CN107866260A - 湿式氧化废水的催化剂 - Google Patents

湿式氧化废水的催化剂 Download PDF

Info

Publication number
CN107866260A
CN107866260A CN201610852830.6A CN201610852830A CN107866260A CN 107866260 A CN107866260 A CN 107866260A CN 201610852830 A CN201610852830 A CN 201610852830A CN 107866260 A CN107866260 A CN 107866260A
Authority
CN
China
Prior art keywords
catalyst
carrier
industrial wastewater
wet oxidation
roasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610852830.6A
Other languages
English (en)
Other versions
CN107866260B (zh
Inventor
郑育元
顾松园
陈航宁
郭宗英
吴粮华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201610852830.6A priority Critical patent/CN107866260B/zh
Publication of CN107866260A publication Critical patent/CN107866260A/zh
Application granted granted Critical
Publication of CN107866260B publication Critical patent/CN107866260B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0341Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种湿式氧化废水的催化剂,主要解决现有技术中COD去除率低与稳定性差的问题。本发明通过采用湿式氧化废水催化剂,以重量份数计包括以下组分:a)70.0~80.0份载体,和载于其上的b)20.0~30.0份活性组分;所述活性组分选自Cu、Co、Mn和Ni中的至少一种;所述载体选自SBA‑15分子筛、MCM‑41分子筛与海砂中至少一种的技术方案,较好地解决了该问题,可用于工业丙烯腈废水的处理。

Description

湿式氧化废水的催化剂
技术领域
本发明涉及湿式氧化废水的催化剂。
背景技术
湿式氧化是上世纪50年代发展起来的一种在高压高温的条件下,采用空气(氧气)处理有毒、有害、高浓度有机废水的方法。20世纪70年代,在湿式氧化的基础上开发催化湿式氧化技术,提高废水处理效率,降低反应条件。催化湿式氧化技术可以单独处理废水,同时也可以作为预处理手段整合其它水处理技术使得处理的废水更具广普性与彻底性。另一方面,随着节能降耗的压力不断加大,环境保护控制越来越严格,有机物浓度较高的废水采用焚烧炉焚烧处理会给装置造成能耗和环保双重压力,催化湿式氧化技术可以很大程度代替废水焚烧炉,降低能耗,使装置废水处理符合环保要求。
根据催化剂的属性,催化湿式氧化技术被分为均相和多相催化湿式氧化。早期研究主要集中在均相催化剂上,但由于催化剂溶于废中会造成二次污染,需要后续处理,使得此法逐步淘汰。近年来多相催化剂成为研究热点,多相催化剂主要有贵金属和金属氧化物两大类,其中金属氧化物负载型催化剂大多以TiO2、Al2O3、SiO2、ZrO2或它们的复合氧化物为载体,将Cu、Co、Mn、Fe、Ni、等过度元素负载在上述载体上。但鉴于活性元素易溶出催化剂稳定性较差,所以有必要对现有技术进行改进。
对于金属氧化物催化湿式氧化技术专利公开如下:
CN101844827B公开了一种降解高浓度甲醛污染物的催化剂,由过度金属组分(Cu、Ni、Fe、Mn、Co、Zn之一)及稀土元素担载于AlO2、SiO2或TiO2上组成,采用浸渍法的制备技术。CN101219376B公开了一种废水处理用催化剂,该催化剂以γ-Al2O3为载体Mn金属氧化物、Sn金属氧化物为主要活性组分、Sb氧化物为助剂。CN101485987B属于水处理技术和环境功能材料领域,该催化剂是以粉末状锌铝类水滑石为载体、Fe为活性组分、Ce和Ti为助催化剂,采用分层浸渍法制备而成。
以上专利中催化剂经试验,催化剂初活性不错但活性组分易溶出而且催化剂强度不足导致催化剂稳定性不理想。
发明内容
本发明所要解决的技术问题之一是现有技术中多相催化湿式氧化反应COD去除率低与催化剂稳定性差的问题,提供一种新的废水湿式氧化催化剂。该催化剂用于多相催化湿式氧化反应处理丙烯腈废水具有COD去除率高与催化剂稳定性高的优点。
本发明所要解决的技术问题之二是提供一种与解决技术问题之一所用的催化剂相应的制备方法。
本发明所要解决的技术问题之三是提供一种将解决技术问题之一所用的催化剂用于处理工业废水的方法。
为解决上述技术问题之一,本发明采用的技术方案如下:废水湿式氧化催化剂,以重量份数计包括以下组分:
a)70.0~80.0份载体,和载于其上的
b)20.0~30.0份活性元素;
所述活性元素选自包括Cu、Co、Mn和Ni中的至少一种;
所述载体选自SBA-15分子筛、MCM-41分子筛与海砂中的至少一种。
上述技术方案中,所述活性元素优选包括Cu和包括选自Co、Mn和Ni中的至少一种,此时,Cu元素与选自Co、Mn和Ni中的至少一种活性元素之间在提高COD去除率具有协同作用,例如Cu与Co之间、Cu与Mn之间或者Cu与Ni之间。
上述技术方案中,更有选所述载体包括SBA-15分子筛与海砂,此时,SBA-15分子筛与海砂在提高COD去除率及稳定性方面具有协同作用。
上述技术方案中,所述复合体中SBA-15分子筛与海砂的质量比为1:4~4:1。
上述技术方案中,所述废水优选为丙烯腈生产工业废水。
为解决上述技术问题之二,本发明的技术方案如下:上述技术问题之一的技术方案中任一项中所述催化剂的制备方法,包括以下步骤:
1)将所述载体粉末、粘结剂混合,成型,干燥,焙烧得到成型载体;
2)将成型载体与活性元素的溶液混合,干燥,焙烧得到催化剂。
上述技术方案中对载体的粉末粒径没有特别限制,可以明了粉末越细后续混合越均匀。了。例如但不限于SBA-15分子筛粉末的平均粒径4~10nm、再例如但不限于海砂粉末为500~1000目。
本发明催化剂载体的制备方法没有特别限制,例如但不限于:压片成型,滚球成型,挤条成型等,所用粘合剂可为有机粘合剂(包括PEG、CMC、甲基纤维素、淀粉等),也可为无机粘合剂(包括硝酸,铝溶胶,硅溶胶等)。
上述技术方案中,步骤1)中的焙烧温度优选为300~400℃,焙烧时间优选为3.5~5.0h。
上述技术方案中,步骤2)中的焙烧温度优选为400~500℃,焙烧时间优选为4.0~5.0h。
为解决上述技术问题之三,本发明的技术方案如下:丙烯腈生产过程中废水的处理方法,以丙烯或丙烷氨氧化生产丙烯腈过程中产生的工业废水为原料,与含氧气的氧化剂混合后在装有上述技术问题之一的技术方案中任一项所述催化剂的湿式氧化反应器中进行反应处理所述废水。
上述技术方案中,所述反应温度优选为220~300℃。
上述技术方案中,反应压力优选为5.0~10.0MPa。
上述技术方案中,氧气与工业废水的体积比优选为50~400。
上述技术方案中,工业废水的质量空速优选为0.4~1.2h-1
本发明催化剂的评价方法如下:取催化剂200g,装入湿式氧化反应器(反应器为固定床反应器,内径为22mm,反应器长度为700mm),采用COD值为35000mg/l的丙烯腈工业废水为原料,与氧气混合后,通过装有催化剂的湿式氧化反应器。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,丙烯腈工业废水的质量空速0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。在评价24小时时计算COD的去除率作为初活性指标;随着评价的时间延长COD的去除率会逐渐降低,从第24小时至COD去除率降低到90%的时间作为稳定性指标,这个时间越长,表示催化剂越稳定。
采用本发明的技术方案,工业废水与氧气混合后通过装有催化剂的湿式氧化反应器,催化剂以重量份数计包括15份Cu、10份Mn和75份SBA-15与海砂复合载体,在反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200的条件下,COD去除率最高达99.8%,催化剂稳定性达到2400hr。相比其他技术,COD去除率至少提高了4.5%,同时催化剂稳定性至少延长了2232hr,取得了较好的技术效果。
下面通过实施例对本发明作进一步的阐述,但是这些实施例无论如何都不对本发明的范围构成限制。
具体实施方式
【实施例1】
1、载体制备
将120g成品SBA-15粉末(平均粒径6.0nm)与120g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gCu的Cu(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例2】
1、载体制备
将120g成品SBA-15粉末(平均粒径6.0nm)与120g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将220g球型载体浸渍于350g含55gCu的Cu(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉400℃焙烧4.6h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例3】
1、载体制备
将120g成品SBA-15粉末(平均粒径6.0nm)与120g成品海砂粉末(900目)放入捏合机混合,倒入2.6g淀粉与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含90gCu的Cu(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉440℃焙烧4.3h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例4】
1、载体制备
将72g成品SBA-15粉末(平均粒径6.0nm)与168g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在400℃焙烧3.8h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gCu的Cu(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例5】
1、载体制备
将168g成品SBA-15粉末(平均粒径6.0nm)与72g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在360℃焙烧4.2h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gCu的Cu(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例6】
1、载体制备
将120g成品SBA-15粉末(平均粒径6.0nm)与120g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gCo的Co(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例7】
1、载体制备
将120g成品SBA-15粉末(平均粒径6.0nm)与120g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gNi的Ni(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例8】
1、载体制备
将120g成品SBA-15粉末(平均粒径6.0nm)与120g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gCo的Mn(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例9】
1、载体制备
将120g成品SBA-15粉末(平均粒径6.0nm)与120g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含42gCu与28gCo的硝酸盐混合水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例10】
1、载体制备
将120g成品SBA-15粉末(平均粒径6.0nm)与120g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含42gCu与28gNi的硝酸盐混合水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例11】
1、载体制备
将120g成品SBA-15粉末(平均粒径6.0nm)与120g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含42gCu与28gMn的硝酸盐混合水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例12】
1、载体制备
将120g成品SBA-15粉末(平均粒径6.0nm)与120g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含28gCu与42gMn的硝酸盐混合水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【实施例13】
1、载体制备
将120g成品SBA-15粉末(平均粒径6.0nm)与120g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含56gCu与14gMn的硝酸盐混合水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【比较例1】
1、载体制备
将220g成品SBA-15粉末(平均粒径6.0nm)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gCu的Cu(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【比较例2】
1、载体制备
将220g成品SBA-15粉末(平均粒径6.0nm)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gCo的Co(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【比较例3】
1、载体制备
将220g成品SBA-15粉末(平均粒径6.0nm)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gNi的Ni(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【比较例4】
1、载体制备
将220g成品SBA-15粉末(平均粒径6.0nm)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gCo的Mn(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【比较例5】
1、载体制备
将220g成品SBA-15粉末(平均粒径6.0nm)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含42gCu与28gMn的硝酸盐混合水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【比较例6】
1、载体制备
将220g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gCu的Cu(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【比较例7】
1、载体制备
将220g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gCo的Co(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【比较例8】
1、载体制备
将220g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gNi的Ni(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【比较例9】
1、载体制备
将220g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含70gCo的Mn(NO3)2水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
【比较例10】
1、载体制备
将220g成品海砂粉末(900目)放入捏合机混合,倒入2.6g甲基纤维素与80g水,进行捏合、挤条、滚球成型,在100℃干燥12h,随后在380℃焙烧4.0h,得到直径为3mm的球型载体。
2、催化剂制备
采用等量浸渍法将210g球型载体浸渍于350g含42gCu与28gMn的硝酸盐混合水溶液中,在室温下静置6h,随后在110℃的烘箱中干燥16h,之后在马福炉420℃焙烧4.5h。
3、催化剂评价
取催化剂200g,装入湿式氧化反应器进行反应。反应温度为275℃,压力为8.0MPa,氧气与工业废水的体积比为200,工业废水质量空速为0.8h-1。反应产物用Hach公司COD分析仪来测定COD值。
载体组成、催化剂组成见表1,催化剂主要制备条件见表2,催化剂评价结果见表3。
表1
表2
表3

Claims (10)

1.湿式氧化废水的催化剂,以重量份数计包括以下组分:
a)70.0~80.0份载体,和载于其上的
b)20.0~30.0份活性元素;
所述活性元素选自包括Cu、Co、Mn和Ni中的至少一种;
所述载体选自SBA-15分子筛、MCM-41分子筛与海砂中至少一种。
2.根据权利要求1所述的催化剂,其特征是所述废水为丙烯腈生产工业废水。
3.权利要求1所述催化剂的制备方法,包括以下步骤:
1)将所述载体、粘结剂混合,成型,干燥,焙烧得到成型载体;
2)将成型载体粉末与活性元素的溶液混合,干燥,焙烧得到催化剂。
4.根据权利要求3所述的制备方法,其特征在于步骤1)中的焙烧温度为280~420℃,焙烧时间为3.0~4.5h。
5.根据权利要求3所述的制备方法,其特征在于步骤2)中的焙烧温度为380~550℃,焙烧时间为3.5~5.5h。
6.丙烯腈生产过程中废水的处理方法,以丙烯氨氧化生产丙烯腈过程中产生的工业废水为原料,与含氧气的氧化剂混合后在装有权利要求1至2中任一项所述催化剂的湿式氧化反应器中进行反应处理所述废水。
7.根据权利要求6所述的处理方法,其特征在于所述的氧化剂为氧气或空气。
8.根据权利要求6所述的处理方法,其特征在于所述反应温度为220~300℃。
9.根据权利要求6所述的处理方法,其特征在于反应压力为5.0~10.0MPa。
10.根据权利要求6所述的处理方法,其特征在于氧气与工业废水的体积比为50~400。
CN201610852830.6A 2016-09-26 2016-09-26 湿式氧化废水的催化剂 Active CN107866260B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610852830.6A CN107866260B (zh) 2016-09-26 2016-09-26 湿式氧化废水的催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610852830.6A CN107866260B (zh) 2016-09-26 2016-09-26 湿式氧化废水的催化剂

Publications (2)

Publication Number Publication Date
CN107866260A true CN107866260A (zh) 2018-04-03
CN107866260B CN107866260B (zh) 2020-06-09

Family

ID=61751999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610852830.6A Active CN107866260B (zh) 2016-09-26 2016-09-26 湿式氧化废水的催化剂

Country Status (1)

Country Link
CN (1) CN107866260B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109603892A (zh) * 2018-12-10 2019-04-12 合肥学院 一种利用浸渍法制备金属元素掺杂sba-16介孔分子筛的方法
CN110639546A (zh) * 2018-06-27 2020-01-03 中国石油化工股份有限公司 有机胺工业废水湿式氧化催化剂及工业废水处理中的应用
CN111068761A (zh) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 湿式氧化催化剂及有机废水处理方法
CN111072124A (zh) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 湿式氧化处理工业丙烯酸废水的方法
CN111068680A (zh) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 处理含苯废气的催化剂及其应用
CN115888629A (zh) * 2022-12-21 2023-04-04 重庆工商大学 用于焦化废水深度处理的复合吸附剂及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153189A (zh) * 2010-12-16 2011-08-17 哈尔滨工业大学 浮石催化臭氧化去除水中有机物的方法
CN103157501A (zh) * 2013-04-07 2013-06-19 扬州大学 一种催化湿式氧化水中有机污染物的催化剂的制备方法
CN103521242A (zh) * 2012-07-03 2014-01-22 中国石油化工股份有限公司 以火山岩为载体的多相催化湿式氧化催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153189A (zh) * 2010-12-16 2011-08-17 哈尔滨工业大学 浮石催化臭氧化去除水中有机物的方法
CN103521242A (zh) * 2012-07-03 2014-01-22 中国石油化工股份有限公司 以火山岩为载体的多相催化湿式氧化催化剂及其制备方法
CN103157501A (zh) * 2013-04-07 2013-06-19 扬州大学 一种催化湿式氧化水中有机污染物的催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V. SUBBARAMAIAH ET AL.,: "Catalytic Activity of Cu/SBA-15 for Peroxidation of Pyridine Bearing Wastewater at Atmospheric Condition", 《AICHE JOURNAL》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110639546A (zh) * 2018-06-27 2020-01-03 中国石油化工股份有限公司 有机胺工业废水湿式氧化催化剂及工业废水处理中的应用
CN110639546B (zh) * 2018-06-27 2022-12-09 中国石油化工股份有限公司 有机胺工业废水湿式氧化催化剂及工业废水处理中的应用
CN111068761A (zh) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 湿式氧化催化剂及有机废水处理方法
CN111072124A (zh) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 湿式氧化处理工业丙烯酸废水的方法
CN111068680A (zh) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 处理含苯废气的催化剂及其应用
CN111068680B (zh) * 2018-10-18 2023-04-07 中国石油化工股份有限公司 处理含苯废气的催化剂及其应用
CN109603892A (zh) * 2018-12-10 2019-04-12 合肥学院 一种利用浸渍法制备金属元素掺杂sba-16介孔分子筛的方法
CN115888629A (zh) * 2022-12-21 2023-04-04 重庆工商大学 用于焦化废水深度处理的复合吸附剂及制备方法

Also Published As

Publication number Publication date
CN107866260B (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN107866260A (zh) 湿式氧化废水的催化剂
CN107282085A (zh) 废水湿式氧化催化剂
CN105817220B (zh) 一种稀土改性的抗硫低温scr催化剂及其制备方法
CN106423193B (zh) 蜂窝状锰系脱硝催化剂及其制备方法
JP6595088B2 (ja) 窒素酸化物除去用scr触媒及びその製造方法
CN105727985A (zh) 蜂窝整体式低温脱硝催化剂及其制备方法
CN107362808A (zh) 整体式低温脱硝催化剂及其制备方法
CN106902814A (zh) 一种催化燃烧用稀土基有序介孔整体式催化剂及其制备方法
CN101422736A (zh) 低温下脱除fcc再生烟气中氮氧化物的催化剂及其制法
CN101711978B (zh) 高机械性能低成本scr脱硝催化剂及其制备方法
CN105597740B (zh) 多相催化湿式氧化催化剂及其制备方法
CN106179329A (zh) 一种以活性半焦为载体的低温锰基脱硝催化剂及其制备方法与应用
CN110280250B (zh) 一种沸石咪唑骨架材料衍生金属氧化物的制备方法及其应用
CN103301863A (zh) 基于钢渣的scr脱硝催化剂及其制备方法
CN106076316B (zh) 一种以偏钛酸为原料制备宽工作温度脱硝催化剂的方法
CN107282042B (zh) 用于湿式氧化处理废水的催化剂
CN105268435A (zh) 多相催化湿式氧化催化剂
CN106582606A (zh) 一种非钒系低温脱硝催化剂及其制备方法
CN103721722A (zh) 复合氧化物催化剂及其制备方法
CN103418402A (zh) 丙烯醛氧化制丙烯酸催化剂及其制备方法
CN109603807B (zh) 一种改性活性炭Ce-Nb/TiO2@AC低温高效脱硫脱硝催化剂及其制备方法
CN105236547B (zh) 催化湿式氧化降低废水中cod的方法
CN106391037A (zh) 一种用于高温催化分解n2o的催化剂的制备工艺
CN102451710B (zh) 由丙烯氧化法制丙烯醛催化剂及其制备方法
CN103418401B (zh) 丙烯氧化法制丙烯醛催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant