的制备方法其特征在于,所述步骤(1)中的Cu(CH3COO)2乙醇溶液浓度为0.001-0.1mol/L。
3.根据权利要求书1中所述的纳米CuS粉体与多壁碳纳米管复合电极的制备方法其特征在于,所述步骤(2)中的纳米CuS与多壁碳纳米管复合粉体与无水乙醇的质量比为1:800-1500。
4.根据权利要求书1中所述的纳米CuS粉体与多壁碳纳米管复合电极的制备方法其特征在于,所述步骤(2)中的OP乳化剂在无水乙醇中的用量为5-15 phr。
5.根据权利要求书1中所述的纳米CuS粉体与多壁碳纳米管复合电极的制备方法其特征在于,所述步骤(2)中的乙基纤维素的无水乙醇溶液浓度为0.5-3g / ml。
6.根据权利要求书1中所述的纳米CuS粉体与多壁碳纳米管复合电极的制备方法其特征在于,所述步骤(2)中的水浴锅温度为50-80℃。
CN201711125736.1A 2017-11-15 2017-11-15 纳米CuS粉体与多壁碳纳米管复合电极的制备方法 Pending CN107895648A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711125736.1A CN107895648A (zh) 2017-11-15 2017-11-15 纳米CuS粉体与多壁碳纳米管复合电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711125736.1A CN107895648A (zh) 2017-11-15 2017-11-15 纳米CuS粉体与多壁碳纳米管复合电极的制备方法

Publications (1)

Publication Number Publication Date
CN107895648A true CN107895648A (zh) 2018-04-10

Family

ID=61805248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711125736.1A Pending CN107895648A (zh) 2017-11-15 2017-11-15 纳米CuS粉体与多壁碳纳米管复合电极的制备方法

Country Status (1)

Country Link
CN (1) CN107895648A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433191A (zh) * 2018-11-09 2019-03-08 济南大学 一种黏结粉体催化剂的方法
CN110534354A (zh) * 2019-08-12 2019-12-03 江苏大学 碳纳米管穿插在CuS纳米颗粒中的复合薄膜电极制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774628A (zh) * 2010-01-29 2010-07-14 浙江大学 一种水溶性金属硫化物半导体纳米粒子的制备方法
CN102760877A (zh) * 2012-07-23 2012-10-31 浙江大学 过渡金属硫化物/石墨烯复合材料及其制备方法和应用
CN104909401A (zh) * 2015-05-25 2015-09-16 苏州大学 一种碳纳米管内腔填充金属硫化物的纳米棒或纳米线及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774628A (zh) * 2010-01-29 2010-07-14 浙江大学 一种水溶性金属硫化物半导体纳米粒子的制备方法
CN102760877A (zh) * 2012-07-23 2012-10-31 浙江大学 过渡金属硫化物/石墨烯复合材料及其制备方法和应用
CN104909401A (zh) * 2015-05-25 2015-09-16 苏州大学 一种碳纳米管内腔填充金属硫化物的纳米棒或纳米线及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHANDU V. V. MURALEE GOPI等: "Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors", 《SCIENTIFIC REPORTS》 *
MIN ZHENG等: "Flowerlike molybdenum sulfide/multi-walled carbon nanotube hybrid as Pt-free counter electrode used in dye-sensitized solar cells", 《ELECTROCHIMICA ACTA》 *
石海英等: "多壁碳纳米管对电极染料敏化太阳能电池的性能研究", 《人工晶体学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433191A (zh) * 2018-11-09 2019-03-08 济南大学 一种黏结粉体催化剂的方法
CN110534354A (zh) * 2019-08-12 2019-12-03 江苏大学 碳纳米管穿插在CuS纳米颗粒中的复合薄膜电极制备方法及其应用
CN110534354B (zh) * 2019-08-12 2021-10-12 江苏大学 碳纳米管穿插在CuS纳米颗粒中的复合薄膜电极制备方法及其应用

Similar Documents

Publication Publication Date Title
Bin et al. Manipulating particle chemistry for hollow carbon-based nanospheres: synthesis strategies, mechanistic insights, and electrochemical applications
CN107915853A (zh) 一种纳米纤维素/石墨烯复合柔性薄膜及其制备方法与应用
CN102157273B (zh) 一种染料敏化太阳能电池复合光阳极
CN102074373B (zh) 一种染料敏化太阳能电池光阳极及其制备方法
CN110148746A (zh) 石墨烯纳米片复合材料、其制造方法及应用
CN108598414A (zh) 无定形氧化锌/碳复合锂离子电池负极材料及其制备方法
CN108232213A (zh) 一种氮掺杂石墨烯-碳纳米管-四氧化三钴杂化材料及其制备方法
Chen et al. CdS/CdSe quantum dots and ZnPc dye co-sensitized solar cells with Au nanoparticles/graphene oxide as efficient modified layer
CN105374568B (zh) 石墨相c3n4/碳纳米管复合对电极的制备方法
KR20130043458A (ko) 산화티타늄/금속나노입자/탄소나노구조체를 포함하는 나노복합체, 그 제조 방법 및 이를 이용한 태양전지 전극
CN107895648A (zh) 纳米CuS粉体与多壁碳纳米管复合电极的制备方法
KR100656365B1 (ko) 염료감응 태양전지의 반도체 전극용 비수용성 페이스트조성물, 이의 제조 방법 및 이를 이용한 염료감응 태양전지
Chang et al. Hybrid Graphene Quantum Dots@ Graphene Foam Nanosheets for Dye‐Sensitized Solar Cell Electrodes
CN110639516A (zh) 石墨烯负载多金属纳米线气凝胶复合材料及其制备方法
CN101872655B (zh) 一种通过一次烧结制备纳米晶多孔厚薄膜的方法
CN105900182B (zh) 透明导电膜、色素敏化太阳能电池用光电极及触摸面板以及色素敏化太阳能电池
CN108039281A (zh) 多壁碳纳米管基CuS量子点对电极的制备方法
CN111146006A (zh) 一种半导体型MoS2量子点修饰的TiO2纳米棒阵列复合材料的制备方法
KR101138054B1 (ko) 염료감응형 태양전지용 이산화티타늄 페이스트 제조 방법
CN109518213A (zh) 一种NiB助剂改性的钒酸铋纳米多孔薄膜电极及其制备方法和应用
Qiao et al. Tunable synthesis of mesoporous titania with different morphologies for dye-sensitized solar cells
CN106601484A (zh) 碘掺杂二氧化钛微球电极及其制备方法
CN108269693B (zh) 基于优化光阳极的染料敏化太阳能电池
Lin et al. Self‐Supporting Electrocatalyst Film Based on Self‐Assembly of Heterogeneous Bottlebrush and Polyoxometalate for Efficient Hydrogen Evolution Reaction
CN109202065B (zh) 一种金纳米颗粒修饰银纳米线的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180410

WD01 Invention patent application deemed withdrawn after publication