CN107768316A - 功率半导体装置和用于制造这种功率半导体装置的方法 - Google Patents

功率半导体装置和用于制造这种功率半导体装置的方法 Download PDF

Info

Publication number
CN107768316A
CN107768316A CN201710696672.4A CN201710696672A CN107768316A CN 107768316 A CN107768316 A CN 107768316A CN 201710696672 A CN201710696672 A CN 201710696672A CN 107768316 A CN107768316 A CN 107768316A
Authority
CN
China
Prior art keywords
layer
silicon nitride
nitride layer
power semiconductor
semiconductor arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710696672.4A
Other languages
English (en)
Other versions
CN107768316B (zh
Inventor
C.帕帕多波洛斯
M.拉希莫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Energy Co ltd
Original Assignee
ABB Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Technology AG filed Critical ABB Technology AG
Publication of CN107768316A publication Critical patent/CN107768316A/zh
Application granted granted Critical
Publication of CN107768316B publication Critical patent/CN107768316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3192Multilayer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/408Electrodes ; Multistep manufacturing processes therefor with an insulating layer with a particular dielectric or electrostatic property, e.g. with static charges or for controlling trapped charges or moving ions, or with a plate acting on the insulator potential or the insulator charges, e.g. for controlling charges effect or potential distribution in the insulating layer, or with a semi-insulating layer contacting directly the semiconductor surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes

Abstract

提供一种包括晶元的功率半导体装置,其中在所述装置的终端区域中,在所述晶元的表面的至少一部分上形成钝化层结构,且所述钝化层结构从所述晶元的所述表面沿远离所述晶元的方向依次包括半绝缘层(13)、氮化硅层、未掺杂硅酸盐玻璃层(16)和有机介电层(17)。所述氮化硅层具有至少0.5µm的层厚度。所述有机介电层(17)附着到所述未掺杂硅酸盐玻璃层(16)且所述未掺杂硅酸盐玻璃层(16)附着到所述氮化硅层。

Description

功率半导体装置和用于制造这种功率半导体装置的方法
技术领域
本发明涉及功率电子装置的领域,且更具体而言,涉及根据权利要求1的功率半导体装置和根据权利要求 8的用于制造这种功率半导体装置的方法。
背景技术
功率半导体装置要求高效的边缘终端(termination),以避免主接触件的边缘处的导致装置在较低的击穿电压(VBR)下击穿的电场聚集。普通的功率半导体装置,诸如PIN二极管或绝缘栅双极晶体管(IGBT)通常具有平面边缘终端,以便实现在理想的一维二极管击穿电压的80%至90%的范围内的击穿电压。已知的平面边缘终端技术包括结终端扩展(JTE)、横向变掺杂(VLD)层和具有或不具有场板扩展的浮动场环终端(FFR)。边缘终端结构的另一种类型是斜切终端结构。通过斜切,在横向p-n结和晶元的表面之间形成的限定角度,并因此边缘从高电场得到缓解。
特别是半导体装置的表面对高电场非常敏感。为了获得良好限定的表面以及为了终止在晶元表面处的自由键,在晶元表面上的边缘终端结构上方形成钝化层堆叠。半绝缘和绝缘材料被用于钝化层结构。普通的绝缘钝化层包括有机钝化层诸如硅橡胶层或聚酰亚胺(PI)层和无机钝化层诸如二氧化硅(SiO2)层或由SiO2和另外的元素组成的玻璃层。然而,已知一些离子诸如钠(Na)离子和钾(K)离子迁移通过氧化物层,导致击穿电压的不稳定性。为了防止离子的迁移并避免击穿电压的不稳定性,已知通过用作扩散屏障的氮化硅(Si3N4)或氮氧化硅(SiOxNy)层覆盖氧化物层。未掺杂二氧化硅被证明是脆性材料,所以对其加入含磷化合物以加强材料。此外,在磷硅酸盐玻璃(PSG)和硼磷硅酸盐玻璃(BPSG)中,含磷化合物形成离子阱,并因此改进氧化硅层提供的抵抗离子污染的保护。
除了绝缘钝化层,半绝缘层如半绝缘多晶硅(SIPOS)层有时被用作组合的钝化和边缘终端。通过调整半绝缘层的电导率,可实现表面处电位的连续降低。SIPOS层的电导率可通过调整其氧含量而控制。
在功率半导体模块中,通常使用硅凝胶来保护功率半导体芯片或晶元免受恶劣环境条件(特别是水气)的影响并为高电压操作提供电绝缘。硅凝胶填充半导体模块的外壳和装置晶元之间的所有间隙。
除了在制造过程之后不久的功率半导体装置的性能,在其预期用途的环境条件下的鲁棒性和长期可靠性是至关重要的。对在高湿度环境下的鲁棒性和长期稳定性已给予越来越多的强调。用于预估恶劣环境条件下的鲁棒性和长期稳定性的普通应力测试为温湿偏置(THB)测试和高度加速的温度和湿度应力测试(HAST)。测试期间的电压越高,钝化和终端能力的劣化加速度越高。钝化材料中的高电场结合高温度和高湿度致使材料由于腐蚀和发火花现象而劣化。这最终导致装置终端的电气劣化和机械劣化。例如氮化硅层可与水气反应并得到氧化。在氮化硅的腐蚀期间,形成氮气,其可使氮化硅层以上的任何层隆起。腐蚀还产生具有多孔结构的不那么致密的氮化硅层,导致作为钝化层的性能降低,因为其具有的过滤朝向绝缘材料的场的能力降低,半导体装置嵌入绝缘材料(示例性地,凝胶)中并可破裂。在氮化硅层下方使用铝的情况下,湿气可通过退化的氮化硅层朝向铝渗透。电场致使铝腐蚀成为质量升高且破坏整个终端和钝化结构的氧化铝。由于腐蚀,钝化不再正常地起作用,且结果泄露电流增加,直到功率半导体装置灾难性地被击穿。当在终端区域如场板或栅极滑动装置(gate runner)中的铝层变为氧化铝且破坏上述的钝化时,还致使其它的劣化。需要几个小时的高温干燥,以将水气驱出装置。电压等级越高,电场也越强,且因此腐蚀加快。对于SiC装置,与硅相比,在主体中允许十倍高的场。这给特别是SiC功率半导体装置带来困难的挑战。
在现有技术文献 US2014/0061733A1中,描述了半导体装置,其包括半导体本体和在半导体本体的表面上形成的钝化层堆叠。钝化层堆叠包括在半导体本体的表面上的非晶半绝缘层、非晶半绝缘层上的第一氮化物层、第一氮化物层上的中间层和中间层上的第二氮化物层。中间层可包括硅酸盐玻璃,诸如未掺杂硅酸盐玻璃(USG)、掺含磷化合物的硅酸盐玻璃(PSG)、掺硼的硅酸盐玻璃(BSG)或掺硼和含磷化合物的硅酸盐玻璃(BPSG)。然而,在该现有技术文献中公开的半导体装置中未设置阻挡湿气流向顶部第二氮化物层的装置。
在US 2006/226479 A1中,半导体装置被示出具有按照远离半导体晶元的以下顺序的钝化层堆叠:介电层、硅玻璃层、氮化硅或氧化硅层。布置在介电层顶部的硅玻璃层中和或降低偶极效应或去除介电层界面处的表面电荷。
发明内容
本发明的目的是提供具有钝化层结构的功率半导体装置,钝化层结构在高湿度下是稳定可靠的且具有长期可靠性。
本发明的目的通过根据权利要求 1的功率半导体装置实现。
在本发明的半导体装置中,提供半导体晶元,其可由硅或如碳化硅的宽带隙材料制成。首先,在晶元上布置半绝缘层,接着是氮化硅层,氮化硅层在化学方面并在机械方面保护衬底。氮化硅层附着到未掺杂硅酸盐玻璃层并从而由未掺杂硅酸盐玻璃层覆盖,且在未掺杂硅酸盐玻璃层的顶部为有机介电层。
在本发明的功率半导体装置中,半绝缘层、氮化硅层和有机介电层提供高效的钝化。
在氮化硅层和有机介电层之间的未掺杂硅酸盐玻璃层用作用于湿气流向氮化硅层的屏障。虽然其它二氧化硅层诸如PSG或BPSG不会高效地阻挡湿气,但是未掺杂硅酸盐玻璃层对于阻挡湿度特别高效。而且,在本发明的钝化层堆叠中,在有机介电层和未掺杂硅酸盐玻璃层之间不存在氮化硅层。换句话说,任何氮化硅层在上述的未掺杂硅酸盐玻璃层之下,即,最上面的氮化硅层是最远离晶元的这种氮化硅层,其由未掺杂硅酸盐玻璃层覆盖。因而,未掺杂硅酸盐玻璃层保护朝向顶侧的氮化硅层。因此,来自有机介电层的任何湿气必须在接触氮化硅层之前经过未掺杂硅酸盐玻璃层,从而避免由于氮化硅层的腐蚀和退化引起的退化。在现有技术中,有机层通常用来阻挡湿气。然而,发明人发现,湿气不仅仅来自装置外部,而且也可存储在有机层中,并从而来自有机层本身。
未掺杂硅酸盐玻璃层可高效地阻挡湿气。掺杂硅酸盐玻璃层将吸收更多的水气,其导致如上所述的现有技术装置的水气效应。在现有技术装置中,在掺杂硅酸盐璃层中的掺杂物可与水气形成酸(例如,磷酸),其与终端结构积极地作用。此外,未掺杂硅酸盐玻璃层包括氢,由于未掺杂硅酸盐玻璃层中的氢,未掺杂硅酸盐玻璃层捕获离子(即,获取效应)。
由于存在于未掺杂硅酸盐玻璃层中的OH-键,有机介电层确保在未掺杂硅酸盐玻璃层上的良好附着。这种OH-键在氮化物层或掺杂硅氧化物层中不可用,使得在现有技术装置中,层彼此不太可靠地结合。
至少0.5 µm的氮化硅层确保高效的电荷阻挡。在晶元和未掺杂硅酸盐玻璃层之间没有氮化硅层的情况下,未掺杂硅酸盐玻璃层将吸收正电荷,从而与钝化层的目的相矛盾。因此,氮化硅层被引入在未掺杂硅酸盐玻璃层的下面。
在一个示范性实施例中,氮化硅层具有至少0.7 µm或至少0.9 µm的层厚度。在该实施例中,氮化硅层的钝化功能是高效的,并且随着氮化硅层厚度的增加,防止湿气接触氮化硅层变得尤为重要。
在未掺杂硅酸盐玻璃层的顶部,未布置用来避免任何水气效应如氮化物腐蚀的另外的氮化物层。因而,氮化硅层布置在未掺杂硅酸盐玻璃层和晶元之间,该氮化硅层由未掺杂硅酸盐玻璃层保护而免受湿气影响。
本发明主题的另外的优选实施例公开于从属权利要求中。
在一个示范性实施例中,硅酸盐玻璃层具有至少0.4µm或至少0.5µm的层厚度。硅酸盐玻璃层的阻挡功能随着厚度增加而提高。随着厚度超过0.4µm,硅酸盐玻璃层可高效地阻挡湿度。
在一个示范性实施例中,有机介电层包括聚酰亚胺层、聚苯并恶唑层和硅酮层中的至少一种。这些有机介电层高效地阻挡来自外部的湿气,同时未掺杂硅酸盐玻璃层阻挡可存储于这些有机介电层中的任一个中的湿气。
在一个示范性实施例中,半绝缘层为半绝缘多晶硅层、非晶硅层、非晶氮化硅层或类金刚石碳层。
有机介电层直接接触未掺杂硅酸盐玻璃层。有机介电层与直接在下面的未掺杂硅酸盐玻璃层具有良好的粘合性。与有机介电层和氮化硅层之间的直接接触相比,未掺杂硅酸盐玻璃层之间的粘附性得到改进。
根据本发明的功率半导体装置可通过根据权利要求8的方法制造。
在示范性实施例中,形成氮化硅层的步骤包括在高于500℃的温度下形成第一氮化硅层的第一步骤和在低于500℃(该温度是晶元成的最高温度)的温度下形成第二氮化硅层的第二步骤。在高于500℃的温度下形成第一氮化硅层导致高品质的氮化物层,而在低于500℃的晶元温度(例如低于425℃)下形成第二氮化物层可以以高生长速率进行。以这种方式,可获得具有靠近晶元的高品质部分的厚氮化硅层,其中该部分的氮化硅层的品质最重要。
在根据本发明的制造功率半导体装置的方法的示范性实施例中,通过低压化学汽相积淀或喷涂形成第一氮化硅层。
在根据本发明的制造功率半导体装置的方法的示范性实施例中,通过等离子体增强化学汽相积淀或喷涂形成第二氮化硅层。
在根据本发明的制造功率半导体装置的方法的示范性实施例中,第二氮化硅层具有至少0.5 µm或至少0.7 µm或至少0.9 µm的层厚度。
在根据本发明的制造功率半导体装置的方法的示范性实施例中,未掺杂硅酸盐玻璃层在低于500℃下通过等离子体增强化学汽相积淀或喷涂形成。
在根据本发明的用于制造功率半导体装置的方法的示范性实施例中,使用为用于氮化硅层的同一掩模层的单个掩模层来选择性地蚀刻氮化硅层和未掺杂硅酸盐玻璃层,示范性地为第一和第二氮化硅层和未掺杂硅酸盐玻璃层。这确保整个氮化硅层被未掺杂硅酸盐玻璃层覆盖,以最高效地阻挡朝向氮化硅层的湿气。
附图说明
以下将参照附图说明本发明的详细的实施例,其中:
图1示出了根据本发明的实施例的终端结构的局部截面图;
图2至图9示出了图示用于制造图1中的功率半导体装置的方法的不同步骤的局部截面图;
图10示出了根据本发明的另一个实施例的二极管的局部截面图;
图11示出了根据本发明的另一个实施例的另一个二极管的局部截面图;和
图12示出了根据本发明的另一个实施例的MOS装置(MOSFET或IGBT)的局部截面图。
附图中使用的参考标记及其含义总结在附图标记的列表中。大体上,遍及说明书,类似的元件具有相同的附图标记。所描述的实施例意在作为示例而不应限制本发明的范围。
附图标记列表:
1    PIN二极管
2    第一主侧
3    第二主侧
4    (p-掺杂)阳极层
5    (n--掺杂)漂移层
6    (n+-掺杂)阴极层
7    阳极电极
8    阴极电极
10   横向变掺杂(VLD)区域
100   场环
11   二氧化硅层
12   PSG层
13   半绝缘层
14   第一氮化硅层
15   第二氮化硅层
16   未掺杂硅酸盐玻璃层
17   有机介电层
18   栅极层(多硅)
19   栅极接触件
50   (n+掺杂)源极层
52   场阻挡层
70   电极
AR   带电区域
TR   终端区域
W    半导体晶元。
具体实施方式
在图1中,示出了作为本发明的功率半导体装置的实施例的终端结构。半导体晶元W示范性地由SiC制成。半导体晶元W具有第一主侧2和与第一主侧表面平行并以横向方向延伸的第二主侧3。半导体晶元W具有带电区域AR和横向围绕带电区域AR的终端区域TR。带电区域是其中电场被主动控制的区域,而在终端区域中,电场朝向装置的边缘减小。
图10示出了作为本发明的功率半导体装置的实施例的PIN二极管1。按从第一主侧2到第二主侧3的顺序,半导体晶元W包括p-掺杂阳极层4、n--掺杂漂移层5和具有的掺杂浓度高于n--掺杂漂移层5的掺杂浓度的n+-掺杂阴极层6。阴极层的掺杂浓度示范性地为5×1018cm-3 或更大。阳极层4的掺杂浓度示范性地为5×1016cm-3 或更大。漂移层5直接与阳极层 4接触以形成主pn-结。在第一主侧2上形成阳极电极7以与阳极层4形成电阻接触。在半导体晶元W的第二主侧3上,形成阴极电极8以与阴极层6形成电阻接触。根据功率半导体装置的电压等级,漂移层5的厚度可示范性地在30到400µm之间的范围内变化。
示范性地,在终端区域TR(图10 和11)中与晶元W的第一主侧表面相邻处布置多个p+-掺杂浮动场环。浮动场环中的各个是环形的并且横向包围带电区域AR和阳极层。而且,各浮动场环100与漂移层5直接接触以形成pn-结。示范性地,浮动环100具有的峰值掺杂浓度在1×1017cm-3和1×1019cm-3之间的范围内,例如在1×1018 cm-3和1×1019 cm-3之间。边缘终端结构中的浮动场环的数量可根据高功率半导体装置的电压等级和根据浮动场环的深度而变化。浮动场环的总数可高达200个。
如在图11中所示出的,功率装置可示范性地在第一主侧2上的终端区域TR中包括具有n+植入物和/或场阻挡板的场阻挡层52。场阻挡层52可接触电极70。电极70可覆盖下面描述的二氧化硅层11和PSG层12的卡钉(staple)的外边缘。
在另一个实施例,在与晶元W的第一主侧表面相邻的终端区域TR中,半导体晶元W可具有与阳极层4(在图1中示出)直接相邻即与阳极层4直接接触的横向变掺杂(VLD)区域10。在VLD区域中是p--掺杂区域,其中掺杂向外朝装置边缘(图1中的右侧)减少,且其直接接触p 掺杂阳极层,即,与p-掺杂阳极层直接相邻。如图1中所示出的,朝向终端区域TR的外边缘(朝向图1中的右侧),VLD区域具有降低的掺杂浓度和降低的深度。对于终端区域中的VLD区域,备选地或另外地,装置还可以包括如结终端扩展(JTE)和浮动场环终端(FFR)100的其它终端结构,具有场板扩展和不具有场板扩展的所述浮动场环终端(FFR)100在图10和图11中被示出。
在终端区域TR中,在半导体晶元W的第一主侧2的表面上布置有钝化层结构。钝化层堆叠从第一主侧2沿远离半导体晶元W的方向依次包括半绝缘层13、氮化硅层、未掺杂硅酸盐玻璃层16和有机介电层17。半绝缘层13示范性地是半绝缘多晶硅(SIPOS)层或非晶硅层或非晶氮化硅层或类金刚石碳层。
氮化硅层可以示范性地包括第一氮化硅层14和第二氮化物层15。第一氮化硅层14是在大于500℃的温度下通过LPCVD或喷涂形成的高温氮化硅层。由于积淀期间晶元温度高,所以第一氮化硅层14具有高结晶品质。第一氮化硅层14的层厚度示范性地在50nm和400nm之间的范围内,例如高达200nm。布置在第一氮化硅层14上的第二氮化硅层15是在晶元低于500℃的温度(例如低于425℃)下积淀的低温氮化硅层。第二氮化硅层15的层厚度示范性地为至少0.5µm,或至少0.7µm或至少0.9µm。在示范性实施例中第二氮化硅层15可具有至多2μm或至多1.6μm的厚度。示范性地,第一氮化硅层14的厚度与第二氮化硅层15的厚度一起为至少550nm。
未掺杂硅酸盐玻璃(USG)层16布置在第二氮化硅层15上并附着于其上。并且USG层16具有示范性的至少0.4μm的厚度,例如至少1µm。对于PIN二极管,如图1和图11所示,未掺杂硅酸盐玻璃层16覆盖第二氮化硅层15,并因而从顶侧(背离晶元W的一侧)和横向侧(垂直于第一主侧2)保护第二氮化硅层15。这对所有的侧给予非常好的保护。备选地,未掺杂硅酸盐玻璃层16可以仅从顶侧覆盖第二氮化硅层15,但是以相同的距离横向地在一起终止,使得第二氮化硅层15的横向侧不会凸出经过未掺杂硅酸盐玻璃层16(图10)。这种结构容易制造,因为都可使用单个掩模产生未掺杂硅酸盐玻璃层16和第二氮化硅层15二者,并且因为只有第二氮化硅层15的横向侧未被覆盖,所以关于湿气保护的影响是可接受的。
布置在未掺杂硅酸盐玻璃层16上的有机介电层17示范性地为聚酰亚胺(PI)层或聚苯并恶唑层或硅酮层或其任何组合。有机介电层17的厚度示范性地在1μm至5μm的范围内。
在带电区域AR和终端区域TR之间的过渡区域中,并且在终端区域的外边缘处(即,在图1中的右侧),可以在第一主表面上布置二氧化硅层11,在二氧化硅层11顶部上布置磷硅酸盐玻璃层(PSG)12。二氧化硅层11和PSG层12的卡钉具有朝向晶元W的开口,在该开口中,半绝缘层13直接接触半导体晶元W的第一主侧2。二氧化硅层11可以直接连接到p阳极层4(图10、11)或者经由终端区域中的p掺杂层连接,p掺杂层示范性地为VLD 层10,其又连接到阳极层 4(图1)。
图12 示出一个实施例,其中二氧化硅层11和PSG层12形成其横向侧的公共边缘(即,形成同一掩模)。层11、12可被设计为第一主侧2上的且平行于第一主侧2的平面层。
图12示出了作为本发明的功率半导体装置的另一实施例的MOS单元的终端结构。MOS单元可属于MOSFET,其中在第二主侧上布置n掺杂层(其掺杂比漂移层5更高),或MOS单元可属于IGBT,其中在第二主侧上布置p掺杂集电极层,示范性地在漂移层和集电器层之间具有n掺杂缓冲层(图中未示出的背侧结构)。IGBT可具有如反向传导的IGBT的各种背侧结构,其中n掺杂区域与p掺杂集电极层交替。图12中所示的装置包括平面栅极电极,其中导电栅极层18通过绝缘层(例如二氧化硅层11)与晶元W中的掺杂层绝缘。栅极层18通过另一绝缘层(例如PSG层)在其顶侧(即在背离晶元W的一侧)而被绝缘。在终端区域TR中,栅极滑动装置形式的栅极接触件19可接触栅极层18。栅极接触件19可由铝制成。栅极接触件19可以被第二氮化硅层15和未掺杂硅酸盐玻璃层16覆盖。这些层15、16也可以将栅极接触件19与阳极电极7(在装置为IGBT的情况下其为发射电极或在装置为MOSFET的情况下其为源极电极)分离。
在带电区域AR中电极7接触n掺杂源极层50和p掺杂阳极层4,其也可以被称为用于IGBT/MOSFET的基极层或阴极层。
作为平面栅极电极的备选方案,栅极电极也可以形成为沟槽栅极电极,其中栅极电极布置在晶元的凹部中,使得其与n掺杂源极层50和p掺杂阳极层4布置在与第一主侧2平行的同一平面中。
本发明的终端结构可实现为需要这种终端结构的所有种类的半导体类型(即其中终端区域中的电场减小)中,诸如绝缘栅双极晶体管(IGBT)、金属氧化物半导体场效应晶体管效应晶体管(MOSFET)或二极管。
接下来,参照图2至图11说明根据本发明的功率半导体装置的制造方法。附图仅表示装置的第一主侧结构。在第二主侧3上,可按任何适当的制造步骤实现任何设计,如形成用于二极管或MOSFET的n掺杂层或形成用于IGBT的p掺杂层。
如图2中所示出的,提供晶元,其可以是例如硅晶元或示范性地为碳化硅晶元的宽带隙晶元。取决于半导体装置类型,可能已产生在晶元的带电区域和围绕带电区域的终端区域中的层。示范性地如图2中所示出的,在终端区域TR中,在与其第一主侧2相邻处,横向变掺杂(VLD)区域10可以直接与阳极层4相邻(即,直接接触阳极层4)而形成。然而,在终端区域中,可产生本领域技术人员已知的任何终端结构,如图中示范性示出的结终端扩展(JTE)、横向变掺杂(VLD)以及具有和不具有场板扩展的浮动场环终端(FFR)100(如图12中所示出的)。
在终端结构的顶部,在晶元的在终端区域TR中的表面的至少一部分上形成钝化层结构,其中形成钝化层结构的步骤包括形成半绝缘层13的步骤、在半绝缘层13上形成氮化硅层的步骤、在氮化硅层上形成未掺杂硅酸盐玻璃层16的步骤以及在未掺杂硅酸盐玻璃层16上形成有机介电层17的步骤。氮化硅层具有至少0.5μm的层厚度。有机介电层17附着到未掺杂硅酸盐玻璃层16上,即在有机介电层17和未掺杂硅酸盐玻璃层16之间没有其它层。
此外,可以在第一主侧2表面(图3)上形成二氧化硅层11,并且在二氧化硅层11的顶部上可形成磷硅酸盐玻璃层(PSG)12(图4)。钝化层结构可以在卡钉的开口处使二氧化硅层11和PSG层12凸出。在该开口处,半绝缘层13与半导体晶元W的第一主侧2直接接触(图6)。
示范性地在形成PSG玻璃层12之前或之后,可在第一主侧2上的带电区域中形成电极作为阳极电极7(图5)。在第二主侧3上,可以形成电极作为阴极电极8。电极金属化层7、8可按任何合适的制造步骤形成。可以在第一主侧2上在终端区域TR中朝着装置的边缘形成另一电极70,其比高度地n掺杂的场阻挡层52的顶部上的p掺杂终端层(例如,VLD层10或场环100)更远离带电区域AR,该电极70可以与第一主电极7在相同的步骤和以与第一主电极7相同的材料形成。电极70可以覆盖二氧化硅层11和PSG层12的卡钉的外边缘。
在一个示范性实施例中,形成氮化硅层的步骤包括在高于500℃(例如高于600℃)的温度下形成第一氮化硅层14的第一步骤(图7)和在低于500℃(例如低于425℃)的温度下形成第二氮化硅层15的第二步骤(图8)。在高于500℃的温度下形成第一氮化硅层14导致高品质的氮化物层,而可以在低于500℃的温度下以高生长速率成第二氮化物层15。以这种方式,可获得具有高品质的靠近晶元的部分的厚氮化硅层,其中该部分的氮化硅层的品质最重要。示范性地,第一和第二氮化硅层14、15的组合厚度为至少550nm。
之后,在氮化硅层上直接形成未掺杂硅酸盐玻璃层16,即,这些层彼此附着(图9)。可以与第二氮化物层15使用相同的掩模来形成USG层16,导致这些层延伸到相同的横向侧边界,或可形成USG层16,使得其在第二氮化物层的顶侧(与晶元W相对)和其横向侧(即垂直于第一主侧2)覆盖第二氮化物层。
在未掺杂硅酸盐玻璃层16的顶部,形成有机介电层17(图9)。示范性地,有机介电层17在顶部和横向侧覆盖未掺杂硅酸盐玻璃层16。
在根据本发明的用于制造功率半导体装置的方法的示范性实施例中,通过低压化学汽相积淀或喷涂形成第一氮化硅层14。
在根据本发明的用于制造功率半导体装置的方法的示范性实施例中,通过等离子体增强化学汽相积淀或喷涂形成第二氮化硅层15。
在根据本发明的用于制造功率半导体装置的方法的示范性实施例中,产生的第二氮化硅层15的厚度至少为0.5μm或至少0.7μm或至少0.9μm。
在制造根据本发明的功率半导体装置的方法的示范性实施例中,未掺杂硅酸盐玻璃层16在晶元温度低于500℃(例如低于425℃)下通过等离子体增强化学汽相积淀或喷涂形成。
在制造根据本发明的功率半导体装置的方法的示范性实施例中,使用同一单个掩蔽层来选择性地蚀刻氮化硅层14、15和未掺杂硅酸盐玻璃层16。这确保整个氮化硅层被未掺杂硅酸盐玻璃层16覆盖,以最有效地阻挡朝向氮化硅层的湿度。
在上述说明中,对具体实施例进行了描述。然而,上述实施例的备选方案和变型是可行的。
用具体的导电类型说明了上述实施例。可以转换上述实施例中的半导体层的导电类型,使得在具体实施例中,被描述为p型层的所有层将是n型层,并且被描述为n型层的所有层将是p型层。例如,在修改的实施例中,源极层5可以是p-掺杂层,漂移层5可以是p-掺杂层,并且阴极层6可以是p-掺杂层。
应该注意的是,术语“包括”不排除其他要素或步骤,且不定冠词“一”或“一个”不排除复数。还可以组合与不同实施例相关联地描述的要素。

Claims (14)

1.一种功率半导体装置,包括晶元,其中:
在所述装置的终端区域中,至少在所述晶元的表面的一部分上形成钝化层结构;
所述钝化层结构从所述晶元的所述表面沿远离所述晶元的方向依次包括半绝缘层(13)、氮化硅层、未掺杂硅酸盐玻璃层(16)和有机介电层(17);
其特征在于,所述氮化硅层具有至少0.5µm的层厚度,所述有机介电层(17)附着于所述未掺杂硅酸盐玻璃层(16),以及,所述未掺杂硅酸盐玻璃层(16)附着于所述氮化硅层。
2.根据权利要求1所述的功率半导体装置,其特征在于,所述氮化硅层具有至少0.7µm或至少0.9µm的层厚度。
3.根据权利要求1或2所述的功率半导体装置,其特征在于,所述氮化硅层具有至多2.0µm的层厚度。
4.根据权利要求1-3中的任一项所述的功率半导体装置,其特征在于,所述未掺杂硅酸盐玻璃层(16)具有至少0.4µm或至少0.5µm的层厚度。
5.根据权利要求1-4中的任一项所述的功率半导体装置,其特征在于,所述有机介电层(17)包括聚酰亚胺层、聚苯并恶唑层和硅酮层中的至少一个。
6.根据权利要求1-5中的任一项所述的功率半导体装置,其特征在于,所述半绝缘层(13)为半绝缘多晶硅层、非晶硅层、非晶氮化硅或类金刚石碳层。
7.根据权利要求1-6中的任一项所述的功率半导体装置,其特征在于,所述晶元由硅或宽带隙材料或碳化硅制成。
8.一种制造功率半导体装置的方法,所述功率半导体装置为根据权利要求1-7中的任一项所述的装置,且所述方法包括以下步骤:
提供晶元;
在所述装置的终端区域中,至少在所述晶元的表面的一部分上形成钝化层结构,其中所述形成所述钝化层结构的步骤包括形成半绝缘层(13)的步骤、在所述半绝缘层(13)上形成氮化硅层的步骤、在所述氮化硅层上形成未掺杂硅酸盐玻璃层(16)的步骤和在所述未掺杂硅酸盐玻璃层(16)上形成有机介电层(17)的步骤;
其特征在于,所述氮化硅层具有至少0.5µm的层厚度,所述有机介电层(17)附着于所述未掺杂硅酸盐玻璃层(16),以及,所述未掺杂硅酸盐玻璃层(16)附着于所述氮化硅层。
9.根据权利要求8所述的方法,其特征在于,所述形成所述氮化硅层的步骤包括在高于600℃的温度下形成第一氮化硅层(14)的第一步骤和在低于425℃的温度下形成第二氮化硅层(15)的第二步骤。
10.根据权利要求9所述的方法,其特征在于,通过低压化学汽相积淀形成所述第一氮化硅层(14)。
11.根据权利要求9或10所述的方法,其特征在于,通过等离子体增强化学汽相积淀形成所述第二氮化硅层(15)。
12.根据权利要求9-11中的任一项所述的方法,其特征在于,将所述第二氮化硅层形成为具有至少0.5µm或至少0.7µm或至少0.9µm的层厚度。
13.根据权利要求8-12中的任一项所述的方法,其特征在于,在低于425℃的温度下通过等离子体增强化学汽相积淀形成所述未掺杂硅酸盐玻璃层(16)。
14.根据权利要求8-12中的任一项所述的方法,其特征在于,使用同一掩膜层选择性地蚀刻所述氮化硅层和所述未掺杂硅酸盐玻璃层(16)。
CN201710696672.4A 2016-08-15 2017-08-15 功率半导体装置和用于制造这种功率半导体装置的方法 Active CN107768316B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16184202.6 2016-08-15
EP16184202.6A EP3285290B1 (en) 2016-08-15 2016-08-15 Power semiconductor device and method for manufacturing such a power semiconductor device

Publications (2)

Publication Number Publication Date
CN107768316A true CN107768316A (zh) 2018-03-06
CN107768316B CN107768316B (zh) 2023-06-27

Family

ID=56694006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710696672.4A Active CN107768316B (zh) 2016-08-15 2017-08-15 功率半导体装置和用于制造这种功率半导体装置的方法

Country Status (4)

Country Link
US (1) US10468321B2 (zh)
EP (1) EP3285290B1 (zh)
JP (1) JP6873865B2 (zh)
CN (1) CN107768316B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697069A (zh) * 2019-03-14 2020-09-22 株式会社东芝 半导体装置
CN111785694A (zh) * 2019-04-04 2020-10-16 三垦电气株式会社 半导体装置和电子设备
CN111785693A (zh) * 2019-04-04 2020-10-16 三垦电气株式会社 半导体装置和电子设备
CN117174592A (zh) * 2023-08-25 2023-12-05 上海华虹挚芯电子科技有限公司 具有优化可靠性终端结构的功率器件及制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018111231A1 (de) * 2018-05-09 2019-11-14 Infineon Technologies Ag Leistungshalbleitervorrichtung
DE102018132237A1 (de) * 2018-12-14 2020-06-18 Infineon Technologies Ag Leistungshalbleitervorrichtung
JP2020136473A (ja) * 2019-02-19 2020-08-31 株式会社東芝 半導体装置の製造方法
JP7345354B2 (ja) * 2019-10-25 2023-09-15 三菱電機株式会社 半導体装置
WO2022196237A1 (ja) * 2021-03-17 2022-09-22 ローム株式会社 半導体装置および半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371362A (zh) * 2006-01-12 2009-02-18 克里公司 用于碳化硅器件的边缘终端结构和制造包含该结构的碳化硅器件的方法
US20140061733A1 (en) * 2012-08-29 2014-03-06 Infineon Technologies Ag Semiconductor Device with a Passivation Layer
CN104078514A (zh) * 2013-03-26 2014-10-01 英飞凌科技股份有限公司 碳化硅器件和用于形成碳化硅器件的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042859A (ja) * 1983-08-19 1985-03-07 Toshiba Corp 高耐圧半導体装置の製造方法
US20040075160A1 (en) * 2002-10-18 2004-04-22 Jack Eng Transient voltage suppressor having an epitaxial layer for higher avalanche voltage operation
US7632760B2 (en) * 2005-04-07 2009-12-15 Semiconductor Components Industries, Llc Semiconductor device having field stabilization film and method
KR100733446B1 (ko) * 2005-11-16 2007-06-29 주식회사 하이닉스반도체 플라스크형 리세스 게이트를 갖는 반도체 소자의 제조방법
JP2011049393A (ja) * 2009-08-27 2011-03-10 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2012146832A (ja) * 2011-01-13 2012-08-02 Mitsubishi Electric Corp 半導体装置
WO2013160412A1 (en) * 2012-04-25 2013-10-31 Abb Schweiz Ag Insulated gate bipolar transistor with high emitter gate capacitance
US9761438B1 (en) * 2014-05-08 2017-09-12 Hrl Laboratories, Llc Method for manufacturing a semiconductor structure having a passivated III-nitride layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371362A (zh) * 2006-01-12 2009-02-18 克里公司 用于碳化硅器件的边缘终端结构和制造包含该结构的碳化硅器件的方法
US20140061733A1 (en) * 2012-08-29 2014-03-06 Infineon Technologies Ag Semiconductor Device with a Passivation Layer
CN104078514A (zh) * 2013-03-26 2014-10-01 英飞凌科技股份有限公司 碳化硅器件和用于形成碳化硅器件的方法
US20140291697A1 (en) * 2013-03-26 2014-10-02 Infineon Technologies Ag Silicon carbide device and a method for forming a silicon carbide device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697069A (zh) * 2019-03-14 2020-09-22 株式会社东芝 半导体装置
CN111697069B (zh) * 2019-03-14 2023-09-08 株式会社东芝 半导体装置
CN111785694A (zh) * 2019-04-04 2020-10-16 三垦电气株式会社 半导体装置和电子设备
CN111785693A (zh) * 2019-04-04 2020-10-16 三垦电气株式会社 半导体装置和电子设备
CN111785694B (zh) * 2019-04-04 2024-04-26 三垦电气株式会社 半导体装置和电子设备
CN117174592A (zh) * 2023-08-25 2023-12-05 上海华虹挚芯电子科技有限公司 具有优化可靠性终端结构的功率器件及制造方法
CN117174592B (zh) * 2023-08-25 2024-03-26 上海华虹挚芯电子科技有限公司 具有优化可靠性终端结构的功率器件及制造方法

Also Published As

Publication number Publication date
CN107768316B (zh) 2023-06-27
US10468321B2 (en) 2019-11-05
EP3285290A1 (en) 2018-02-21
EP3285290B1 (en) 2019-03-06
JP6873865B2 (ja) 2021-05-19
US20180047652A1 (en) 2018-02-15
JP2018029178A (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
CN107768316A (zh) 功率半导体装置和用于制造这种功率半导体装置的方法
US9576841B2 (en) Semiconductor device and manufacturing method
CN105097894B (zh) 半导体器件
TWI509809B (zh) 帶有自對準有源接觸的基於高密度溝槽的功率mosfet及其制備方法
JP4068597B2 (ja) 半導体装置
US20190140091A1 (en) Insulated-gate semiconductor device and method of manufacturing the same
CN105247683A (zh) 半导体装置
WO2017006711A1 (ja) 半導体装置
CN103703565A (zh) 半导体装置
JP6485034B2 (ja) 半導体装置の製造方法
CN108962993B (zh) 半导体装置及其制造方法
CN105210194A (zh) 半导体装置
WO2021010000A1 (ja) 半導体装置
JP2003086800A (ja) 半導体装置及びその製造方法
CN102881719B (zh) 用于结实耐用封装的带有增强型上部接头结构的结型势垒肖特基二极管及其方法
CN108574000B9 (zh) 半导体装置和半导体装置的制造方法
JP2020205408A (ja) 半導体装置
CN205319162U (zh) 具有防静电保护结构的低压mosfet器件
US20240072110A1 (en) Semiconductor device and manufacturing method of semiconductor device
US20240136411A1 (en) Transistor device and method of fabricating contacts to a semiconductor substrate
KR101640570B1 (ko) 실리콘 카바이드 트렌치 게이트형 전력 모스 소자 및 그 제조방법
CN113224146A (zh) 晶体管器件和制备晶体管器件的栅极的方法
JP2023130809A (ja) 半導体装置及び半導体パッケージ
JP2004207418A (ja) 半導体装置及びその製造方法
CN109390387A (zh) 半导体器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200509

Address after: Baden, Switzerland

Applicant after: ABB grid Switzerland AG

Address before: Baden, Switzerland

Applicant before: ABB Switzerland Co.,Ltd.

TA01 Transfer of patent application right
CB02 Change of applicant information

Address after: Swiss Baden

Applicant after: Hitachi energy Switzerland AG

Address before: Swiss Baden

Applicant before: ABB grid Switzerland AG

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240114

Address after: Zurich, SUI

Patentee after: Hitachi Energy Co.,Ltd.

Address before: Swiss Baden

Patentee before: Hitachi energy Switzerland AG

TR01 Transfer of patent right