CN107841512A - 利用植物棉子糖合成通路提高种子活力及耐贮性的应用 - Google Patents

利用植物棉子糖合成通路提高种子活力及耐贮性的应用 Download PDF

Info

Publication number
CN107841512A
CN107841512A CN201711091834.8A CN201711091834A CN107841512A CN 107841512 A CN107841512 A CN 107841512A CN 201711091834 A CN201711091834 A CN 201711091834A CN 107841512 A CN107841512 A CN 107841512A
Authority
CN
China
Prior art keywords
ala
val
gly
leu
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201711091834.8A
Other languages
English (en)
Inventor
赵天永
李涛
张玉民
王东
刘应
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest A&F University
Original Assignee
Northwest A&F University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest A&F University filed Critical Northwest A&F University
Priority to CN201711091834.8A priority Critical patent/CN107841512A/zh
Publication of CN107841512A publication Critical patent/CN107841512A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8267Seed dormancy, germination or sprouting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01082Galactinol--sucrose galactosyltransferase (2.4.1.82)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01123Inositol 3-alpha-galactosyltransferase (2.4.1.123), i.e. galactinol-synthase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Physiology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了利用植物棉子糖合成通路提高种子活力及耐贮性的应用,该方法克隆了玉米棉子糖合成关键酶基因ZmGOLS2、ZmRS,通过构建真核表达载体,利用农杆菌转化法分别获得ZmGOLS2、ZmRS单过表达及ZmGOLS2/ZmRS双过表达转化株系,调控了拟南芥种子中棉子糖系列寡糖RFOs的含量及分配,增强了种子活力及其耐贮性。ZmGOLS2单过表达可使拟南芥种子耐贮性提高43%。ZmGOLS2/ZmRS双过表达较ZmGOLS2单过表达相比效果更为优异,可使拟南芥种子耐贮性提高102%。

Description

利用植物棉子糖合成通路提高种子活力及耐贮性的应用
技术领域
本发明属于生物技术领域,涉及利用调控植物棉子糖合成通路提高种子活力及耐贮性的应用,具体地说,涉及通过双过表达GOLS与RS基因提高种子活力及耐贮性的研究。
背景技术
棉子糖系列寡糖(Raffinose family oligosaccharides,RFOs)是植物中特有的一类半乳糖苷系列寡糖,国内外研究表明其在抵抗非生物逆境胁迫、种子脱水耐性及其活力形成过程中可能发挥重要功能。RFOs合成通路第一步限速酶肌醇半乳糖苷酶(Galactinol synthase,GOLS)与种子活力形成密切相关。在拟南芥中过表达鹰嘴豆CaGOLS基因能够提高种子耐贮性。关于RFOs第二步关键酶棉子糖合成酶(Raffinose synthase,RS)调控种子活力目前未见报道。
发明内容
本发明的目的在于提供利用调控植物棉子糖合成通路提高种子活力及耐贮性的应用,通过PCR方法克隆了玉米GRMZM2G150906基因(命名为ZmRS)。将该基因与玉米肌醇半乳糖苷合成酶基因ZmGOLS2(GRMZM5G872256)在拟南芥中进行共表达,提高了拟南芥种子中RFOs的总含量,增强了种子活力及耐贮性,且其表现远优于单表达ZmGOLS2株系。本发明主要内容为:在植物中共表达棉子糖合成通路基因GOLS2(肌醇半乳糖苷合成酶)与RS(棉子糖合成酶)基因,提高种子活力及其耐贮性(延长其贮藏寿命)。
其具体技术方案为:
通过在植物中同时过表达Galactinol synthase(GOLS)、Raffinose synthase(RS)基因在提高植物种子活力过程中的应用。
通过在植物中表达Galactinol synthase(GOLS)、Raffinose synthase(RS)基因在调控种子中棉子糖系列寡糖含量及分配过程中的应用。
与现有技术相比,本发明的有益效果:
本发明克隆了玉米棉子糖合成关键酶基因ZmGOLS2(肌醇半乳糖苷合成酶/GRMZM5G872256)、ZmRS(棉子糖合成酶/GRMZM2G150906),通过构建真核表达载体,利用农杆菌转化法分别获得ZmGOLS2、ZmRS单过表达及ZmGOLS2/ZmRS双过表达转化株系,调控了拟南芥种子中棉子糖系列寡糖(RFOs)的含量及分配,增强了种子活力及其耐贮性。ZmGOLS2单过表达可使拟南芥种子耐贮性提高43%。ZmGOLS2/ZmRS双过表达较ZmGOLS2单过表达相比效果更为优异,可使拟南芥种子耐贮性提高102%。
附图说明
图1pCsGFPBT载体示意图。
图2pBI111L载体示意图。
图3ZmGOLS2、ZmRS单表达及ZmGOLS2/ZmRS双表达拟南芥的分子及种子寡糖组分鉴定。(a)拟南芥转化载体构建示意图。(b)转基因拟南芥分子鉴定。上半部分为RT-PCR检测,鉴定转基因植株目标基因的mRNA表达水平;下半部分为Western blot检测,鉴定转基因植株中ZmRS蛋白表达水平。(c-h)各转基因拟南芥株系种子可溶性糖组分鉴定。(c)蔗糖;(d)肌醇;(e)肌醇半乳糖;(f)棉子糖;(g)水苏糖;(h)毛蕊花糖。图中不同字母表示不同株系之间存在显著差异(Duncan test)。
图4ZmGOLS2、ZmRS单表达及ZmGOLS2/ZmRS双表达拟南芥的种子活力鉴定。收获后经脱水的拟南芥种子在饱和KCl(RH 83%),42℃条件下人工老化3天,经室温晾晒1天后进行种子活力及耐贮性评测。(a)经人工老化处理或未经处理的拟南芥各株系种子TTC染色情况,着色(红色)越深代表种子活力越高。(b)经人工老化处理或未经处理的拟南芥各株系种子吸胀萌发后120小时表型图。(c)经人工老化处理或未经处理的拟南芥各株系种子萌发(%)速率。
具体实施方式
下面结合附图和具体实施方案对本发明的技术方案作进一步详细地说明。
1、通过PCR方法克隆了玉米ZmRS基因的编码区,构建了该基因植物表达载体。
对水培的三叶期玉米幼苗进行脱水处理。从脱水处理2小时的叶片提取RNA并将其反转录成cDNA。
以cDNA为模板,用上游引物5’-CGCGGATCCTGGCTCCCAACCTCAGCAAGAAG-3’和下游引物5’-TGCTCTAGAGGTAGACGTACTGGACGCGACACAG-3’对ZmRS的编码区进行PCR扩增。扩增程序为:95℃预变性5min;95℃变性30s,60℃退火30s,72℃延伸1min 20s,35个循环;72℃终延伸10min。将扩增产物切胶回收,用BamHI和XbaI酶切片段,后与pCsGFPBT载体(用于拟南芥稳定转化,见下图1)连接。将pCsGFPBT上NcoI与BamHI酶切位点之间的GFP表达框替换为一段短序列,然后将扩增并酶切的ZmRS ORF片段连在BamHI和XbaI位点之间,构建超表达拟南芥载体。载体有植物转化筛选标记潮霉素基因(见图2a)。载体上的ZmRS ORF片段经测序正确后转入农杆菌GV3101,用花序侵染法侵染拟南芥Col0野生型。
构建另一个用于构建ZmGOLS2/ZmRS双表达株系的ZmRS表达载体。以上游引物5’-CGCGGATCCATGGCTCCCAACCTCAGCAAGAAG-3’及下游引物5’-CTAGACTAGTTCAGTAGACGTACTGGACGCGACAC-3’扩增ZmRS编码区。扩增程序同上。将ZmRS ORF区连接于pBI111L载体上的BamHⅠ-SpeⅠ酶切位点之间。经测序正确后转入GV3101农杆菌,通过浸花法在过表达ZmGOLS2遗传背景的株系上进行侵染。
T0代种子经过70%乙醇室温1min,20%次氯酸钠室温5min消毒后,均匀涂布在MS平板上(含潮霉素或卡那霉素25mg/L)。4℃处理3天后转移至22℃培养箱生长。萌发约7-10天,转基因植株的叶深绿,根较长;非转化的植株叶浅绿,根短,不能长期存活。将转化体移入营养土中生长直到收T1代种子。T1代种子按上述方法筛选,收T2代种子(每个株系收多个单株)。每个T2代单株种子分别筛选,种植,收集每个单株的T3代种子,筛选每个单株的T3代种子,后代不分离的(均对潮霉素有抗性)进行下一步鉴定。
2、转基因株系的分子鉴定
通过RT-PCR对转化植株进行mRNA表达水平鉴定。通过Western blot对转化植株进行ZmRS蛋白表达水平鉴定。
RT-PCR扩增程序为:95℃预变性5min;95℃变性30s,60℃退火30s,72℃延伸30s,28个循环;72℃终延伸8min。
Western blot步骤参照报道[4]。ZmRS一抗为课题组免疫家兔制备,使用稀释倍数为1:5000;二抗(羊抗兔)购于康为公司,使用稀释倍数为1:10000。
3、转基因株系种子中的游离糖组分鉴定。
对各拟南芥株系种子糖组份测定方法如下:使用收获并经脱水的成熟种子0.2g,液氮研磨至粉末后加入5mL 80%乙醇(含200μg/mL乳糖),继续研磨至匀浆。将匀浆倒入10mL离心管中,再往研钵中加入2mL 80%乙醇(含200μg/mL乳糖),清洗研钵,合并在离心管中。将样品置于80℃水浴锅中加热30min。室温,12000×g离心20min。将上清转移至另一干净的离心管中。95℃加热,将乙醇蒸发。将样品在-80℃冰箱中冻存24小时。真空抽干。HPLC级双蒸水将样品重悬。12000×g离心20min。上清冻存于-20℃冰箱中。测定前用0.22μm过滤。HPLC检测器为waters2424ELSD,色谱柱为Waters Xbrige氨基柱。上样量为5μL。双过表达ZmGOLS2/ZmRS基因能够提高种子中RFOs总量(图3)。
4、转基因株系种子活力及其耐贮性鉴定。
使用人工老化方法对拟南芥各株系进行种子活力鉴定。使用2mL收纳各株系成熟种子0.05g,放入干燥器中。干燥器中相对空气湿度由饱和KCl控制(83%RH)。将密封好的干燥器放入42℃培养箱中,对种子老化3天。老化结束后将各株系种子从干燥器中拿出,室温晾晒一天。进行TTC染色及萌发实验。
TTC染色对种子活力进行鉴定。经老化或未经老化的各株系拟南芥种子经消毒液(10%次氯酸,0.03%Tween-20)浸泡5min后,以双蒸水洗涤种子5次。加入1mL 1%TTC溶液(50mM磷酸缓冲液,pH-7.0),黑暗条件下水浴(25℃)染色48小时。着色后的种子以双蒸水洗涤5次,经脱色液(水:苯酚:乳酸:甘油=1:1:1:2,V/V)脱色4小时后在体式显微镜下拍照记录。红色着色越深代表种子活力越高。
对经老化或未经老化的各株系拟南芥种子进行萌发实验。将种子1/2MS培养板上进行萌发,每12小时对萌发率进行统计(体式显微镜观察),统计至156小时。种子抗老化能力以老化种子吸胀后84小时的萌发比例(以野生型拟南芥为100%)表示。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。
序列表
<110> 西北农林科技大学
<120> 利用植物棉子糖合成通路提高种子活力及耐贮性的应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 2
<211> 1038
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atggctcccg agctgatgac agccaagatg accgccaaag ccgcggcggc ggcggcggcg 60
gtgaagcctg ccacgagggc gtacgtgacg ttccttgcgg gcgacggcga ctactggaag 120
ggcgtggtgg ggctggccaa aggcctgcgc aaggtccgct cggcctaccc cctggtggtg 180
gcggtgctgc ccgacgtgcc cgagtcccac cgccgcatcc tcgtctcgca gggctgcgtc 240
gtccgcgaga tcgagcccgt gtacccgcct gagaaccaga cgcagttcgc catggcgtac 300
tacgtcatca actactccaa gctccgcatc tgggagttcg tggagtacga gaggatggtg 360
tacctggacg cggacatcca ggtgttcgag aacatcgacg gcctgttcga gctcgagaag 420
gggtacttct acgcggtgat ggactgcttc tgcgagaaga cgtggagcca caccccgcag 480
tacaggatcg gctactgcca gcagtgcccg gacaaggtgg cgtggccagc ggcgaccgcc 540
gagctgggcc ctccgccgtc gctctacttc aacgccggca tgttcgtgca cgagcccagc 600
gtggccaccg ccaaggcgct cctcgacacc ctccgcgtga ctccgcccac ccccttcgca 660
gagcaggact tcctgaacat gttcttcagg gatcagtaca ggccgatccc caacgtgtac 720
aacctcgtgc tggccatgct ctggaggcac cccgagaacg tgcagctgga gaaggtgaag 780
gtcgtgcact actgcgcggc ggggtccaag ccgtggaggt tcacgggcaa ggaggcgaac 840
atggacaggg aggacatcaa cgccctggtg aacaagtggt gggacatcta caacgacgag 900
acgctggact tgaagggcct gccctcgctc tcgcccgacg acgacgacga ggtggaggcg 960
gtggccaaga agccgcttcg cgcggccctg gcggaggccg gcacggtcaa gtacgtcacc 1020
gcgccctcgg ccgcgtga 1038
<210> 3
<211> 345
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 3
Met Ala Pro Glu Leu Met Thr Ala Lys Met Thr Ala Lys Ala Ala Ala
1 5 10 15
Ala Ala Ala Ala Val Lys Pro Ala Thr Arg Ala Tyr Val Thr Phe Leu
20 25 30
Ala Gly Asp Gly Asp Tyr Trp Lys Gly Val Val Gly Leu Ala Lys Gly
35 40 45
Leu Arg Lys Val Arg Ser Ala Tyr Pro Leu Val Val Ala Val Leu Pro
50 55 60
Asp Val Pro Glu Ser His Arg Arg Ile Leu Val Ser Gln Gly Cys Val
65 70 75 80
Val Arg Glu Ile Glu Pro Val Tyr Pro Pro Glu Asn Gln Thr Gln Phe
85 90 95
Ala Met Ala Tyr Tyr Val Ile Asn Tyr Ser Lys Leu Arg Ile Trp Glu
100 105 110
Phe Val Glu Tyr Glu Arg Met Val Tyr Leu Asp Ala Asp Ile Gln Val
115 120 125
Phe Glu Asn Ile Asp Gly Leu Phe Glu Leu Glu Lys Gly Tyr Phe Tyr
130 135 140
Ala Val Met Asp Cys Phe Cys Glu Lys Thr Trp Ser His Thr Pro Gln
145 150 155 160
Tyr Arg Ile Gly Tyr Cys Gln Gln Cys Pro Asp Lys Val Ala Trp Pro
165 170 175
Ala Ala Thr Ala Glu Leu Gly Pro Pro Pro Ser Leu Tyr Phe Asn Ala
180 185 190
Gly Met Phe Val His Glu Pro Ser Val Ala Thr Ala Lys Ala Leu Leu
195 200 205
Asp Thr Leu Arg Val Thr Pro Pro Thr Pro Phe Ala Glu Gln Asp Phe
210 215 220
Leu Asn Met Phe Phe Arg Asp Gln Tyr Arg Pro Ile Pro Asn Val Tyr
225 230 235 240
Asn Leu Val Leu Ala Met Leu Trp Arg His Pro Glu Asn Val Gln Leu
245 250 255
Glu Lys Val Lys Val Val His Tyr Cys Ala Ala Gly Ser Lys Pro Trp
260 265 270
Arg Phe Thr Gly Lys Glu Ala Asn Met Asp Arg Glu Asp Ile Asn Ala
275 280 285
Leu Val Asn Lys Trp Trp Asp Ile Tyr Asn Asp Glu Thr Leu Asp Leu
290 295 300
Lys Gly Leu Pro Ser Leu Ser Pro Asp Asp Asp Asp Glu Val Glu Ala
305 310 315 320
Val Ala Lys Lys Pro Leu Arg Ala Ala Leu Ala Glu Ala Gly Thr Val
325 330 335
Lys Tyr Val Thr Ala Pro Ser Ala Ala
340 345
<210> 3
<211> 2373
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atggctccca acctcagcaa gaagacgcct gctggcctcc tcggcgacga ggtggccccg 60
gtggagggac tcaagccgtc gcggttcacc cttaagggca aggacctggc cgtggacggg 120
cacccggtcc tgctggacgt gccggccaac atccgtctca ccccggcgtc gacgctcgtg 180
cccgccgcgg acgtccccgc agcgggcggc ggcagcttcc tcggcttcga cgcggcggcg 240
gccgagagcc ggcacgtggt gcccgtcgga aagctccgtg acattcggtt catgagcatc 300
ttccgtttca aggtgtggtg gacgacgcac tgggtggggg acagcggcag ggacgtggag 360
aacgagacgc agatgatggt gctcgaccgc tccgccggcg agcccggcgg cggcggccga 420
ccctacgtgc tgctgctccc catcatcgag ggctcgttcc gggcctgcct cgaggccggg 480
aaggtggaag actacgtgga cctgtgcgtg gagagcgggt cgtcggcggt gcgcggcgcc 540
gcgttccgga gctcgctgta cctgcacgcg ggcgacgacc cgttcgagct cgtcgcggac 600
gccgtcaggg tggtccgtgc gcacctgggc acgttccgga ccatggagga gaagacgccg 660
ccgccgatcg tggacaagtt cgggtggtgc acgtgggacg ccttctacct caaggtgcac 720
ccggagggcg tgtgggaggg cgtgcgccgc ctggcggagg gcggctgccc gccggggctg 780
gtgctcatcg acgacggctg gcagtccatc tgccacgacg aggacgaccc gaacagcggc 840
gaggagggca tgaaccgcac ctccgccggc gagcagatgc cctgccgcct catcaagttc 900
caggagaacc acaagttcag ggagtacaag cagggcggga tgggcgcgtt cgtgcgggag 960
atgaaggcgg cgttccccac cgtggagcag gtgtacgtgt ggcacgcgct gtgcgggtac 1020
tggggcggcc tccgccccgg cgcgcccggc ctgccgcccg ccaaggtggt ggcgcccaag 1080
ctctcccccg gcctgcagcg caccatggag gacctcgccg tcgacaagat cgtcaacaac 1140
ggtgtcggcc tcgtcgaccc caagcgcgcg cacgagctct acgatggttt gcactcccac 1200
ctccaggcct ccggcatcga cggcgtcaag gtcgacgtca ttcacttgct ggagatgctg 1260
tgcgaggagt acggcggccg tgtcgagctg gccaaggcct acttcgccgg gctgacggcg 1320
tcggtgcggc ggcacttcgg cggcaacggc gtgatcgcga gcatggagca ctgcaacgac 1380
ttcatgctgc tgggcacgga ggcggtggcg ctgggccgcg tgggcgacga cttctggtgc 1440
acggacccct ccggcgaccc caacggcacc ttctggctgc aggggtgcca catggtgcac 1500
tgcgcctaca actcgctgtg gatgggcaac ttcatccacc cggactggga catgttccag 1560
tccacgcacc cctgcgccgc cttccacgcc gcgtcccgcg ccatctccgg cgggcccatc 1620
tacgtcagcg actcggtggg gcagcacgac ttcgcgctgc tccgccgcct ggcgctcccc 1680
gacggcaccg tcctccggtg cgagggccac gcgctgccca cgcgcgactg cctcttcgcc 1740
gacccgctcc acgacggccg gaccgtgctc aagatctgga acgtgaaccg cttcgccggc 1800
gtcgtcggcg ccttcaactg ccagggcggc gggtggagcc ccgaggcgcg gcggaacaag 1860
tgcttctcgg agttctccgt gcccctggcc gcgcgcgcct cgccgtccga cgtcgaatgg 1920
aagagcggca aagcgggacc aggcgtcagc gtcaagggcg tctcccagtt cgccgtgtac 1980
gcggtcgagg ccaggacgct gcagctgctg cgccccgacg agggcgtcga cctcacgctg 2040
cagcccttca cctacgagct cttcgtcgtc gcccccgtgc gcgtcatctc gcacgagcgg 2100
gccatcaagt tcgcgcccat cggactcgcc aacatgctca acaccgccgg cgccgtgcag 2160
gcgttcgagg ccaagaaaga tgctagcggc gtcacggcag aggtgttcgt gaagggcgca 2220
ggggagctgg tggcgtactc gtcggcgacg cccaggctct gcaaggtgaa cggcgacgag 2280
gccgagttca cgtacaagga cggcgtggtc accgtcgacg tgccgtggtc ggggtcgtcg 2340
tcgaagctgt gtcgcgtcca gtacgtctac tga 2373
<210> 4
<211> 790
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 4
Met Ala Pro Asn Leu Ser Lys Lys Thr Pro Ala Gly Leu Leu Gly Asp
1 5 10 15
Glu Val Ala Pro Val Glu Gly Leu Lys Pro Ser Arg Phe Thr Leu Lys
20 25 30
Gly Lys Asp Leu Ala Val Asp Gly His Pro Val Leu Leu Asp Val Pro
35 40 45
Ala Asn Ile Arg Leu Thr Pro Ala Ser Thr Leu Val Pro Ala Ala Asp
50 55 60
Val Pro Ala Ala Gly Gly Gly Ser Phe Leu Gly Phe Asp Ala Ala Ala
65 70 75 80
Ala Glu Ser Arg His Val Val Pro Val Gly Lys Leu Arg Asp Ile Arg
85 90 95
Phe Met Ser Ile Phe Arg Phe Lys Val Trp Trp Thr Thr His Trp Val
100 105 110
Gly Asp Ser Gly Arg Asp Val Glu Asn Glu Thr Gln Met Met Val Leu
115 120 125
Asp Arg Ser Ala Gly Glu Pro Gly Gly Gly Gly Arg Pro Tyr Val Leu
130 135 140
Leu Leu Pro Ile Ile Glu Gly Ser Phe Arg Ala Cys Leu Glu Ala Gly
145 150 155 160
Lys Val Glu Asp Tyr Val Asp Leu Cys Val Glu Ser Gly Ser Ser Ala
165 170 175
Val Arg Gly Ala Ala Phe Arg Ser Ser Leu Tyr Leu His Ala Gly Asp
180 185 190
Asp Pro Phe Glu Leu Val Ala Asp Ala Val Arg Val Val Arg Ala His
195 200 205
Leu Gly Thr Phe Arg Thr Met Glu Glu Lys Thr Pro Pro Pro Ile Val
210 215 220
Asp Lys Phe Gly Trp Cys Thr Trp Asp Ala Phe Tyr Leu Lys Val His
225 230 235 240
Pro Glu Gly Val Trp Glu Gly Val Arg Arg Leu Ala Glu Gly Gly Cys
245 250 255
Pro Pro Gly Leu Val Leu Ile Asp Asp Gly Trp Gln Ser Ile Cys His
260 265 270
Asp Glu Asp Asp Pro Asn Ser Gly Glu Glu Gly Met Asn Arg Thr Ser
275 280 285
Ala Gly Glu Gln Met Pro Cys Arg Leu Ile Lys Phe Gln Glu Asn His
290 295 300
Lys Phe Arg Glu Tyr Lys Gln Gly Gly Met Gly Ala Phe Val Arg Glu
305 310 315 320
Met Lys Ala Ala Phe Pro Thr Val Glu Gln Val Tyr Val Trp His Ala
325 330 335
Leu Cys Gly Tyr Trp Gly Gly Leu Arg Pro Gly Ala Pro Gly Leu Pro
340 345 350
Pro Ala Lys Val Val Ala Pro Lys Leu Ser Pro Gly Leu Gln Arg Thr
355 360 365
Met Glu Asp Leu Ala Val Asp Lys Ile Val Asn Asn Gly Val Gly Leu
370 375 380
Val Asp Pro Lys Arg Ala His Glu Leu Tyr Asp Gly Leu His Ser His
385 390 395 400
Leu Gln Ala Ser Gly Ile Asp Gly Val Lys Val Asp Val Ile His Leu
405 410 415
Leu Glu Met Leu Cys Glu Glu Tyr Gly Gly Arg Val Glu Leu Ala Lys
420 425 430
Ala Tyr Phe Ala Gly Leu Thr Ala Ser Val Arg Arg His Phe Gly Gly
435 440 445
Asn Gly Val Ile Ala Ser Met Glu His Cys Asn Asp Phe Met Leu Leu
450 455 460
Gly Thr Glu Ala Val Ala Leu Gly Arg Val Gly Asp Asp Phe Trp Cys
465 470 475 480
Thr Asp Pro Ser Gly Asp Pro Asn Gly Thr Phe Trp Leu Gln Gly Cys
485 490 495
His Met Val His Cys Ala Tyr Asn Ser Leu Trp Met Gly Asn Phe Ile
500 505 510
His Pro Asp Trp Asp Met Phe Gln Ser Thr His Pro Cys Ala Ala Phe
515 520 525
His Ala Ala Ser Arg Ala Ile Ser Gly Gly Pro Ile Tyr Val Ser Asp
530 535 540
Ser Val Gly Gln His Asp Phe Ala Leu Leu Arg Arg Leu Ala Leu Pro
545 550 555 560
Asp Gly Thr Val Leu Arg Cys Glu Gly His Ala Leu Pro Thr Arg Asp
565 570 575
Cys Leu Phe Ala Asp Pro Leu His Asp Gly Arg Thr Val Leu Lys Ile
580 585 590
Trp Asn Val Asn Arg Phe Ala Gly Val Val Gly Ala Phe Asn Cys Gln
595 600 605
Gly Gly Gly Trp Ser Pro Glu Ala Arg Arg Asn Lys Cys Phe Ser Glu
610 615 620
Phe Ser Val Pro Leu Ala Ala Arg Ala Ser Pro Ser Asp Val Glu Trp
625 630 635 640
Lys Ser Gly Lys Ala Gly Pro Gly Val Ser Val Lys Gly Val Ser Gln
645 650 655
Phe Ala Val Tyr Ala Val Glu Ala Arg Thr Leu Gln Leu Leu Arg Pro
660 665 670
Asp Glu Gly Val Asp Leu Thr Leu Gln Pro Phe Thr Tyr Glu Leu Phe
675 680 685
Val Val Ala Pro Val Arg Val Ile Ser His Glu Arg Ala Ile Lys Phe
690 695 700
Ala Pro Ile Gly Leu Ala Asn Met Leu Asn Thr Ala Gly Ala Val Gln
705 710 715 720
Ala Phe Glu Ala Lys Lys Asp Ala Ser Gly Val Thr Ala Glu Val Phe
725 730 735
Val Lys Gly Ala Gly Glu Leu Val Ala Tyr Ser Ser Ala Thr Pro Arg
740 745 750
Leu Cys Lys Val Asn Gly Asp Glu Ala Glu Phe Thr Tyr Lys Asp Gly
755 760 765
Val Val Thr Val Asp Val Pro Trp Ser Gly Ser Ser Ser Lys Leu Cys
770 775 780
Arg Val Gln Tyr Val Tyr
785 790

Claims (2)

1.通过在植物中同时过表达GOLS、RS基因在提高植物种子活力过程中的应用。
2.通过在植物中表达GOLS、RS基因在调控种子中棉子糖系列寡糖含量及分配过程中的应用。
CN201711091834.8A 2017-11-08 2017-11-08 利用植物棉子糖合成通路提高种子活力及耐贮性的应用 Withdrawn CN107841512A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711091834.8A CN107841512A (zh) 2017-11-08 2017-11-08 利用植物棉子糖合成通路提高种子活力及耐贮性的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711091834.8A CN107841512A (zh) 2017-11-08 2017-11-08 利用植物棉子糖合成通路提高种子活力及耐贮性的应用

Publications (1)

Publication Number Publication Date
CN107841512A true CN107841512A (zh) 2018-03-27

Family

ID=61682439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711091834.8A Withdrawn CN107841512A (zh) 2017-11-08 2017-11-08 利用植物棉子糖合成通路提高种子活力及耐贮性的应用

Country Status (1)

Country Link
CN (1) CN107841512A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117600A (zh) * 2019-05-08 2019-08-13 西北农林科技大学 一种玉米棉子糖合成关键酶基因及其应用
CN113444738A (zh) * 2021-06-22 2021-09-28 郑州大学 棉花GhGOLS2基因在控制棉花种子萌发中的应用
CN113604487A (zh) * 2021-07-27 2021-11-05 沈阳农业大学 一种番茄肌醇半乳糖苷合成酶基因SlGolS2在调控果实着色与成熟中的应用
CN115873889A (zh) * 2022-04-22 2023-03-31 南通大学 一种SsGolS2基因在提高植物抗旱性中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1259996A (zh) * 1997-04-28 2000-07-12 味之素株式会社 棉子糖合成酶基因、棉子糖的制备方法及其转化的植物
CN104946662A (zh) * 2015-04-21 2015-09-30 西北农林科技大学 玉米ZmGolS2基因提高植物抗旱、抗高温、抗盐能力的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1259996A (zh) * 1997-04-28 2000-07-12 味之素株式会社 棉子糖合成酶基因、棉子糖的制备方法及其转化的植物
CN104946662A (zh) * 2015-04-21 2015-09-30 西北农林科技大学 玉米ZmGolS2基因提高植物抗旱、抗高温、抗盐能力的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAO LI ET AL.: "Regulation of Seed Vigor by Manipulation of Raffinose Family Oligosaccharides in Maize and Arabidopsis thaliana", 《MOLECULAR PLANT》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117600A (zh) * 2019-05-08 2019-08-13 西北农林科技大学 一种玉米棉子糖合成关键酶基因及其应用
CN113444738A (zh) * 2021-06-22 2021-09-28 郑州大学 棉花GhGOLS2基因在控制棉花种子萌发中的应用
CN113444738B (zh) * 2021-06-22 2022-07-05 郑州大学 棉花GhGOLS2基因在控制棉花种子萌发中的应用
CN113604487A (zh) * 2021-07-27 2021-11-05 沈阳农业大学 一种番茄肌醇半乳糖苷合成酶基因SlGolS2在调控果实着色与成熟中的应用
CN113604487B (zh) * 2021-07-27 2022-11-11 沈阳农业大学 一种番茄肌醇半乳糖苷合成酶基因SlGolS2在调控果实着色与成熟中的应用
CN115873889A (zh) * 2022-04-22 2023-03-31 南通大学 一种SsGolS2基因在提高植物抗旱性中的应用

Similar Documents

Publication Publication Date Title
CN107841512A (zh) 利用植物棉子糖合成通路提高种子活力及耐贮性的应用
Zhang et al. A newly isolated Na+/H+ antiporter gene, DmNHX1, confers salt tolerance when expressed transiently in Nicotiana benthamiana or stably in Arabidopsis thaliana
CN102124110A (zh) 抗旱的转录因子的转录调节和转录后调节
CN101652480A (zh) 具有提高的胁迫耐受性和产量的转基因植物
CN101123870A (zh) 用于产生具有增加的角质层水透过性的植物的分离多肽以及编码该多肽的多核苷酸
CN111718914A (zh) 蛋白ZmTIP1在调控植物抗旱性中的应用
Munusamy et al. Female reproductive system of Amaranthus as the target for Agrobacterium-mediated transformation
CN101809155A (zh) 具有增加的胁迫耐受性和产量的转基因植物
CN110117600A (zh) 一种玉米棉子糖合成关键酶基因及其应用
US7214856B2 (en) Plant having tolerance to environmental stress
CN117082972A (zh) 植物抗性基因以及用于其鉴定的手段
CN107304422A (zh) 控制水稻纹枯病抗性的OsSBR1基因及其RNA干扰片段的应用
CN104945492B (zh) 植物耐逆性相关蛋白TaAREB3及其编码基因与应用
CN102618516B (zh) 耐低磷环境基因及其应用
CN108588116B (zh) 大豆紫色酸性磷酸酶基因GmPAP35的应用
CN110452917A (zh) 野葡萄VyGOLS基因及其编码蛋白在干旱胁迫中的应用
KR102026764B1 (ko) 안토시아닌 생합성을 증진시키기 위한 재조합 벡터 및 이의 용도
CN102174525B (zh) 甘蓝型油菜抗病相关基因BnWRERF50及制备方法和应用
KR102000465B1 (ko) 식물의 키다리병 저항성을 증진시키는 방법
KR101582047B1 (ko) 고추 CaAIP1을 이용한 식물체의 건조 스트레스 저항성 증진방법
KR102633465B1 (ko) Siprr2-1 유전자 및 이를 이용한 식물체의 건조 및 염 스트레스 저항성 증진방법
CN117904142B (zh) SlMYB52基因在提高番茄盐胁迫抗性中的应用
CN113969293B (zh) 一种作物磷高效和高产基因及其应用
CN113604475B (zh) 棉花gh_d03g1517基因在促进抗旱和耐盐中的应用
CN110183524B (zh) 一个促进大豆主根伸长的基因GmKRP2a、蛋白及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180327

WW01 Invention patent application withdrawn after publication