CN107779172A - 石墨烯负载四氧化三铁纳米颗粒复合吸波剂的制备方法 - Google Patents

石墨烯负载四氧化三铁纳米颗粒复合吸波剂的制备方法 Download PDF

Info

Publication number
CN107779172A
CN107779172A CN201710842513.0A CN201710842513A CN107779172A CN 107779172 A CN107779172 A CN 107779172A CN 201710842513 A CN201710842513 A CN 201710842513A CN 107779172 A CN107779172 A CN 107779172A
Authority
CN
China
Prior art keywords
graphene
composite
precursor powder
oxide nano
ferroferric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710842513.0A
Other languages
English (en)
Inventor
师春生
刘振楠
赵乃勤
刘恩佐
何春年
何芳
马丽颖
李群英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710842513.0A priority Critical patent/CN107779172A/zh
Publication of CN107779172A publication Critical patent/CN107779172A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种石墨烯负载四氧化三铁纳米颗粒复合材料的制备方法,包括:(1)喷雾法制备复合材料前驱体粉末:以九水合硝酸铁为铁源,无水葡萄糖为碳源,氯化钠作为模板,其中Fe:C:NaCl的摩尔比为0.75~2:30:100,将铁源、碳源和氯化钠溶解在去离子水中,经过磁力搅拌获得均匀的混合溶液,将混合均匀的溶液经喷雾干燥技术获得前驱体粉末;复合材料前驱体粉末的煅烧还原;复合材料前驱体粉末的煅烧氧化;NaCl模板的去除。所述的制备方法制得的石墨烯负载四氧化三铁纳米颗粒复合材料应用于电磁波吸收。

Description

石墨烯负载四氧化三铁纳米颗粒复合吸波剂的制备方法
技术领域
本发明涉及一种用于电磁波吸收的石墨烯负载四氧化三铁纳米颗粒复合材料的制备方法,属于吸波材料领域。
背景技术
当今,随着电子科技技术的不断发展,越来越多的通讯设备和电子设备在给我们的生活带来便利的同时也诱发出了一些问题。电磁波污染已经成为继水污染、大气污染、噪声污染之外的又一具有严重威胁的污染,主要存在三个方面危害:①电磁波会对人体的健康产生不同程度的危害;②电磁波会干扰其他电子设备的正常运行;③电磁信息泄漏会对个人、企业乃至国家的信息安全造成很大的威胁。因此,许多国家都投入了大量的人力物力来解决电磁波污染的问题。目前,研究者主要致力于研究开发出一种新型的具有“薄、轻、宽、强”特点的高性能吸波材料。
传统的吸波材料,例如铁氧体和磁性金属粉末,具有很强的吸收性能,但是其密度较大,在基体中的添加量较多。石墨烯是一种新型的二维碳纳米材料,具有密度低、结构稳定、比表面积高和导电导热性好的特点,但由于其没有磁性,损耗机制单一,阻抗匹配特性差,导致其表现出较低的吸波性能。最近,研究者发现,将石墨烯与四氧化三铁进行复合后能够发挥材料的协同作用,提高阻抗匹配特性,获得质量轻、吸收频带宽、吸收性能强的高性能吸波材料。目前,石墨烯/四氧化三铁复合材料的合成方法主要为共沉淀法、水热法和溶剂热法,而共沉淀法制备出的四氧化三铁纳米颗粒容易团聚,很难实现在石墨烯上均匀分布;水热法和溶剂热法工艺参数过多,产物纯度不易控制;并且这些方法难以实现吸波材料的大批量生产。因此,采取稳定且简单的合成工艺,大批量制备出石墨烯/四氧化三铁复合吸波材料就成为了关键。
发明内容
本发明的目的在于提供一种石墨烯负载四氧化三铁纳米颗粒复合材料的制备方法。该复合材料由碳包覆四氧化三铁纳米颗粒负载在石墨烯上构成,其制备方法简单易行,可量产,且具有较好的电磁波吸收能力,有望进一步实现在工业上的应用。本发明的技术方案如下:
一种石墨烯负载四氧化三铁纳米颗粒复合材料的制备方法,步骤如下:
(1)喷雾法制备复合材料前驱体粉末
以九水合硝酸铁为铁源,无水葡萄糖为碳源,氯化钠作为模板,其中Fe:C:NaCl的摩尔比为0.75~2:30:100,将铁源、碳源和氯化钠溶解在去离子水中,经过磁力搅拌获得均匀的混合溶液,将混合均匀的溶液经喷雾干燥技术获得前驱体粉末;
(2)复合材料前驱体粉末的煅烧还原
将步骤(1)中所制备的前驱体粉末铺于方舟中,置于管式炉恒温区进行煅烧:以氩气作为保护性气氛,以10℃每分钟的升温速率升至700℃,保温2小时进行葡萄糖的碳化和硝酸铁的还原,反应结束后以5℃每分钟的速度降温,冷却到室温后,制得含有NaCl的石墨烯/铁纳米颗粒复合材料;
(3)复合材料前驱体粉末的煅烧氧化
将步骤(2)中获得的煅烧产物铺于方舟中,置于管式炉恒温区进行煅烧:以空气作为氧化气氛,以5℃每分钟的升温速率升至250℃,保温4小时进行Fe纳米颗粒的氧化,反应结束后冷却到室温,得到含有NaCl的石墨烯/四氧化三铁纳米颗粒复合材料;
(4)NaCl模板的去除
收集步骤(3)中制得的最终煅烧产物,水洗至产物中没有NaCl为止,最后在80℃烘箱中烘干,获得石墨烯负载四氧化铁纳米颗粒复合材料;
上述的制备方法制得的石墨烯负载四氧化三铁纳米颗粒复合材料应用于电磁波吸收。
本发明的特点:本发明利用廉价易得的原料制备了石墨烯负载四氧化三铁纳米颗粒复合材料,制备工艺过程简单,可批量化生产,所得到的复合材料中四氧化三铁在石墨烯上分布均匀,且与石墨烯具有良好的界面结合。通过对复合材料在1-18GHz频率范围内的电磁参数测试,计算出了材料的吸波性能,在1.0~4.5mm吸波层厚度范围内的有效吸收带宽(RL<-10dB)可达到13GHz(5-18GHz),材料具有较好的吸波性能,有望实现在工业上的推广使用。
附图说明
图1为本发明实施例1所得的石墨烯负载四氧化三铁纳米颗粒复合材料的XRD图。
图2为本发明实施例1所得的石墨烯负载四氧化三铁纳米颗粒复合材料的TEM照片。
图3为本发明实施例1所得的石墨烯负载四氧化三铁纳米颗粒复合材料的电磁参数。
图4为本发明实施例1所得的石墨烯负载四氧化三铁纳米颗粒复合材料的介电损耗正切值、磁损耗正切值和反射损耗曲线。
具体实施方式:
下面结合具体实施例和附图对本发明进行说明,这些实施例只是用于说明本发明,并不限制本发明。
实施例1
称取3.592g九水合硝酸铁、4g无水葡萄糖、26g氯化钠,将混合物溶于300ml去离子水中并磁力搅拌4小时,获得均匀的混合溶液。将所得溶液经过喷雾干燥机处理制得复合材料前驱体粉末。取10g前驱体粉末置于方舟中,将方舟放入管式炉恒温区,通入400ml/minAr 20min排净空气,再以100ml/min Ar作为保护气氛,并以10℃/min的升温速率升温至700℃,保温2h进行葡萄糖的碳化和硝酸铁的还原,反应结束后在Ar气氛保护下冷却至室温,得到第一步煅烧产物。将第一步煅烧产物放入管式炉中,以400ml/min空气作为煅烧气氛,并以5℃/min的升温速率升温至250℃,保温4h进行Fe纳米颗粒的氧化,待反应结束后冷却至室温,得到最终的煅烧产物。收集煅烧产物,水洗至产物中没有NaCl,最后在80℃烘箱中烘干,制得石墨烯负载四氧化三铁纳米颗粒复合材料。
实施例1中前驱体粉末经过两步煅烧并除去NaCl之后的产物的XRD如图1所示,可知制备的复合材料的主要成分为Fe3O4。TEM观察表明Fe3O4纳米颗粒在石墨烯上分布的比较均匀,并且与石墨烯具有很好的界面结合。
将实施例1中的石墨烯负载四氧化三铁纳米颗粒复合材料与固体石蜡按照质量比70%:30%均匀混合,在专用模具中压制成外径7.00mm、内径3.04mm、厚度2.00mm的同轴圆环样品,用型号HP-8722ES矢量网络分析仪测试其电磁参数,测试频率为1-18GHz。石墨烯负载四氧化三铁纳米颗粒复合样品的电磁参数如图3所示。根据传输线理论方程和复合样品电磁参数通过MATLAB软件计算出石墨烯负载四氧化三铁纳米颗粒复合样品的介电损耗正切值、磁损耗正切值和反射损耗曲线,如图4所示,在1.0~4.5mm厚度范围内的有效吸收带宽(RL<-10dB)可达到13GHz(5-18GHz)。当复合样品的厚度为2.0mm时,在13.24GHz处,吸波性能达到-14.5dB,有效吸收带宽(RL<-10dB)为4.42GHz(11.37-15.79GHz)。
实施例2
称取2.694g九水合硝酸铁、4g无水葡萄糖、26g氯化钠,将混合物溶于300ml去离子水中并磁力搅拌4小时,获得均匀的混合溶液。将所得溶液经过喷雾干燥机处理制得复合材料前驱体粉末。取10g前驱体粉末置于方舟中,将方舟放入管式炉恒温区,通入400ml/minAr 20min排净空气,再以100ml/min Ar作为保护气氛,并以10℃/min的升温速率升温至700℃,保温2h进行葡萄糖的碳化和硝酸铁的还原,反应结束后在Ar气氛保护下冷却至室温,得到第一步煅烧产物。将第一步煅烧产物放入管式炉中,以400ml/min空气作为煅烧气氛,并以5℃/min的升温速率升温至250℃,保温4h进行Fe纳米颗粒的氧化,待反应结束后冷却至室温,得到最终的煅烧产物。收集煅烧产物,水洗至产物中没有NaCl,最后在80℃烘箱中烘干,制得石墨烯负载四氧化三铁纳米颗粒复合材料。
实施例3
称取1.796g九水合硝酸铁、4g无水葡萄糖、26g氯化钠,将混合物溶于300ml去离子水中并磁力搅拌4小时,获得均匀的混合溶液。将所得溶液经过喷雾干燥机处理制得复合材料前驱体粉末。取10g前驱体粉末置于方舟中,将方舟放入管式炉恒温区,通入400ml/minAr 20min排净空气,再以100ml/min Ar作为保护气氛,并以10℃/min的升温速率升温至700℃,保温2h进行葡萄糖的碳化和硝酸铁的还原,反应结束后在Ar气氛保护下冷却至室温,得到第一步煅烧产物。将第一步煅烧产物放入管式炉中,以400ml/min空气作为煅烧气氛,并以5℃/min的升温速率升温至250℃,保温4h进行Fe纳米颗粒的氧化,待反应结束后冷却至室温,得到最终的煅烧产物。收集煅烧产物,水洗至产物中没有NaCl,最后在80℃烘箱中烘干,制得石墨烯负载四氧化三铁纳米颗粒复合材料。
实施例4
称取1.347g九水合硝酸铁、4g无水葡萄糖、26g氯化钠,将混合物溶于300ml去离子水中并磁力搅拌4小时,获得均匀的混合溶液。将所得溶液经过喷雾干燥机处理制得复合材料前驱体粉末。取10g前驱体粉末置于方舟中,将方舟放入管式炉恒温区,通入400ml/minAr 20min排净空气,再以100ml/min Ar作为保护气氛,并以10℃/min的升温速率升温至700℃,保温2h进行葡萄糖的碳化和硝酸铁的还原,反应结束后在Ar气氛保护下冷却至室温,得到第一步煅烧产物。将第一步煅烧产物放入管式炉中,以400ml/min空气作为煅烧气氛,并以5℃/min的升温速率升温至250℃,保温4h进行Fe纳米颗粒的氧化,待反应结束后冷却至室温,得到最终的煅烧产物。收集煅烧产物,水洗至产物中没有NaCl,最后在80℃烘箱中烘干,制得石墨烯负载四氧化三铁纳米颗粒复合材料。

Claims (3)

1.一种石墨烯负载四氧化三铁纳米颗粒复合材料的制备方法,步骤如下:
(1)喷雾法制备复合材料前驱体粉末
以九水合硝酸铁为铁源,无水葡萄糖为碳源,氯化钠作为模板,其中Fe:C:NaCl的摩尔比为0.75~2:30:100,将铁源、碳源和氯化钠溶解在去离子水中,经过磁力搅拌获得均匀的混合溶液,将混合均匀的溶液经喷雾干燥技术获得前驱体粉末。
(2)复合材料前驱体粉末的煅烧还原
将步骤(1)中所制备的前驱体粉末铺于方舟中,置于管式炉恒温区进行煅烧:以氩气作为保护性气氛,以10℃每分钟的升温速率升至700℃,保温2小时进行葡萄糖的碳化和硝酸铁的还原,反应结束后以5℃每分钟的速度降温,冷却到室温后,制得含有NaCl的石墨烯/铁纳米颗粒复合材料;
(3)复合材料前驱体粉末的煅烧氧化
将步骤(2)中获得的煅烧产物铺于方舟中,置于管式炉恒温区进行煅烧:以空气作为氧化气氛,以5℃每分钟的升温速率升至250℃,保温4小时进行Fe纳米颗粒的氧化,反应结束后冷却到室温,得到含有NaCl的石墨烯/四氧化三铁纳米颗粒复合材料;
(4)NaCl模板的去除
收集步骤(3)中制得的最终煅烧产物,水洗至产物中没有NaCl为止,最后在80℃烘箱中烘干,获得石墨烯负载四氧化铁纳米颗粒复合材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,喷雾干燥机的进风温度150℃,出风温度90℃,蠕动速度20RPM。
3.权利要求1所述的制备方法制得的石墨烯负载四氧化三铁纳米颗粒复合材料应用于电磁波吸收。
CN201710842513.0A 2017-09-18 2017-09-18 石墨烯负载四氧化三铁纳米颗粒复合吸波剂的制备方法 Pending CN107779172A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710842513.0A CN107779172A (zh) 2017-09-18 2017-09-18 石墨烯负载四氧化三铁纳米颗粒复合吸波剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710842513.0A CN107779172A (zh) 2017-09-18 2017-09-18 石墨烯负载四氧化三铁纳米颗粒复合吸波剂的制备方法

Publications (1)

Publication Number Publication Date
CN107779172A true CN107779172A (zh) 2018-03-09

Family

ID=61437883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710842513.0A Pending CN107779172A (zh) 2017-09-18 2017-09-18 石墨烯负载四氧化三铁纳米颗粒复合吸波剂的制备方法

Country Status (1)

Country Link
CN (1) CN107779172A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108841358A (zh) * 2018-05-24 2018-11-20 南通大学 一种纳米片状Fe3O4插层氧化石墨烯复合吸波材料的制备方法
CN108919585A (zh) * 2018-06-29 2018-11-30 东华大学 一种分级孔NiO/C电致变色显示器件及其制备和应用
CN108975315A (zh) * 2018-07-28 2018-12-11 嘉兴学院 三维纳米片层结构的石墨烯材料的制备方法
CN109233741A (zh) * 2018-09-12 2019-01-18 天津大学 一种三维碳网络负载铁酸钴纳米颗粒复合吸波剂的制备方法
CN109626442A (zh) * 2019-02-01 2019-04-16 东南大学 一种四氧化三铁纳米颗粒的制备方法
CN110092420A (zh) * 2019-05-14 2019-08-06 北京科技大学 一种Fe3O4/多孔石墨烯复合材料的制备方法
CN110418564A (zh) * 2019-07-23 2019-11-05 天津大学 碳纳米管及金属纳米颗粒修饰的三维碳吸波材料的制备方法
CN110449149A (zh) * 2019-06-27 2019-11-15 天津大学 一种碳网络固载贵金属纳米颗粒材料的制备方法
CN110562950A (zh) * 2019-08-13 2019-12-13 湖州凯金新能源科技有限公司 一种石墨化碳负极材料及其制备方法
CN110591164A (zh) * 2019-10-08 2019-12-20 陕西师范大学 一种固体纳米分散体吸波材料
CN111623404A (zh) * 2019-02-27 2020-09-04 天津大学 一种具有空气净化功能的浴霸
CN112165846A (zh) * 2020-09-21 2021-01-01 山东理工大学 一种低频高效吸波四氧化三铁/大孔薄层碳磁性复合材料制备方法
CN114364244A (zh) * 2021-12-23 2022-04-15 国网辽宁省电力有限公司电力科学研究院 一种SiCnw/Co复合吸波材料的制备方法
WO2024187746A1 (zh) * 2023-03-10 2024-09-19 宁德时代新能源科技股份有限公司 正极活性复合材料、及其制备方法、正极极片、二次电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500295A (zh) * 2011-10-26 2012-06-20 天津大学 碳包覆金属纳米颗粒的制备方法
CN102660220A (zh) * 2012-04-16 2012-09-12 天津大学 一种石墨烯负载四氧化三铁纳米复合材料的制备方法
CN102786097A (zh) * 2012-07-26 2012-11-21 天津大学 碳包覆四氧化三铁纳米颗粒的水热制备方法
CN102790217A (zh) * 2012-07-26 2012-11-21 天津大学 碳包覆四氧化三铁锂离子电池负极材料及其制备方法
CN106753237A (zh) * 2016-11-28 2017-05-31 深圳大学 一种石墨烯/四氧化三铁复合吸波材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500295A (zh) * 2011-10-26 2012-06-20 天津大学 碳包覆金属纳米颗粒的制备方法
CN102660220A (zh) * 2012-04-16 2012-09-12 天津大学 一种石墨烯负载四氧化三铁纳米复合材料的制备方法
CN102786097A (zh) * 2012-07-26 2012-11-21 天津大学 碳包覆四氧化三铁纳米颗粒的水热制备方法
CN102790217A (zh) * 2012-07-26 2012-11-21 天津大学 碳包覆四氧化三铁锂离子电池负极材料及其制备方法
CN106753237A (zh) * 2016-11-28 2017-05-31 深圳大学 一种石墨烯/四氧化三铁复合吸波材料及其制备方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108841358B (zh) * 2018-05-24 2021-03-16 南通大学 一种纳米片状Fe3O4插层氧化石墨烯复合吸波材料的制备方法
CN108841358A (zh) * 2018-05-24 2018-11-20 南通大学 一种纳米片状Fe3O4插层氧化石墨烯复合吸波材料的制备方法
CN108919585A (zh) * 2018-06-29 2018-11-30 东华大学 一种分级孔NiO/C电致变色显示器件及其制备和应用
CN108919585B (zh) * 2018-06-29 2021-08-10 东华大学 一种分级孔NiO/C电致变色显示器件及其制备和应用
CN108975315A (zh) * 2018-07-28 2018-12-11 嘉兴学院 三维纳米片层结构的石墨烯材料的制备方法
CN109233741A (zh) * 2018-09-12 2019-01-18 天津大学 一种三维碳网络负载铁酸钴纳米颗粒复合吸波剂的制备方法
CN109626442A (zh) * 2019-02-01 2019-04-16 东南大学 一种四氧化三铁纳米颗粒的制备方法
CN109626442B (zh) * 2019-02-01 2021-04-06 东南大学 一种四氧化三铁纳米颗粒的制备方法
CN111623404A (zh) * 2019-02-27 2020-09-04 天津大学 一种具有空气净化功能的浴霸
CN110092420A (zh) * 2019-05-14 2019-08-06 北京科技大学 一种Fe3O4/多孔石墨烯复合材料的制备方法
CN110449149A (zh) * 2019-06-27 2019-11-15 天津大学 一种碳网络固载贵金属纳米颗粒材料的制备方法
CN110418564A (zh) * 2019-07-23 2019-11-05 天津大学 碳纳米管及金属纳米颗粒修饰的三维碳吸波材料的制备方法
CN110562950A (zh) * 2019-08-13 2019-12-13 湖州凯金新能源科技有限公司 一种石墨化碳负极材料及其制备方法
CN110562950B (zh) * 2019-08-13 2021-10-01 湖州凯金新能源科技有限公司 一种石墨化碳负极材料及其制备方法
CN110591164A (zh) * 2019-10-08 2019-12-20 陕西师范大学 一种固体纳米分散体吸波材料
CN110591164B (zh) * 2019-10-08 2021-10-29 陕西师范大学 一种固体纳米分散体吸波材料
CN112165846A (zh) * 2020-09-21 2021-01-01 山东理工大学 一种低频高效吸波四氧化三铁/大孔薄层碳磁性复合材料制备方法
CN114364244A (zh) * 2021-12-23 2022-04-15 国网辽宁省电力有限公司电力科学研究院 一种SiCnw/Co复合吸波材料的制备方法
WO2024187746A1 (zh) * 2023-03-10 2024-09-19 宁德时代新能源科技股份有限公司 正极活性复合材料、及其制备方法、正极极片、二次电池和用电装置

Similar Documents

Publication Publication Date Title
CN107779172A (zh) 石墨烯负载四氧化三铁纳米颗粒复合吸波剂的制备方法
Qiu et al. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption
Di et al. Wheat flour-derived nanoporous carbon@ ZnFe2O4 hierarchical composite as an outstanding microwave absorber
Zhang et al. Synthesis of CF@ PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber
Lan et al. Double-shell hollow glass microspheres@ Co2SiO4 for lightweight and efficient electromagnetic wave absorption
Liu et al. Facile manufacturing of Ni/MnO nanoparticle embedded carbon nanocomposite fibers for electromagnetic wave absorption
Chen et al. Interfacial and defect polarization in MXene-like laminated spinel for electromagnetic wave absorption application
Ding et al. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co 3 O 4-nanosheets/reduced-graphene-oxide composite
CN109233741A (zh) 一种三维碳网络负载铁酸钴纳米颗粒复合吸波剂的制备方法
Kong et al. Construction of metal-organic framework derived Co/ZnO/Ti3C2Tx composites for excellent microwave absorption
CN110790316B (zh) 铁氧化物-氮掺杂碳微米管复合吸波材料及其制备方法
Lyu et al. High-performance microwave absorption of MOF‐derived Co3O4@ N-doped carbon anchored on carbon foam
Wang et al. Facile synthesis of cobalt nanoparticles embedded in a rod-like porous carbon matrix with excellent electromagnetic wave absorption performance
CN107033842B (zh) 一种复合吸波剂、制备方法及其应用
Su et al. Construction of sandwich-like NiCo2O4/Graphite nanosheets/NiCo2O4 heterostructures for a tunable microwave absorber
CN107333460B (zh) 一种石墨烯基金属复合吸波材料的制备方法
CN109494038B (zh) 四氧化三铁-纳米多孔碳纳米复合材料及其制备方法与应用
CN107365567B (zh) 一种碳纤维表面包覆磁性铁氧体纳米碳管的吸波材料及其制备方法和应用
CN108521754A (zh) 一种多孔碳基电磁吸波剂及其制备方法
Wu et al. Hierarchical porous carbon fibers for broadband and tunable high-performance microwave absorption
Ma et al. Ti3C2Tx MXene@ NiFe layered double hydroxide derived multiple interfacial composites with efficient microwave absorption
CN108154984A (zh) 一种多孔四氧化三铁/碳纳米棒状电磁波吸收材料及其制备方法与应用
CN107011858B (zh) 一种碳基复合吸波剂及其制备方法
Zhang et al. Graphene-layer-coated boron carbide nanosheets with efficient electromagnetic wave absorption
CN112165848A (zh) 石墨烯负载磁性金属或其氧化物的复合吸波材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180309