CN107768650A - 锂离子电池负极材料及其制备方法 - Google Patents
锂离子电池负极材料及其制备方法 Download PDFInfo
- Publication number
- CN107768650A CN107768650A CN201711005772.4A CN201711005772A CN107768650A CN 107768650 A CN107768650 A CN 107768650A CN 201711005772 A CN201711005772 A CN 201711005772A CN 107768650 A CN107768650 A CN 107768650A
- Authority
- CN
- China
- Prior art keywords
- tio
- lithium ion
- sio
- ion battery
- spherical shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 35
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 239000000463 material Substances 0.000 title claims abstract description 28
- 238000002360 preparation method Methods 0.000 title abstract description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 81
- 239000002105 nanoparticle Substances 0.000 claims abstract description 34
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 19
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 19
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 19
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 19
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims abstract description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 43
- 239000000243 solution Substances 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- 238000002242 deionisation method Methods 0.000 claims description 6
- 239000000047 product Substances 0.000 claims description 6
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical class CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 5
- 238000013019 agitation Methods 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- 239000006227 byproduct Substances 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 5
- 239000011259 mixed solution Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 239000003755 preservative agent Substances 0.000 claims description 5
- 230000002335 preservative effect Effects 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000000576 coating method Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000003786 synthesis reaction Methods 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 abstract description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 235000019441 ethanol Nutrition 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 235000013339 cereals Nutrition 0.000 description 4
- 229910052605 nesosilicate Inorganic materials 0.000 description 4
- 150000004762 orthosilicates Chemical class 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010420 shell particle Substances 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/08—Drying; Calcining ; After treatment of titanium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
- C01P2004/34—Spheres hollow
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
- C01P2006/17—Pore diameter distribution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种TiO2空心介孔球壳包TiO2纳米颗粒的锂离子电池负极材料及其制备方法,属于锂离子电池技术领域。其制备方法是以经典stober法在TiO2纳米颗粒P25表面包覆一层SiO2,再采用钛酸异丙酯水解法在SiO2表面包覆一层TiO2,去除SiO2层后即获得TiO2空心介孔球壳包TiO2纳米颗粒材料。采用本发明所提供的TiO2空心介孔球壳包TiO2纳米颗粒作为锂离子电池负极材料,表现出良好的充放电性能和循环稳定性。本发明方法合成工艺简单,反应条件温和,成本较低,适合大规模合成。
Description
技术领域
本发明属于锂离子电池技术领域,特别涉及一种TiO2空心介孔球壳包TiO2纳米颗粒的锂离子电池负极材料及其制备方法。
背景技术
锂离子电池具有能量密度高、使用寿命长、安全稳定、环境友好等特点,在移动设备、绿色交通以及能源存储等多个领域具有广泛的应用前景。近年来智能电子设备发展迅猛,对电源提出了更高要求,迫切需要电源具有高的能量密度和功率密度,长的循环寿命,以及良好的使用性能。当前的商品锂离子电池已不能完全满足市场需求,开发高性能电极和电极材料提高锂离子电池的电化学性能,推动锂离子电池进一步发展,就成为十分重要的工作。
目前商品锂离子电池的负极材料主要是石墨化碳基材料。石墨化程度很高的碳材料,表面各向异性较大,首次充电时形成的钝化膜疏松多孔,不能有效阻挡溶剂化锂离子的共嵌入,会造成石墨层的崩溃。此外,锂离子沿石墨微晶ab轴平面的扩散速度比c轴方向大得多,而锂的插入是在石墨层边界进行的,这导致锂离子在其中扩散存在很大的动力学障碍,不能进行快速充放电。因此高性能锂离子电池负极材料的研究和开发受到各国研究者的广泛重视。
在众多可替代负极材料中,TiO2具有无毒无害、储量丰富、价格低廉、结构稳定等优点,理论容量为335 mAh g-1,以其为负极可有效提高电池的实际容量;TiO2的脱嵌锂电位较高(1.5~1.8 V),可避免锂枝晶的生成,提升了电池的安全性;同时,TiO2的储锂机制为Li+的嵌入-脱出,不涉及合金化或氧化还原反应,在充放电过程中体积变化小(<4%),具有良好的循环稳定性,可有效延长电池的使用寿命,因此是一种优良的锂离子电池负极材料。
将TiO2合成为纳米结构材料可以改善TiO2作为锂离子电池的电化学性能。公开号为CN105826546A的中国专利文献公开了一种TiO2-B超细纳米线及其制备方法与应用;公开号为CN106058234A的中国专利文献公开了一种分级多孔核壳结构的TiO2微米球材料及其制备方法和应用;都是基于纳米结构来改善TiO2的锂电池性能,说明材料结构设计对TiO2在锂电池中的应用十分重要。但也要看到TiO2纳米材料一般存在颗粒尺寸分布宽、颗粒间堆积密度低、在电极制备过程中易团聚等缺点,导致了差的充放电性能,因此优良的TiO2锂离子电池负极材料仍然在不断探索找寻中。
发明内容
本发明的目的是为提高TiO2作为锂离子电池负极材料的充放电性能,而提出一种新结构锂离子电池负极材料及其制备方法。
本发明所述的新结构锂离子电池负极材料是TiO2空心介孔球壳包TiO2 纳米颗粒(P25),其中TiO2空心球壳直径30-200 nm,壳厚1-40 nm,球壳上有直径0.4-0.6nm的介孔;TiO2空心球壳内部有一颗独立的TiO2纳米颗粒,直径25 nm,即TiO2商品(商品名P25)。
TiO2空心介孔球壳包TiO2纳米颗粒的制备方法,其步骤如下:
配制溶液A:9 mL 28% 的浓氨水 + 16.25 mL 乙醇 + 24.75 mL水 + 0.02 g CTAB,置于烧杯中,磁力搅拌15 min,直至溶液均匀混合,再加入TiO2纳米颗粒(P25)0.1-0.5 g,超声分散20 min,
配制溶液B: 4.5 mL 正硅酸乙酯(TEOS)+ 45.5 mL乙醇,混合均匀。
将溶液B快速加入剧烈搅拌的溶液A中,用保鲜膜封住烧杯口,室温下继续搅拌反应2 h。将产物SiO2包P25离心分离,无水乙醇清洗3遍。将清洗干净的SiO2包P25再次置于无水乙醇与去离子水的混合溶液中,在剧烈搅拌的条件下,逐滴加入钛酸异丙酯(TIP),滴加后继续搅拌反应30 min,随后离心分离产物TiO2包SiO2@P25。将TiO2包SiO2@P25置于去离子水中,加热到90-99°C,保温2-10 h,倒走上层浊液,用90-99°C去离子水洗,静置后再倒走上层浊液,重复三次清洗后烘干,得到TiO2空心介孔球壳包TiO2纳米颗粒的复合材料。
采用本发明的负极材料制备锂离子电池负极:分别称取质量比为8:1:1的TiO2空心介孔球壳包TiO2 P25颗粒的复合材料、乙炔黑导电剂、聚偏氟乙烯(PVDF)粘结剂,将PVDF溶于适量的1-甲基-2-吡咯烷酮(NMP)中,搅拌直至完全溶解,再将研磨均匀的活性粉末和乙炔黑导电剂加入上述溶液中,继续搅拌以保证浆料混合均匀。然后将浆料均匀涂覆在圆片状的泡沫镍集流体上(直径为12 mm),置于真空烘箱内80°C烘干,最后在压片机上用10MPa的压强压平,即制得电极片。
在充满高纯氩气的手套箱内将制备的电池负极与锂片、隔膜组成CR2025纽扣型锂离子电池。电解液为1 mol L-1 LiPF6的EC/DMC电解液。采用新威电池测试系统测试锂离子电池的充放电性能与循环稳定性。
与现有技术相比,本发明具有以下优点:
(1)通过TiO2空心球壳包纳米TiO2的结构,有效解决了纳米TiO2容易团聚的问题,使纳米TiO2高比表面积高电化学活性的优点保留下来;
(2)由于TiO2球壳是介孔结构,使得TiO2球壳内部也能储存电解液,球壳内部的TiO2纳米颗粒和球壳内表面部分都能接触到电解液,这有效缩短了锂离子的扩散路径,提高了TiO2材料的电化学反应面积,提高了TiO2参与电化学反应的能力;
(3)TiO2球壳和纳米颗粒组合成一体,提高了材料的堆积密度和空间利用效率;
(4)本发明的材料合成工艺简单,反应条件温和,对环境无污染,成本较低,可以大量生产,具有较大的商业应用前景。
附图说明
图1为实施例1制备的TiO2空心介孔球壳包TiO2纳米颗粒的TEM照片。
图2为实施例1制备的TiO2空心介孔球壳包TiO2纳米颗粒的循环充放电性能。
具体实施方式
以下结合实施例和附图对本发明作进一步说明。
本发明以经典stober法在TiO2纳米颗粒P25表面包覆一层SiO2,再采用钛酸异丙酯水解法在SiO2表面包覆一层TiO2,去除SiO2层后即获得TiO2空心介孔球壳包TiO2纳米颗粒材料。
实施例1
配制溶液A:9 mL 28% 的浓氨水 + 16.25 mL 乙醇 + 24.75 mL水 + 0.02 g CTAB,置于烧杯中,磁力搅拌15 min,直至溶液均匀混合,再加入TiO2纳米颗粒(P25)0.1 g,超声分散20 min。
配制溶液B: 4.5 mL 正硅酸乙酯(TEOS)+ 45.5 mL乙醇,混合均匀。
将溶液B快速加入剧烈搅拌的溶液A中,用保鲜膜封住烧杯口,室温下继续搅拌反应2 h,将产物SiO2包P25离心分离,无水乙醇清洗3遍。将清洗干净的SiO2包P25再次置于无水乙醇与去离子水的混合溶液中,在剧烈搅拌的条件下,逐滴加入钛酸异丙酯(TIP)2 mL,滴加后继续搅拌反应30 min,随后离心分离产物TiO2包SiO2@P25。将TiO2包SiO2@P25置于去离子水中,加热到95°C,保温2-10 h,倒走上层浊液,用95°C去离子水洗,静置后再倒走上层浊液,重复三次清洗后烘干,得到TiO2空心介孔球壳包TiO2 P25颗粒的复合材料。
图1是TiO2空心介孔球壳包TiO2 纳米颗粒的TEM照片,可以清楚地看到TiO2空心球壳以及空心球壳内部的TiO2纳米颗粒。TiO2空心球壳的直径大约160 nm,球壳厚约25 nm,壳上介孔尺寸约0.5 nm。TiO2纳米颗粒与球壳没有黏连在一起,独立存在,直接大约25 nm。
采用本发明的负极材料制备锂离子电池负极:分别称取质量比为8:1:1的TiO2空心介孔球壳包TiO2 纳米颗粒、乙炔黑导电剂、聚偏氟乙烯(PVDF)粘结剂,将PVDF溶于适量的1-甲基-2-吡咯烷酮(NMP)中,搅拌直至完全溶解,再将研磨均匀的活性粉末和乙炔黑导电剂加入上述溶液中,继续搅拌以保证浆料混合均匀。然后将浆料均匀涂覆在圆片状的泡沫镍集流体上(直径为12 mm),置于真空烘箱内80°C烘干,最后在压片机上用10 MPa的压强压平,即制得电极片。
在充满高纯氩气的手套箱内将制备的负极与金属锂片(正极)、隔膜组成CR2025纽扣型锂离子电池。电解液为1 mol L-1 LiPF6的EC/DMC电解液。采用新威电池测试系统测试锂离子电池的充放电性能与循环稳定性。充放电电流0.5 C倍率,充放电电压范围0.01-3.0V。没有包覆TiO2球壳的纯TiO2纳米颗粒(P25)也采用相同工艺制作负极装配成锂离子电池,使用相同条件进行性能测试,以作为比较。
图2是实施例一制备的TiO2空心介孔球壳包TiO2纳米颗粒和纯TiO2 纳米颗粒(P25)的循环性能对比图。第1个循环TiO2空心介孔球壳包TiO2纳米颗粒的放电容量是350mAh g-1,到第4个循环快速减小到280 mAh g-1,继续循环到第18个循环缓慢减小到243 mAhg-1,然后基本维持在240 mAh g-1。作为对比,纯TiO2 纳米颗粒(P25)的首次循环放电容量只有230 mAh g-1,到第6个循环快速减小到110 mAh g-1,然后维持较缓慢的下降趋势,到第50个循环只有71 mAh g-1。循环充放电测试结果表明TiO2空心介孔球壳包TiO2纳米颗粒能够显著提高TiO2纳米材料的充放电性能和循环稳定性。
实施例2
配制溶液A:9 mL 28% 的浓氨水 + 16.25 mL 乙醇 + 24.75 mL水 + 0.02 g CTAB,置于烧杯中,磁力搅拌15 min,直至溶液均匀混合,再加入TiO2纳米颗粒(P25)0.2 g,超声分散20 min。
配制溶液B: 4.5 mL 正硅酸乙酯(TEOS)+ 45.5 mL乙醇,混合均匀。
将溶液B快速加入剧烈搅拌的溶液A中,用保鲜膜封住反应烧杯口,室温下继续搅拌反应2 h。将产物SiO2包P25离心分离,无水乙醇清洗3遍,将清洗干净的SiO2包P25再次置于无水乙醇与去离子水的混合溶液中,在剧烈搅拌的条件下,逐滴加入钛酸异丙酯(TIP)1mL,滴加后继续搅拌反应30 min,随后离心分离产物TiO2包SiO2@P25,将TiO2包SiO2@P25置于去离子水中,加热到95°C,保温2-10 h,倒走上层浊液,用95°C去离子水洗,静置后再倒走上层浊液,重复三次清洗后烘干,得到TiO2空心介孔球壳包TiO2纳米颗粒的复合材料。
复合材料中TiO2球壳直径90 nm,球壳厚度16 nm,球壳内部含有一颗TiO2纳米颗粒,直径约25 nm。
采用与实施例一相同的工艺制作锂离子电池负极,装配成锂离子电池,以0.5C倍率,0.01-3.0V电压范围进行循环充放电测试,TiO2空心介孔球壳包TiO2纳米颗粒的放电比容量变化趋势和实施例一相似。首循环放电容量363 mAh g-1,到第4个循环快速减小到294mAh g-1,继续循环到第18个循环缓慢减小到256 mAh g-1,然后基本维持在250 mAh g-1。
实施例3
配制溶液A:9 mL 28% 的浓氨水 + 16.25 mL 乙醇 + 24.75 mL水 + 0.02 g CTAB,置于烧杯中,磁力搅拌15 min,直至溶液均匀混合,再加入TiO2纳米颗粒(P25)0.5 g,超声分散20 min。
配制溶液B: 4.5 mL 正硅酸乙酯(TEOS)+ 45.5 mL乙醇,混合均匀。
将溶液B快速加入剧烈搅拌的溶液A中,用保鲜膜封住反应烧杯口,室温下继续搅拌反应2 h,将产物SiO2包P25离心分离,无水乙醇清洗3遍。将清洗干净的SiO2包P25再次置于无水乙醇与去离子水的混合溶液中,在剧烈搅拌的条件下,逐滴加入钛酸异丙酯(TIP)0.2 mL,滴加后继续搅拌反应30 min,随后离心分离产物TiO2包SiO2@P25。将TiO2包SiO2@P25置于去离子水中,加热到95°C,保温2-10 h,倒走上层浊液,用95°C去离子水洗,静置后再倒走上层浊液,重复三次清洗后烘干,得到TiO2空心介孔球壳包TiO2 纳米颗粒的复合材料。
复合材料中TiO2球壳直径50 nm,球壳厚度3-5 nm,球壳内部含有一颗TiO2纳米颗粒,直径约25 nm。
采用与实施例一相同的工艺制作锂离子电池负极,装配成锂离子电池,以0.5C倍率,0.01-3.0V电压范围进行循环充放电测试,TiO2空心介孔球壳包TiO2纳米颗粒的放电比容量变化趋势和实施例一相似。首循环放电容量341 mAh g-1,到第4个循环快速减小到260mAh g-1,继续循环到第18个循环缓慢减小到210 mAh g-1,然后基本维持在205 mAh g-1。
Claims (3)
1.锂离子电池负极材料,其特征在于:该负极材料是一种TiO2空心介孔球壳包TiO2纳米颗粒的结构,该结构中的TiO2空心球壳直径为30-200 nm,壳厚为1-40 nm,球壳上有直径为0.4-0.6nm的介孔;TiO2空心球壳内部有一颗独立的TiO2纳米颗粒。
2.根据权利要求1所述的锂离子电池负极材料,其特征在于:所述的TiO2纳米颗粒直径为25 nm,即商品TiO2,商品名P25。
3.制备权利要求1所述的锂离子电池负极材料的方法,其特征在于该方法包括以下步骤:
配制溶液A:9 mL 28% 的浓氨水 + 16.25 mL 乙醇 + 24.75 mL水 + 0.02 g CTAB,置于烧杯中,磁力搅拌15 min,直至溶液均匀混合,再加入P25 0.1-0.5 g,超声分散20 min;
配制溶液B: 4.5 mL 正硅酸乙酯+ 45.5 mL乙醇,混合均匀;
将溶液B快速加入剧烈搅拌的溶液A中,用保鲜膜封住烧杯口,室温下继续搅拌反应2h;将产物SiO2包P25离心分离,无水乙醇清洗3遍;将清洗干净的SiO2包P25再次置于无水乙醇与去离子水的混合溶液中,在剧烈搅拌的条件下,逐滴加入钛酸异丙酯,滴加后继续搅拌反应30 min,随后离心分离产物TiO2包SiO2@P25;将TiO2包SiO2@P25置于去离子水中,加热到90-99°C,保温2-10 h,倒走上层浊液,用90-99°C去离子水洗,静置后再倒走上层浊液,重复三次清洗后烘干,得到TiO2空心介孔球壳包TiO2纳米颗粒的复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711005772.4A CN107768650B (zh) | 2017-10-25 | 2017-10-25 | 锂离子电池负极材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711005772.4A CN107768650B (zh) | 2017-10-25 | 2017-10-25 | 锂离子电池负极材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107768650A true CN107768650A (zh) | 2018-03-06 |
CN107768650B CN107768650B (zh) | 2020-06-05 |
Family
ID=61270219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711005772.4A Expired - Fee Related CN107768650B (zh) | 2017-10-25 | 2017-10-25 | 锂离子电池负极材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107768650B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108906098A (zh) * | 2018-05-29 | 2018-11-30 | 东北石油大学 | 一种介孔二氧化钛包覆磷化镍催化剂构成核-壳结构催化剂的制备方法 |
WO2024059922A1 (pt) * | 2022-09-23 | 2024-03-28 | Instituto Hercílio Randon | Célula de bateria, aditivo para a modulação da velocidade de carga e/ou ciclabilidade de uma célula de bateria, método para a modulação da velocidade de carga e/ou ciclabilidade de uma célula de bateria, uso de nanopartículas de nióbio, titânio ou combinações das mesmas e uso de célula de bateria |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102881881A (zh) * | 2012-10-25 | 2013-01-16 | 中国科学院宁波材料技术与工程研究所 | 锂离子电池负极材料、其制备方法和锂离子电池 |
CN103779546A (zh) * | 2014-01-21 | 2014-05-07 | 南京安普瑞斯有限公司 | 一种空心结构材料及其制备方法和用途 |
CN105133013A (zh) * | 2015-07-28 | 2015-12-09 | 中国人民解放军军械工程学院 | 一种由(001)面组装的三维空心二氧化钛及其制备方法和用途 |
CN105406041A (zh) * | 2015-11-05 | 2016-03-16 | 盐城工学院 | 一种中空氧化钛复合材料、制备方法和应用 |
CN106058234A (zh) * | 2016-08-19 | 2016-10-26 | 武汉理工大学 | 一种分级多孔核壳结构的TiO2微米球材料及其制备方法和应用 |
CN106356523A (zh) * | 2016-10-13 | 2017-01-25 | 华中科技大学 | 一种二氧化钛钠离子电池负极材料的制备方法及其产品 |
CN106469811A (zh) * | 2016-10-28 | 2017-03-01 | 华南师范大学 | 蜂窝球状四氧化三钴‑二氧化钛纳米复合材料及制备方法 |
CN106941172A (zh) * | 2017-04-26 | 2017-07-11 | 清华大学 | 硅/二氧化钛锂离子电池负极材料及其制备方法 |
-
2017
- 2017-10-25 CN CN201711005772.4A patent/CN107768650B/zh not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102881881A (zh) * | 2012-10-25 | 2013-01-16 | 中国科学院宁波材料技术与工程研究所 | 锂离子电池负极材料、其制备方法和锂离子电池 |
CN103779546A (zh) * | 2014-01-21 | 2014-05-07 | 南京安普瑞斯有限公司 | 一种空心结构材料及其制备方法和用途 |
CN105133013A (zh) * | 2015-07-28 | 2015-12-09 | 中国人民解放军军械工程学院 | 一种由(001)面组装的三维空心二氧化钛及其制备方法和用途 |
CN105406041A (zh) * | 2015-11-05 | 2016-03-16 | 盐城工学院 | 一种中空氧化钛复合材料、制备方法和应用 |
CN106058234A (zh) * | 2016-08-19 | 2016-10-26 | 武汉理工大学 | 一种分级多孔核壳结构的TiO2微米球材料及其制备方法和应用 |
CN106356523A (zh) * | 2016-10-13 | 2017-01-25 | 华中科技大学 | 一种二氧化钛钠离子电池负极材料的制备方法及其产品 |
CN106469811A (zh) * | 2016-10-28 | 2017-03-01 | 华南师范大学 | 蜂窝球状四氧化三钴‑二氧化钛纳米复合材料及制备方法 |
CN106941172A (zh) * | 2017-04-26 | 2017-07-11 | 清华大学 | 硅/二氧化钛锂离子电池负极材料及其制备方法 |
Non-Patent Citations (3)
Title |
---|
DAN DU等: "Yolk-Shell structured Fe3O4@void@TiO2 as photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline", 《APPLIED CATALYSIS B:ENVIRONMENTAL》 * |
XIAOBING WANG 等: "Template-free synthesis of homogeneous yolk-shell TiO2 hierarchical microspheres for high performance lithium ion batteries", 《JOURNAL OF POWER SOURCES》 * |
YI JIAN WONG 等: "Revisiting the stober method: inhomogeneity in silica shells", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108906098A (zh) * | 2018-05-29 | 2018-11-30 | 东北石油大学 | 一种介孔二氧化钛包覆磷化镍催化剂构成核-壳结构催化剂的制备方法 |
WO2024059922A1 (pt) * | 2022-09-23 | 2024-03-28 | Instituto Hercílio Randon | Célula de bateria, aditivo para a modulação da velocidade de carga e/ou ciclabilidade de uma célula de bateria, método para a modulação da velocidade de carga e/ou ciclabilidade de uma célula de bateria, uso de nanopartículas de nióbio, titânio ou combinações das mesmas e uso de célula de bateria |
Also Published As
Publication number | Publication date |
---|---|
CN107768650B (zh) | 2020-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103193263B (zh) | SnO2C空心纳米球的制备方法及其在锂离子电池中的应用 | |
CN105140469B (zh) | 一种蛋黄结构过渡金属氧化物/石墨烯复合材料及其制备方法与应用 | |
CN105226285B (zh) | 一种多孔硅碳复合材料及其制备方法 | |
CN104752696A (zh) | 一种石墨烯基硅碳复合负极材料的制备方法 | |
CN105720246B (zh) | 颗粒状二氧化锡/二维纳米碳化钛复合材料及应用 | |
CN105428614B (zh) | 一种氮元素掺杂多孔复合负极材料及其制备方法 | |
CN102208614B (zh) | 一种锂离子电池负极材料碳包覆三氧化二铁的制备方法 | |
CN103682327B (zh) | 基于氮掺杂碳层包裹的空心多孔氧化镍复合材料的锂离子电池及其制备方法 | |
CN106558729B (zh) | 一种石墨烯作为正极浆料导电剂的锂离子电池 | |
CN103545123A (zh) | 一种兼具锌离子电池和超级电容器的混合储能器件 | |
CN105047427B (zh) | 超级电容器用复合电极材料及其制备方法以及超级电容器 | |
CN107221654A (zh) | 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法 | |
CN103441247A (zh) | 一种基于化学键构筑的高性能硅/氧化石墨烯负极材料及其制备方法 | |
CN110176601A (zh) | 一种碳包覆氧化亚硅负极材料及其制备方法和应用 | |
CN103474636B (zh) | 硅基锂离子电池负极材料及其制备方法 | |
CN106876673B (zh) | 一步法制备二氧化钛和石墨烯双层共包覆的核壳结构锂硫电池正极材料的方法 | |
CN103560019B (zh) | 一种锌离子混合超级电容器 | |
CN107732172A (zh) | 一种锂离子电池负极材料及其制备方法 | |
CN107845802A (zh) | 一种用于锂电池的导电聚合物包覆钴酸锂及其制备方法 | |
CN106505200A (zh) | 碳纳米管/石墨烯/硅复合锂电池负极材料及其制备方法 | |
CN110148743A (zh) | 一种硅碳复合负极材料及其制备方法和锂离子电池 | |
CN104993116B (zh) | 一种自组装锂离子电池正极材料v2o5的制备方法 | |
CN109767928A (zh) | 氟掺杂碳包覆氧化硅纳米颗粒@碳纳米管复合材料的合成方法及其应用 | |
CN107658435A (zh) | 一种镍基电池用正极材料及其制备方法 | |
CN108899522A (zh) | 一种高容量硅碳负极材料、制备方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200605 |
|
CF01 | Termination of patent right due to non-payment of annual fee |