CN107686501A - 葫芦烷型三萜化合物提取方法及其抗衰老医药用途 - Google Patents

葫芦烷型三萜化合物提取方法及其抗衰老医药用途 Download PDF

Info

Publication number
CN107686501A
CN107686501A CN201710833244.1A CN201710833244A CN107686501A CN 107686501 A CN107686501 A CN 107686501A CN 201710833244 A CN201710833244 A CN 201710833244A CN 107686501 A CN107686501 A CN 107686501A
Authority
CN
China
Prior art keywords
target fraction
compound
methanol
eluent
successively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710833244.1A
Other languages
English (en)
Other versions
CN107686501B (zh
Inventor
戚建华
曹雪丽
孙玉娟
林燕飞
向兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710833244.1A priority Critical patent/CN107686501B/zh
Publication of CN107686501A publication Critical patent/CN107686501A/zh
Application granted granted Critical
Publication of CN107686501B publication Critical patent/CN107686501B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J71/00Steroids in which the cyclopenta(a)hydrophenanthrene skeleton is condensed with a heterocyclic ring
    • C07J71/0005Oxygen-containing hetero ring
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • A23L33/11Plant sterols or derivatives thereof, e.g. phytosterols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J17/00Normal steroids containing carbon, hydrogen, halogen or oxygen, having an oxygen-containing hetero ring not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J17/005Glycosides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供一种葫芦烷型三萜类化合物1‑11及其提取方法,通过将苦瓜果实研磨成粉末,置于甲醇中浸提,用乙酸乙酯和水对浸提物进行萃取,得到水层和酯层的粗提物;分别粗提物进行分离纯化,得到化合物1‑11。本发明提供的提取方法,操作简单易行,收率高。发明提供的葫芦烷型三萜类化合物在抗衰老的体外筛选模型中,显著延长酵母细胞的复制性寿命。可在制备抗衰老药物和保健品中应用。为抗衰老的新药研发和基础性研究提供依据,具有重要的现实意义。葫芦烷型三萜类化合物结构式如下。

Description

葫芦烷型三萜化合物提取方法及其抗衰老医药用途
技术领域
本发明属于药物提取领域,涉及葫芦烷型三萜化合物的提取方法,具体涉及一种苦葫芦烷型三萜化合物的提取方法及其在制备抗衰老产品中应用。
背景技术
随着社会的发展,生活及医疗水平的提高,人类的寿命延长,导致老龄人口增多。据最近的一次联合国对世界人口统计,2015年,全世界的老龄人口已达到9.01亿,占人口总数的12%,并且这个比例还会以每年3.26%的速率在增加,预计2050年,这个数字将达到21亿,世界上主要地区的老龄人口将占四分之一,世界已进入老龄化社会。中国的人口老龄化进程远远快于许多中低收入和高收入国家。在未来的25年里,中国的老龄人口预计会增加一倍以上,将从2010年的1.68亿(12.4%)增长到2040年的4.02亿(28%)。从医药行业角度出发,老龄人口的增加会伴随着代谢病、癌症、心血管疾病、神经退行性疾病等老年性相关疾病的增多。这些将严重影响患者、家庭及社会,将会是医药行业面临的难题及挑战。衰老是导致这些老年性疾病的最主要原因。因此,寻找抗衰老药物,从而通过延缓衰老来预防老年性相关疾病的发生,已经成为当务之急。
衰老机制的研究是研究抗衰老的重要基础,将衰老的机制根据不同水平可以分为以下几种,从整体水平来说,能量限制可以延缓衰老,生物体的体型大小可能与寿命有关。器官水平上,衰老与大脑衰老,动脉粥样硬化的出现及内分泌系统的衰退是相关的。细胞水平上,衰老表现在干细胞、溶酶体、线粒体的结构改变和功能衰退。分子水平上,认为衰老是由衰老基因控制的,也有学者提出衰老与端粒的耗损相关,氧化应激学说认为体内产生的自由基可导致衰老。目前研究的较多较深入的抗衰老化合物有亚精胺、雷帕霉素、二甲双胍、白藜芦醇。科研工作者对衰老和抗衰老的研究已做了大量的工作但是进行临床试验和上市的药物微乎其微。因此,寻找抗衰老化合物的研究任务还有待继续进行。
苦瓜(Momordica charantia L.)别名凉瓜、锦荔枝、癫瓜,为葫芦科一年生攀援草本苦瓜属植物,果实药食兼用,是亚洲地区常见的一种蔬菜。我国已有50年的应用历史,为著名的民间中草药。苦瓜性味苦寒,具有驱虫、治疗便秘、降低血糖、抗炎、抗癌、抗肥胖、抗病毒、抗溃疡、降低胆固醇、抗骨质疏松等多种功效。苦瓜中含有数百种物质,比如皂苷、多糖、蛋白质、三萜类、生物碱类、黄酮类、奎宁、氨基酸类、脂肪酸类和微量元素等。
发明内容
本发明的目的是提供一种葫芦烷型三萜化合物,化合物1-11具有如下结构式:
本发明的另一个目的是提供葫芦烷型三萜化合物的提取方法,通过以下技术方案实现:
(1)将苦瓜果实研磨成粉末,置于甲醇中浸提,得浸提物;
(2)用乙酸乙酯和水对浸提物进行萃取,分别得到水层和酯层的粗提物;
(3)对酯层的粗提物进行第一次分离纯化,得到目标馏分;
(4)对目标馏分进行第二次分离纯化,得到目标馏分I~IV;
(5)对目标馏分I进行分离纯化化合物1-2;
(6)对目标馏分II进行分离纯化得到化合物3-6;
(7)对目标馏分III进行分离纯化得到化合物7-9;
(8)对目标馏分IV进行分离纯化得到化合物10-11。
作为优选,所述的步骤1)中浸提时间为1~5天。由于甲醇的破壁效果较好,提取效率较高,将苦瓜果实粉碎后置于甲醇中1~5天,能够得到合适的浸提物,以提高后续葫芦烷型三萜化合物的产率。
作为优选,所述的步骤2)中乙酸乙酯和水的体积比为1:1~3。
作为优选,所述的步骤3)中先后以正己烷与丙酮、丙酮与甲醇溶剂系统作洗脱剂,采用硅胶开口柱对酯层的粗提物进行第一次分离纯化。作为优选,将正己烷与丙酮溶剂系统按体积比99:1、98:2、95:5、90:10、80:20、70:30、60:40、50:50、20:80、0:100依次洗脱,接着换用丙酮与甲醇溶剂系统按体积比50:50、0:100依次洗脱,获得目标馏分。
作为优选,所述的步骤4)中以甲醇与水系统作洗脱剂,采用十八烷基键合硅胶开口柱对所述目标馏分进行第二次分离纯化。将甲醇与水溶剂系统按照体积比60:40、70:30、75:25、80:20、90:10、100:0依次洗脱,获得目标馏分I-IV。
作为优选,所述的步骤5)中对目标馏分I进行分离纯化包括以下步骤:a1)以甲醇与水溶剂系统作洗脱剂,采用十八烷基键合硅胶开口柱对目标馏分I进行分离,获得目标馏分;a2)将目标馏分以二氯甲烷与甲醇溶剂系统作洗脱剂,采用硅胶开口柱进行分离,获得目标馏分。a3)对目标馏分进行HPLC纯化,得到化合物1-2。作为优选,所述的步骤a1)中,将甲醇与水溶剂系统按照体积比70:30、73:27、75:25、77:23、80:20、83:17、85:15、100:0依次洗脱,获得目标馏分。作为优选,所述的步骤a2)中,将二氯甲烷与甲醇溶剂系统按照体积比100:0、99:1、98:2、97.5:2.5、95:5、90:10、0:100依次洗脱,获得目标馏分。作为优选,所述的步骤a3)中对目标馏分进行HPLC纯化的条件如下:C30-UG-5(10ID×250mm,NomuraChemical),流动相为乙腈:水=90:10,流速为3mL/min,检测波长为210nm,得到化合物1(1.0mg,tR=30.7min)和化合物2(4.6mg,tR=33.5min)。
作为优选,所述的步骤6)中对目标馏分II进行分离纯化包括以下步骤:b1)以三氯甲烷与甲醇溶剂系统作洗脱剂,采用硅胶开口柱进行分离,获得目标馏分;b2)以甲醇与水溶剂系统作洗脱剂,采用十八烷基键合硅胶开口柱对目标馏分进行分离,获得目标馏分;b3)对目标馏分进行高效液相纯化,得到化合物3-6。作为优选,所述的步骤b1)中,将三氯甲烷与甲醇溶剂系统按照体积比100:0、98:2、95:5、90:10、0:100依次洗脱,获得目标馏分。作为优选,所述的步骤b2)中,将甲醇与水溶剂系统按照体积比70:30、75:25、80:20、90:10、100:0依次洗脱,获得目标馏分。作为优选,所述的步骤b3)中对目标馏分进行HPLC纯化的条件如下:C30-UG-5(10ID×250mm,NomuraChemical),流动相为乙腈:水=62:38,流速为3mL/min,检测波长为210nm,得到化合物3(10.6mg,tR=15.9min),化合物4(1.8mg,tR=17.1min),化合物5(1.9mg,tR=18.7min)和化合物6(3.2mg,tR=30.5min)。
作为优选,所述的步骤7)中对目标馏分III进行分离纯化包括以下步骤:c1)先后以正己烷与三氯甲烷、三氯甲烷与甲醇溶剂系统作洗脱剂,采用硅胶开口柱进行分离,获得目标馏分;c2)对目标馏分进行高效液相纯化,得到化合物7-9。作为优选,所述的步骤c1)中,溶剂系统为正己烷:氯仿=50:50、30:70、0:100;氯仿:甲醇=97:3、95:5、90:10、0:100,依次洗脱,获得目标馏分。作为优选,所述的步骤c2)中对目标馏分进行HPLC纯化的条件如下:PAKC18(10ID×250mm,CAPCELL),流动相为乙腈:水=63:37,流速为3mL/min,检测波长为210nm,得到化合物7(10.2mg,tR=20.2min),化合物8(4.9mg,tR=22.9min)和韩文9(1.3mg,tR=32.0min)。
作为优选,所述的步骤8)中对目标馏分IV进行分离纯化包括以下步骤:d1)以三氯甲烷与甲醇溶剂系统作洗脱剂,采用硅胶开口柱进行分离,获得目标馏分;d2)以甲醇与水溶剂系统作洗脱剂,采用十八烷基键合硅胶开口柱对目标馏分进行分离,获得目标馏分;d3)对目标馏分进行高效液相纯化,得到化合物10-11。作为优选,所述的步骤d1)中,将三氯甲烷与甲醇溶剂系统按照体积比100:0、100:1、100:2、100:3、100:5、90:10、0:100依次洗脱,获得目标馏分。作为优选,所述的步骤d2)中,将甲醇与水溶剂系统按照体积比90:10、95:5、100:0依次洗脱,获得目标馏分。作为优选,所述的步骤d3)中对目标馏分进行HPLC纯化的条件如下:PAKC18(10ID×250mm,CAPCELL),流动相为乙腈:水=60:40,流速为3mL/min,检测波长为210nm,得到化合物10(5.0mg,tR=28.7min)和化合物11(8.0mg,tR=33.8min)
本发明的再一个目的是提供通过上述方法提取的葫芦烷型三萜化合物在制备抗衰老药物中的应用。所述葫芦烷型三萜化合物为化合物1-11。所述药物由葫芦烷型三萜化合物与药学上可接受的载体组成。
研究发现,这11个葫芦烷型三萜化合物在抗衰老物质的体外筛选模型中,可以显著延长酵母细胞的复制性寿命。
本发明的又一个目的是提供通过上述方法提取的葫芦烷型三萜化合物在制备抗衰老保健品中的应用,所述葫芦烷型三萜化合物为化合物1-11。所述保健品由葫芦烷型三萜化合物与食品或保健品可接受的载体组成。
所述的药学上可接受的载体是指药学领域常规的药物载体,如填充剂、粘合剂、湿润剂、吸收促进剂、表面活性剂等。所述的填充剂可采用淀粉、蔗糖或微晶纤维素;所述的粘合剂可采用淀粉浆、羟丙纤维素、明胶或聚乙二醇;所述的湿润剂可采用硬脂酸镁、微粉硅胶或聚乙二醇类;所述的吸收促进剂可采用聚山梨脂或卵磷脂;所述的表面活性剂可采用伯洛沙姆、脂肪酸山梨坦或聚山梨脂。另外还可以加入其它辅剂如香味剂、甜味剂等。
所述的抗衰老药物或保健品的剂型可以是片剂,丸剂,粉剂,分散片,小药囊剂,酏剂,混悬剂,乳剂,溶液剂,糖浆剂,气雾剂,软胶囊,硬胶囊,无菌注射液,搽剂或栓剂;可制成常规、速释、缓释或延迟释放制剂。
本发明的抗衰老药物或保健品可通过各种途径给予,包括口服、鼻腔、肌肉注射、皮下注射、静脉注射等。
同现有技术相比,本发明的有益效果体现在:
(1)本发明提供新型的提取方法,从苦瓜果实中提取葫芦烷型三萜化合物,该方法简单易行,效率高,另外苦瓜药食同源,来源广泛,安全性高,取材便利。
(2)本发明采用K6001酵母作为活性筛选系统,发现苦瓜果实甲醇提取物能够显著延长酵母的复制性寿命,通过开口柱和HPLC技术分离纯化,得到活性化合物1-11,具有明显的抗衰老活性。
(3)本发明对延缓衰老及治疗衰老性疾病方面的新药研发进行基础性研究,具有重要的现实意义。
附图说明
图1~4为本发明化合物1-11对酵母K6001的复制性寿命的影响结果;其中,Control为阴性对照,Res为阳性对照白藜芦醇。
图5为本发明化合物10在氧化性环境下对BY4741酵母细胞生存率的影响。
图6为本发明化合物10对K6001背景的uth1突变株的复制性寿命的影响结果;其中,Control为阴性对照,Res为阳性对照白藜芦醇。
图7为本发明化合物10对K6001背景的sod1和sod2突变株的复制性寿命的影响结果;其中,Control为阴性对照,Res为阳性对照白藜芦醇。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
实施例1:苦瓜果实中提取葫芦烷型三萜化合物
苦瓜果实中提取葫芦烷型三萜化合物的方法,包括以下步骤:
(1)将1.5kg(干重)的苦瓜(Momordica charantia)粉碎后,用5L工业级甲醇浸提,放在摇床中室温震荡浸提3天,真空抽滤,取滤液,减压浓缩得到甲醇浸提物224g。
(2)将(1)中所得甲醇浸提物交替使用乙酸乙酯和水溶解样品并转移至分液漏斗内分配,静置过夜后分别旋干乙酸乙酯层和水层,得到乙酸乙酯层样品30g,水层样品170g。
(3)乙酸乙酯层的样品经硅胶开口柱分离(硅胶200-300目),洗脱体系为正己烷:丙酮=99:1、98:2、95:5、90:10、80:20、70:30、60:40、50:50、20:80、0:100);丙酮:甲醇=50:50、0:100。经TLC分析,合并后共得到9个样品(A-1~9)。对A-8(13.9g,洗脱体系为正己烷:丙酮=20:80)进一步分离纯化。
(4)将A-8(取其中的4g)用十八烷基键合硅胶开口柱进行第二次分离,洗脱体系为甲醇:水=60:40、70:30、75:25、80:20、90:10、100:0。经TLC分析,合并后共得到11个样品(B-1~11)。经K6001酵母活性系统筛选,B-6~9能显著延长酵母的复制性寿命。分别对B-6(660mg,洗脱体系为甲醇:水=75:25),B-7(277mg,洗脱体系为甲醇:水=75:25),B-8(340.4mg,洗脱体系为甲醇:水=80:20),B-9(608.8mg,洗脱体系为甲醇:水=80:20)进一步分离纯化。
a)对B-6的分离纯化。将B-6(取600mg)用十八烷基键合硅胶开口柱进行第三次分离,洗脱体系为甲醇:水=70:30、73:27、75:25、77:23、80:20、83:17、85:15、100:0。经TLC分析,合并后共得到9个样品(C-1~9)。将活性馏分C-6(72mg,洗脱体系为甲醇:水=75:25)用硅胶开口柱进一步分离,洗脱体系为二氯甲烷:甲醇=100:0、99:1、98:2、97.5:2.5、95:5、90:10、0:100。经TLC分析,合并后共得到10个样品(D-1~10)。然后对活性馏分D-6(共11.6mg,洗脱体系为二氯甲烷:甲醇=98:2)进行高效液相纯化。色谱条件为C30-UG-5(10ID×250mm,NomuraChemical),流动相为乙腈:水=90:10,流速为3mL/min,检测波长为210nm,得到化合物1(1.0mg,tR=30.7min)和2(4.6mg,tR=33.5min)。
b)对B-7的分离纯化。将B-7(277mg)用硅胶开口柱进一步分离,洗脱体系为氯仿:甲醇=100:0、98:2、95:5、90:10、0:100,经TLC分析,合并后共得到11个样品(III-E-1~11)。然后对活性馏分E-7(共63mg,洗脱体系为氯仿:甲醇=98:2)用十八烷基键合硅胶开口柱进行分离,洗脱体系为甲醇:水=70:30、75:25、80:20、90:10、100:0。经TLC分析,合并后共得到6个样品(III-F-1~6)。对活性馏分F-2(37.8mg,洗脱体系为甲醇:水=75:25)进行高效液相纯化。色谱条件为C30-UG-5(10ID×250mm,NomuraChemical),流动相为乙腈:水=62:38,流速为3mL/min,检测波长为210nm,得到化合物3(10.6mg,tR=15.9min),4(1.8mg,tR=17.1min),5(1.9mg,tR=18.7min)和6(3.2mg,tR=30.5min)。
c)对B-8的分离纯化。将B-8(取340mg)用硅胶开口柱进一步分离,洗脱体系为正己烷:氯仿=50:50、30:70、0:100;氯仿:甲醇=97:3、95:5、90:10、0:100,经TLC分析,合并后共得到9个样品(G-1~9)。然后对活性馏分G-4(共49.4mg,洗脱体系为氯仿:甲醇=97:3)进行高效液相纯化。色谱条件为PAKC18(10ID×250mm,CAPCELL),流动相为乙腈:水=63:37,流速为3mL/min,检测波长为210nm,得到化合物7(10.2mg,tR=20.2min),8(4.9mg,tR=22.9min)和9(1.3mg,tR=32.0min)。
d)对B-9的分离纯化。将B-9(取600mg)用硅胶开口柱进一步分离,洗脱体系为氯仿:甲醇=100:0、100:1、100:2、100:3、100:5、90:10、0:100、经TLC分析,合并后共得到8个样品(H-1~8)。然后对活性馏分H-4(共332.4mg,洗脱体系为氯仿:甲醇=100:3)用十八烷基键合硅胶开口柱进行分离,洗脱体系为甲醇:水=90:10、95:5、100:0。经TLC分析,合并后共得到4个样品(I-1~4)。对活性馏分I-3(42mg,洗脱体系为甲醇:水=90:10)进行高效液相纯化。色谱条件为PAKC18(10ID×250mm,CAPCELL),流动相为乙腈:水=60:40,流速为3mL/min,检测波长为210nm,得到化合物10(5.0mg,tR=28.7min)和11(8.0mg,tR=33.8min)。
对所得的11个化合物的理化特化学结构经13C NMR、MS、[α]D进行分析测定,结果如下:
化合物1:(23E)-5β,19-Epoxycucurbita-6,23,25-trien-3β-ol 3-O-β-D-allopyranoside(Charantoside IV);无色固体;(c 0.16,CH3OH);分子式为C36H56O7;高分辨率质谱High-resolution ESI-TOF-MS m/z 623.3919,calcd.forC36H56O7Na(M+Na)+623.3918;1H NMR(500MHz,pyridine-d5):δ=0.76(3H,s,-CH3),0.86(3H,s,-CH3),0.90(3H,s,-CH3),0.93(3H,d,J=6.1Hz,H-21),1.52(3H,s,-CH3),1.92(3H,s,-CH3),3.62(1H,d,J=7.9Hz,H-19),3.68(1H,br s,H-3),3.78(1H,d,J=8.0Hz,H-19),4.99(1H,s,H-26a)5.05(1H,s,H-26b),5.45(1H,d,J=7.8Hz,H-1′),5.57(1H,dd,J=3.7,9.7Hz,H-7),5.77(1H,m,H-23),6.21(1H,dd,J=2.1,9.6Hz,H-6),6.31(1H,d,J=15.1Hz,H-24);13C NMR(125MHz,pyridine-d5):δ=15.4,19.3,19.3,19.3,20.6,21.5,24.2,26.0,28.0,28.7,31.4,33.8,37.2,39.4,40.5,40.5,45.7,45.9,49.3,51.0,52.7,63.7,69.7,72.9,73.5,76.6,80.5,85.5,86.3,104.3,115.1,130.3,130.4,134.6,135.1,142.9。
化合物2的结构经LC-MS、1H NMR、13C NMR,HMBC测试后确定。化合物2:白色固体;(c 0.2,CH3OH);分子式为C37H58O8;高分辨率质谱High-resolution ESI-TOF-MSm/z 653.4029,calcd.for C37H58O8Na(M+Na)+653.4024;1H NMR和13C NMR数据见下表1。
表1
化合物2中糖的立体构型的确定:
取化合物20.5mg,1mL甲醇溶解后,加入200μL浓盐酸,80℃油浴回流4h,减压蒸馏干燥后,用水和氯仿交替萃取,所得水层旋干后,取200μg用160μL吡啶溶解,加入40μL10mg/mL的L-半胱氨酸甲酯盐酸盐的吡啶溶液,60℃油浴1h后,再加入100μL含0.67μL邻甲苯异硫氰酸酯吡啶溶液,继续60℃油浴1h后取出,经氮吹干燥后,400μL甲醇复溶,HR ESI-TOF-MS分析,糖的衍生物保留时间和标准糖衍生物进行比对,确定糖的绝对立体构型。标准糖衍生物的制备同上,其中由于标准L-阿洛糖无法购买得到,经查阅文献,将D-阿洛糖和D-半胱氨酸甲酯盐酸盐反应,其余条件不变,得到L-阿洛糖衍生物的保留时间。
化合物2的单糖衍生物保留时间为阿洛糖(tR=9.287min)和标准糖衍生物L-半胱氨酸甲酯-D-阿洛糖(tR=9.127min),D-半胱氨酸甲酯-D-阿洛糖(tR=7.460min)对比得到化合物2的单糖为D-阿洛糖。
化合物3:Momordicoside F2;白色固体;(c 0.94,CHCl3:CH3OH=1:1);分子式为C36H58O8;高分辨率质谱High-resolution ESI-TOF-MS m/z 641.4025,calcd.forC36H58O8Na(M+Na)+641.4024;1H NMR(500MHz,pyridine-d5):δ=0.74(3H,s,-CH3),0.83(3H,s,-CH3),0.90(3H,s,-CH3),0.96(3H,d,J=5.8Hz,H-21),1.51(3H,s,-CH3),1.56(3H,s,-CH3),1.57(3H,s,-CH3),3.61(1H,d,J=8.0Hz,H-19),3.68(1H,br s,H-3),3.77(1H,d,J=8.0Hz,H-19),3.98(1H,m,H-2′),4.73(1H,d,J=2.9Hz,H-3′),5.44(1H,d,J=7.8Hz,H-1′),5.57(1H,dd,J=3.7,9.8Hz,H-7),5.94(2H,m,H-23,H-24),6.21(1H,dd,J=1.8,9.8Hz,H-6);13C NMR(125MHz,pyridine-d5):δ=15.4,19.3,19.3,20.6,21.5,24.3,26.0,28.0,28.6,31.3,31.3,31.4,33.8,37.0,39.4,39.9,40.5,45.7,45.8,49.3,50.6,52.7,63.7,69.7,70.1,72.9,73.5,76.6,80.5,85.5,86.3,104.2,124.6,130.4,134.6,142.1。
化合物4:19(R)-methoxy-5β,19-epoxy-cucurbita-6,23-diene-3β,25-diol3-O-β-D-allopyranoside(Goyaglycoside-b);白色固体;(c 0.2,CH3OH);分子式为C37H60O9;高分辨率质谱High-resolution ESI-TOF-MS m/z 671.4134,calcd.forC37H60O9Na(M+Na)+671.4130;1H NMR(500MHz,pyridine-d5):δ=0.83(3H,s,-CH3),0.87(3H,s,-CH3),0.89(3H,s,-CH3),0.97(3H,d,J=5.6Hz,H-21),1.48(3H,s,-CH3),1.56(3H,s,-CH3),1.57(3H,s,-CH3),3.14(1H,br s,H-8),3.51(3H,s,-OCH3),3.73(1H,br s,H-3),4.91(1H,s,H-19),5.53(1H,d,J=7.8Hz,H-1′),5.63(1H,dd,J=3.6,9.8Hz,H-7),5.95(2H,m,H-23,H-24),6.17(1H,dd,J=2.0,9.7Hz,H-6);13C NMR(125MHz,pyridine-d5):δ=15.3,19.1,19.3,20.4,21.7,23.7,25.3,27.8,28.6,31.3,31.3,31.3,34.3,37.0,39.5,40.0,42.0,42.6,45.7,48.6,48.7,50.8,58.1,63.7,69.7,70.1,72.2,74.2,77.0,83.9,86.0,102.8,112.8,124.7,132.0,133.6,142.1。
化合物5:7-methoxycucurbita-5,23-dien-3β,25-diol 3-O-β-D-allopyranoside(Karaviloside III);白色固体;(c 0.1,CH3OH);分子式为C37H62O8;高分辨率质谱High-resolution ESI-TOF-MS m/z 657.4342,calcd.forC37H62O8Na(M+Na)+657.4337;1H NMR(500MHz,pyridine-d5):δ=0.67(3H,s,-CH3),0.90(3H,s,-CH3),1.00(3H,d,J=5.8Hz,H-21),1.09(3H,s,-CH3),1.14(3H,s,-CH3),1.56(3H,s,-CH3),1.57(3H,s,-CH3),1.58(3H,s,-CH3),3.31(3H,s,-OCH3),3.42(1H,br d,J=4.6Hz,H-7),3.67(1H,br s,H-3),5.38(1H,d,J=7.9Hz,H-1′),5.96(3H,m,H-6,H-23,H-24);13C NMR(125MHz,pyridine-d5):δ=16.0,18.5,19.4,23.1,26.3,28.3,29.3,29.4,29.6,30.8,31.3,31.3,33.2,34.7,35.4,37.1,39.8,40.0,42.4,46.7,48.7,49.3,50.6,56.6,63.8,69.7,70.1,72.5,73.9,76.1,78.0,88.2,105.4,119.5,124.2,142.1,148.4。
化合物6:25-methoxy-5β,19-epoxycucurbita-6,23-dien-19-on 3-O-β-D-allopyranoside(Charantoside C);白色固体;(c 0.1,CH3OH);分子式为C37H58O9;高分辨率质谱High-resolution ESI-TOF-MS m/z 669.3975,calcd.for C37H58O9Na(M+Na)+,669.3973;1H NMR(500MHz,pyridine-d5):δ=0.82(3H,s,-CH3),0.88(3H,s,-CH3),0.91(3H,s,-CH3),0.94(3H,d,J=5.5Hz,H-21),1.34(6H,s,-CH3×2),1.55(3H,s,-CH3),3.22(3H,s,-OCH3),3.63(1H,br s,H-3),5.33(1H,d,J=7.9Hz,H-1′),5.54~5.67(4H,m,H-6,H-7,H-23,H-24);13C NMR(125MHz,pyridine-d5):δ=15.0,19.2,19.7,20.1,21.2,22.3,24.3,26.4,26.8,26.9,28.0,30.5,33.8,36.7,38.7,40.0,41.1,45.3,45.7,48.3,50.5,50.8,51.1,63.7,69.6,72.8,73.5,75.2,76.4,84.7,85.6,105.3,128.7,132.9,133.4,138.1,182.5。
化合物7:(23S)-5β,19-Epoxy-23-methoxycucurbita-6,24-dien-3β-ol3-O-β-D-allopyranoside(Charantoside VI);白色固体;(c 0.48,CH3OH);分子式为C37H60O8;高分辨率质谱High-resolution ESI-TOF-MS m/z 655.4178,calcd.forC37H60O8Na(M+Na)+655.4180;1H NMR(500MHz,pyridine-d5):δ=0.77(3H,s,-CH3),0.88(3H,s,-CH3),0.90(3H,s,-CH3),1.04(3H,d,J=5.4Hz,H-21),1.49(3H,s,-CH3),1.73(3H,s,-CH3),1.75(3H,s,-CH3),3.31(3H,s,-OCH3),3.59(1H,d,J=8.0Hz,H-19),3.67(1H,br s,H-3),3.76(1H,d,J=8.0Hz,H-19),4.12(1H,dt,J=4.8,8.8Hz,H-23),5.17(1H,d,J=9.3Hz,H-24),5.42(1H,d,J=7.8Hz,H-1′),5.56(1H,dd,J=3.7,9.8Hz,H-7),6.21(1H,d,J=9.9Hz,H-6);13C NMR(125MHz,pyridine-d5):δ=15.2,18.8,19.3,20.3,20.6,21.5,24.2,26.0,26.3,28.0,29.1,31.5,33.8,34.2,39.4,40.5,43.4,45.7,45.9,49.3,51.7,52.7,55.7,63.7,69.7,72.9,73.5,76.6,76.8,80.5,85.6,86.3,104.2,127.8,130.4,134.5,135.5。
化合物8:(19R,23S)-5β,19-epoxy-19,23-dimethoxycucurbita-6,24-dien-3β-ol-3-O-β-D-allopyranoside(Charantagenin E);无色固体;(c 0.11,CH3OH);分子式为C38H62O9;高分辨率质谱High-resolution ESI-TOF-MS m/z 685.4282,calcd.forC38H62O9Na(M+Na)+685.4286;1H NMR(500MHz,pyridine-d5):δ=0.82(3H,s,-CH3),0.90(3H,s,-CH3),0.91(3H,s,-CH3),1.06(3H,d,J=4.8Hz,H-21),1.47(3H,s,-CH3),1.71(3H,s,-CH3),1.73(3H,s,-CH3),3.14(1H,br s,H-8),3.31(3H,s,-OCH3),3.48(3H,s,-OCH3),3.72(1H,br s,H-3),4.89(1H,s,H-19),5.16(1H,d,J=9.3Hz,H-24),5.53(1H,d,J=7.8Hz,H-1′),5.62(1H,dd,J=3.6,9.7Hz,H-7),6.17(1H,dd,J=2.1,9.7Hz,H-6);13C NMR(125MHz,pyridine-d5):δ=15.1,18.8,19.1,20.4,20.4,21.7,23.7,25.3,26.2,27.8,29.0,31.4,34.2,34.2,39.5,42.0,42.6,43.4,45.7,48.5,48.7,51.8,55.7,58.0,63.7,69.6,72.2,74.2,76.9,77.0,83.9,86.0,102.8,112.8,127.8,132.0,133.5,135.5。
化合物9:(19R,23R)-5β,19-Epoxy-19,23-dimethoxycucurbita-6,24-dien-3β-ol3-O-β-D-allopyranoside(Charantoside II);白色固体;(c 0.2,CH3OH);分子式为C38H62O9;高分辨率质谱High-resolution ESI-TOF-MS m/z 685.4292,calcd.forC38H62O9Na(M+Na)+685.4286;1H NMR(500MHz,pyridine-d5):δ=0.83(3H,s,-CH3),0.92(3H,s,-CH3),0.95(3H,s,-CH3),1.08(3H,d,J=6.4Hz,H-21),1.47(3H,s,-CH3),1.71(3H,s,-CH3),1.75(3H,s,-CH3),3.14(1H,br s,H-8),3.29(3H,s,-OCH3),3.49(3H,s,-OCH3),3.73(1H,br s,H-3),4.90(1H,s,H-19),5.23(1H,d,J=8.8Hz,H-24),5.54(1H,d,J=7.8Hz,H-1′),5.62(1H,dd,J=3.6,9.7Hz,H-7),6.17(1H,dd,J=2.0,9.8Hz,H-6);13C NMR(125MHz,pyridine-d5):δ=15.2,18.5,19.1,19.3,20.4,21.6,23.7,25.2,26.2,27.7,28.8,31.4,33.2,34.2,39.4,42.0,42.6,43.7,45.8,48.5,48.7,51.7,56.0,58.0,63.6,69.6,72.2,74.1,75.2,76.9,83.9,85.9,102.9,112.8,128.3,132.0,133.5,134.9。
化合物10:Momordicoside G;白色固体;(c 1.0,CH3OH);分子式为C37H60O8;高分辨率质谱High-resolution ESI-TOF-MS m/z 655.4188,calcd.forC37H60O8Na(M+Na)+655.4180;1H NMR(500MHz,pyridine-d5):δ=0.79(3H,s,-CH3),0.89(3H,s,-CH3),0.91(3H,s,-CH3),0.97(3H,d,J=6.1Hz,H-21),1.34(6H,s,-CH3×2),1.50(3H,s,-CH3),3.23(3H,s,-OCH3),3.62(1H,d,J=8.0Hz,H-19),3.68(1H,br s,H-3),3.78(1H,d,J=8.0Hz,H-19),3.96(1H,d,J=7.6Hz,H-2′),4.71(1H,m,H-3′),5.42(1H,d,J=7.8Hz,H-1′),5.60(2H,m,H-23,H-24),6.22(1H,dd,J=1.8,9.7Hz,H-6);13C NMR(125MHz,pyridine-d5):δ=15.5,19.3,20.6,21.5,24.2,26.0,26.5,26.9,28.0,28.6,31.5,33.8,36.7,39.4,40.1,40.5,45.7,45.9,49.3,50.6,50.7,52.7,63.7,65.3,69.7,72.9,73.5,75.3,76.6,80.6,85.5,86.3,104.2,128.8,130.4,134.6,138.1。
化合物11:19(R),25-dimethoxy-5β,19-epoxycucurbita-6,23-dien-3β-ol3-O-β-D-allopyranoside(Goyaglycoside-d);白色固体;(c 0.1,CH3OH);分子式为C38H62O9;高分辨率质谱High-resolution ESI-TOF-MS m/z 685.4292,calcd.forC38H62O9Na(M+Na)+685.4286;1H NMR(500MHz,pyridine-d5):δ=0.84(3H,s,-CH3),0.92(3H,s,-CH3),0.93(3H,s,-CH3),0.99(3H,d,J=5.7Hz,H-21),1.34(6H,s,-CH3×2),1.47(3H,s,-CH3),3.16(1H,br s,H-8),3.23(3H,s,-OCH3),3.52(3H,s,-OCH3),3.73(1H,br s,H-3),3.93(1H,d,J=7.8Hz,H-2′),4.75(1H,m,H-3′),4.91(1H,s,H-19),5.51(1H,d,J=7.8Hz,H-1′),5.57(1H,d,J=15.9Hz,H-24),5.64(1H,dd,J=3.6,9.5Hz,H-7),5.68(1H,dd,J=6.3,9.4Hz,H-23),6.18(1H,dd,J=2.1,9.7Hz,H-6);13C NMR(125MHz,pyridine-d5):δ=15.3,19.1,19.3,20.3,21.6,23.7,25.3,26.4,26.9,27.8,28.5,31.3,34.3,36.8,39.5,40.1,42.0,42.6,45.7,48.5,48.7,50.5,50.8,58.1,63.7,69.6,72.2,74.1,75.2,76.9,83.9,86.0,102.8,112.8,128.9,132.0,133.6,138.0。
实施例2:化合物1-11的抗衰老活性分析
目前用于抗衰老研究的生物模型主要有老鼠,线虫,果蝇和酵母。本应用例选择酿酒酵母作为生物模型进行抗衰老活性化合物的筛选。酵母是真核单细胞生物,基因组小,生命周期短,培养费用低,是目前常用的衰老模型生物。Resveratol是从红酒中发现的多羟基酚,它在多种动物模型中都表现出抗衰老及抗衰老相关性疾病的活性。
分析方法包括以下步骤:
(1)从-30℃冰箱取出K6001酵母菌株,用PBS洗涤三次,每次5ml,除去其中的甘油。最后加入1ml PBS,吹打,使其悬浮后加入到5ml液体培养基(1%的酵母粉,2%的蛋白胨,3%的半乳糖)中。28℃振摇(160r/min)培养24小时。
(2)培养结束后用5ml PBS洗涤三次,除去其中的液体培养基,用血球计数板计数,计算酵母的浓度。
(3)采用无水乙醇作溶剂,分别配制终浓度为1μM、3μM的化合物1-11,备用。
(4)在灭过菌的培养皿中加入5ml的固体培养基(1%的酵母粉,2%的蛋白胨,2%的葡萄糖,2%的琼脂粉),待培养基凝固后,向其中分别加入步骤(3)中配制好的样品,使终浓度为1μM、3μM,待溶剂挥发后加入4000个酵母,用涂布器涂抹均匀,28℃恒温培养48小时。
(5)显微镜下每皿随机选取40个母细胞,分别数出产生的子细胞个数,并作图分析,结果见图1-4。
图1中,阴性对照Control组中K6001的平均复制性寿命为7.43±0.42;阳性对照(Res)10μM的白藜芦醇是9.33±0.46**。(A)中1在浓度为1μM,3μM时,K6001的复制性寿命分别为8.83±0.45*,8.85±0.44*;(B)中2在浓度为1μM和3μM时,K6001的复制性寿命分别为9.13±0.49*,9.03±0.44*
图2中,阴性对照Control组中K6001的平均复制性寿命为7.78±0.49;阳性对照组(Res),10.33±0.42***。(A)中3在浓度为1μM,3μM时,K6001的复制性寿命分别为11.03±0.53***,9.68±0.55*;(B)中4在浓度为1μM,3μM时,K6001的复制性寿命分别为11.08±0.50***,10.25±0.56**;(C)中5在浓度为1μM,3μM时,K6001的复制性寿命分别为10.40±0.45***,10.70±0.45***
图3中,阴性对照Control组中K6001的平均复制性寿命为7.83±0.36;阳性对照组(Res),10.73±0.50***。(A)中5在浓度为1μM,3μM时,K6001的复制性寿命分别为9.68±0.57**,10.10±0.46***;(B)中8在浓度为1μM,3μM时,K6001的复制性寿命分别为9.68±0.55**,9.75±0.55**;(C)中9在浓度为1μM,3μM时,K6001的复制性寿命分别为9.63±0.52**,9.73±0.55**
图4中,阴性对照Control组中K6001的平均复制性寿命为7.80±0.44;阳性对照组(Res),10.40±0.51***。(A)中6在浓度为1μM,3μM时,K6001的复制性寿命分别为10.33±0.47***,10.40±0.42***;(B)中10在浓度为1μM,3μM时,K6001的复制性寿命分别为9.75±0.47**,10.13±0.41***;(C)中11在浓度为1μM,3μM时,K6001的复制性寿命分别为9.55±0.42**,10.08±0.39***
因此,说明化合物1-11均能延长酵母的复制性寿命(*p<0.01,**p<0.01和***p<0.001表明有显著性差异)。
实施例3:化合物10提高酵母生存率的活性分析
测试化合物10能否提高酵母的生存率,测试方法如下:
(1)将-30℃保存的野生型酵母BY4741用5ml PBS洗涤三次,除去其中的甘油;加入1ml无菌水,吹打使其悬浮,加入到5ml葡萄糖培养基(1%的酵母粉,2%的蛋白胨,2%的葡萄糖)中;将其放入摇床,28℃振摇(160r/min)培养24小时,使其恢复生长能力。
(2)将BY4741接种到25mL新的葡萄糖培养基,调整OD600值为0.1,然后分别与一定浓度的化合物10,阴性对照品、阳性对照品(10μM resveratrol)孵育12小时。
(3)BY4741与样品和对照品孵育12小时后,取每组约200个细胞分别涂在含有或不含有5mM H2O2的葡萄糖固体培养基上;28℃培养2天后计算酵母细胞生存率;
酵母细胞生存率(%)=(含5mM H2O2的葡萄糖固体培养基上的酵母菌落数/不含H2O2的葡萄糖固体培养基上的酵母菌落数)×100%;计算结果见图7。
由图5可见,阴性对照(control)的酵母细胞生存率为48.31%±4.94%,在1μM和3μM的化合物10孵育下,酵母细胞生存率分别提高到了71.21%±2.75%(p<0.05)和68.73%±5.89%(p<0.05);说明化合物10能够提高酵母细胞在氧化应激条件下的生存率。
实施例4:化合物10的抗衰老机制分析
(1)测试化合物10在3μM的活性下是否能够延长敲除了UTH1,SKN7基因的K6001酵母突变菌株(Δuth1,Δskn7)的复制性寿命,分析方法同应用例1,分析结果见图6。
(2)测试化合物10在3μM的浓度下是否能够延长分别敲除了SOD1,SOD2基因的K6001酵母突变菌株(Δsod1,Δsod2)的复制性寿命,分析方法同实施例2,分析结果见图7。
由图6可见,化合物10在3μM能延长K6001的复制性寿命,但却不能延长Δuth1和Δskn7的复制性寿命,说明化合物10通过调节基因UTH1,SKN7的表达延长酵母细胞的复制性寿命。
由图7可见,化合物10在3μM能延长K6001的复制性寿命,但却不能延长Δsod1和Δsod2的复制性寿命,说明化合物10的抗衰老活性与SOD基因有关。
上述实验结果表明,在K6001酵母活性系统的引导下,分离得到的化合物1-11在一定浓度下,可以显著提高酵母的复制性寿命,具有潜在的抗衰老活性。初步的机理研究表明,葫芦烷型的三萜化合物能够提高酵母细胞对氧化环境的耐受性,并和UTH1,SKN7以及SOD基因有关。

Claims (8)

1.一种葫芦烷型三萜类化合物,其特征在于,化合物1-11具有如下结构:
2.一种葫芦烷型三萜类化合物的提取方法,其特征在于,通过以下步骤实现:
(1)将苦瓜果实切成片,晒干后粉碎,置于甲醇中浸提1~5天,得浸提物;
(2)用乙酸乙酯和水对浸提物进行萃取,分别得到水层和酯层的粗提物,乙酸乙酯和水的体积比为1:1~3;
(3)对酯层的粗提物进行第一次分离纯化,得到目标馏分,以正己烷与丙酮、丙酮与甲醇溶剂系统作洗脱剂,采用硅胶开口柱对酯层的粗提物进行第一次分离纯化;其中将正己烷与丙酮溶剂系统按体积比99:1、98:2、95:5、90:10、80:20、70:30、60:40、50:50、20:80、0:100依次洗脱,接着换用丙酮与甲醇溶剂系统按体积比50:50、0:100依次洗脱,获得的目标馏分是由正己烷:丙酮=20:80洗脱下来;
(4)对目标馏分进行第二次分离纯化,得到目标馏分I~IV,取甲醇与水系统作洗脱剂,采用十八烷基键合硅胶开口柱对所述目标馏分进行第二次分离纯化;将甲醇与水溶剂系统按照体积比60:40、70:30、75:25、80:20、90:10、100:0依次洗脱,获得目标馏分I~IV。
(5)对目标馏分I进行分离纯化化合物1-2;进行分离纯化通过以下步骤:
a1)以甲醇与水溶剂系统作洗脱剂,采用十八烷基键合硅胶开口柱对目标馏分I进行分离,获得目标馏分,
a2)将a1)所得目标馏分以二氯甲烷与甲醇溶剂系统作洗脱剂,采用硅胶开口柱进行分离,获得目标馏分,
a3)对a2)所得目标馏分进行HPLC纯化,得到化合物1-2;
(6)对目标馏分II进行分离纯化得到化合物3-6;进行分离纯化通过以下步骤:
b1)以三氯甲烷与甲醇溶剂系统作洗脱剂,采用硅胶开口柱进行分离,获得目标馏分;
b2)对b1)所得目标馏分以甲醇与水溶剂系统作洗脱剂,采用十八烷基键合硅胶开口柱进行分离,获得目标馏分;
b3)对b2)所得目标馏分进行高效液相纯化,得到化合物3-6;
(7)对目标馏分III进行分离纯化得到化合物7-9;进行分离纯化通过以下步骤:
c1)先后以正己烷与三氯甲烷、三氯甲烷与甲醇溶剂系统作洗脱剂,采用硅胶开口柱进行分离,获得目标馏分;
c2)对c1)所得目标馏分进行高效液相纯化,得到化合物7-9;
(8)对目标馏分IV进行分离纯化得到化合物10-11;进行分离纯化通过以下步骤:
d1)以三氯甲烷与甲醇溶剂系统作洗脱剂,采用硅胶开口柱进行分离,获得目标馏分;
d2)对d1)所得目标馏分以甲醇与水溶剂系统作洗脱剂,采用十八烷基键合硅胶开口柱进行分离,获得目标馏分;
d3)对d2)所得目标馏分进行高效液相纯化,得到化合物10和化合物11。
3.根据权利要求2所述的一种葫芦烷型三萜类化合物的提取方法,其特征在于,所述步骤(5)中的步骤a1),将甲醇与水溶剂系统按照体积比70:30、73:27、75:25、77:23、80:20、83:17、85:15、100:0依次洗脱,获得目标馏分;步骤a2)中,将二氯甲烷与甲醇溶剂系统按照体积比100:0、99:1、98:2、97.5:2.5、95:5、90:10、0:100依次洗脱,获得目标馏分;步骤a3)中对目标馏分进行HPLC纯化的条件如下:C30-UG-5,10ID×250mm,NomuraChemical,流动相为乙腈:水=90:10,流速为3mL/min,检测波长为210nm,得到化合物1:mg,tR=30.7min和化合物2:4.6mg,tR=33.5min。
4.根据权利要求2所述的一种葫芦烷型三萜类化合物的提取方法,其特征在于,所述的步骤(6)中的步骤b1),将三氯甲烷与甲醇溶剂系统按照体积比100:0、98:2、95:5、90:10、0:100依次洗脱,获得目标馏分;步骤b2)中,将甲醇与水溶剂系统按照体积比70:30、75:25、80:20、90:10、100:0依次洗脱,获得目标馏分;步骤b3)中对目标馏分进行HPLC纯化的条件如下:C30-UG-5,10ID×250mm,NomuraChemical,流动相为乙腈:水=62:38,流速为3mL/min,检测波长为210nm,得到化合物3:10.6mg,tR=15.9min),化合物4:1.8mg,tR=17.1min,化合物5:1.9mg,tR=18.7min和化合物6:3.2mg,tR=30.5min。
5.根据权利要求2所述的根据权利要求2所述的一种葫芦烷型三萜类化合物的提取方法,其特征在于,所述的步骤7)中的步骤c1),溶剂系统为正己烷:氯仿=50:50、30:70、0:100;氯仿:甲醇=97:3、95:5、90:10、0:100,依次洗脱,获得目标馏分;步骤c2)中对目标馏分进行HPLC纯化的条件如下:PAKC18,10ID×250mm,CAPCELL,流动相为乙腈:水=63:37,流速为3mL/min,检测波长为210nm,得到化合物7:10.2mg,tR=20.2min,化合物8:4.9mg,tR=22.9min和化合物9:1.3mg,tR=32.0min。
6.根据权利要求2所述的根据权利要求2所述的一种葫芦烷型三萜类化合物的提取方法,其特征在于,所述的步骤8)中的步骤d1),将三氯甲烷与甲醇溶剂系统按照体积比100:0、100:1、100:2、100:3、100:5、90:10、0:100依次洗脱,获得目标馏分;步骤d2)中,将甲醇与水溶剂系统按照体积比90:10、95:5、100:0依次洗脱,获得目标馏分;步骤d3)中对目标馏分进行HPLC纯化的条件如下:PAKC18,10ID×250mm,CAPCELL,流动相为乙腈:水=60:40,流速为3mL/min,检测波长为210nm,得到化合物10:5.0mg,tR=28.7min和化合物11:8.0mg,tR=33.8min。
7.一种如权利要求1所述的葫芦烷型三萜化合物在制备抗衰老药物中的应用,其特征在于,所述葫芦烷型三萜化合物为化合物1-11。
8.一种如权利要求1所述的葫芦烷型三萜化合物在制备抗衰老保健品中的应用,其特征在于,所述葫芦烷型三萜化合物为化合物1-11。
CN201710833244.1A 2017-09-15 2017-09-15 葫芦烷型三萜化合物提取方法及其抗衰老医药用途 Active CN107686501B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710833244.1A CN107686501B (zh) 2017-09-15 2017-09-15 葫芦烷型三萜化合物提取方法及其抗衰老医药用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710833244.1A CN107686501B (zh) 2017-09-15 2017-09-15 葫芦烷型三萜化合物提取方法及其抗衰老医药用途

Publications (2)

Publication Number Publication Date
CN107686501A true CN107686501A (zh) 2018-02-13
CN107686501B CN107686501B (zh) 2020-05-22

Family

ID=61155143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710833244.1A Active CN107686501B (zh) 2017-09-15 2017-09-15 葫芦烷型三萜化合物提取方法及其抗衰老医药用途

Country Status (1)

Country Link
CN (1) CN107686501B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891058A (zh) * 2022-05-29 2022-08-12 山西省中医药研究院(山西省中医院) 胡黄连葫芦烷型皂苷提取物及其在制备治疗便秘药物中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360453A (zh) * 2012-04-04 2013-10-23 浙江大学 四环三萜类化合物的制备和抗衰老应用
CN103360452A (zh) * 2012-04-04 2013-10-23 浙江大学 甜瓜蒂四环三萜葫芦素类化合物的制备和应用
CN105859816A (zh) * 2016-05-03 2016-08-17 浙江大学 火麻仁中提取β-谷甾醇和β-胡萝卜苷的方法、应用及产品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360453A (zh) * 2012-04-04 2013-10-23 浙江大学 四环三萜类化合物的制备和抗衰老应用
CN103360452A (zh) * 2012-04-04 2013-10-23 浙江大学 甜瓜蒂四环三萜葫芦素类化合物的制备和应用
CN105859816A (zh) * 2016-05-03 2016-08-17 浙江大学 火麻仁中提取β-谷甾醇和β-胡萝卜苷的方法、应用及产品

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NGUYEN XUAN NHIEM 等: "Inhibition of Nuclear Transcription Factor-kB and Activation of Peroxisome Proliferator-Activated Receptors in HepG2 Cells by Cucurbitane-Type Triterpene Glycosides from Momordica charantia", 《JOURNAL OF MEDICINAL FOOD》 *
TOSHIHIRO AKIHISA 等: "Cucurbitane-Type Triterpenoids from the Fruits of Momordica charantia and Their Cancer Chemopreventive Effects", 《J. NAT. PROD.》 *
XIAOJING WANG 等: "Structures of New Triterpenoids and Cytotoxicity Activities of the Isolated Major Compounds from the Fruit of Momordica charantia L.", 《J. AGRIC. FOOD CHEM.》 *
高志慧 等: "苦瓜抗氧化以及抗衰老作用的研究进展", 《中山大学学报论丛》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891058A (zh) * 2022-05-29 2022-08-12 山西省中医药研究院(山西省中医院) 胡黄连葫芦烷型皂苷提取物及其在制备治疗便秘药物中的应用

Also Published As

Publication number Publication date
CN107686501B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
CN107986951B (zh) 新型拓扑异构酶i抑制剂及其药物组合物与其制备方法及应用
CN105859816B (zh) 火麻仁中提取β‑谷甾醇和β‑胡萝卜苷的方法、应用及产品
TWI648257B (zh) 牛樟芝化合物、製備方法及其用途
CN107556362A (zh) 葫芦烷型三萜化合物的提取方法及抗阿尔兹海默症医药用途
TWI580689B (zh) 甾醇類衍生物及其製備方法與應用
CN107686501A (zh) 葫芦烷型三萜化合物提取方法及其抗衰老医药用途
CN106619652A (zh) 阔叶丰花草三萜化合物的制备方法及其在制备糖苷酶抑制剂药物中的应用
KR20100097517A (ko) 쑥속(Artemisia species)식물의 추출물로부터 원심향류분배 크로마토그래피를 이용한 고농도 유파티린(Eupatilin) 및 자세오시딘(Jaceosidine)을 대량으로 분리 및생산하는 방법
CN111848565A (zh) 单萜基双香豆素类化合物、药物组合物及其制备方法和用途
CN105601693A (zh) 人参皂苷f1的制备及其抗肿瘤作用
CN109180471A (zh) 水栀子单萜类化合物crocusatinN和jasminosideB制备方法及应用
CN106008627B (zh) 头花蓼黄酮苷类化合物的制备及抗衰老用途
TWI612963B (zh) 具抗發炎與抑制肝癌細胞生長的蛹蟲草萃取物及其製備方法
CN103342730B (zh) 中药饿蚂蝗提取物的制备方法及其抗衰老用途
CN109180632B (zh) 一种从雷公藤中分离出的化合物的制备方法
CN110204589B (zh) 青葙子有效成分、提取方法及其在制备神经保护药物方面的应用
Zhou et al. Two compounds from the endophytic Colletotrichum sp. of Ginkgo biloba
CN106967132B (zh) 深州蜜桃中活性化合物及其制备方法和应用
KR20110087395A (ko) 푸슈로틴 디를 유효성분으로 함유하는 암 질환의 예방 및 치료용 조성물
CN111110687A (zh) 一种抗脂代谢紊乱的合欢皮新木脂体化合物
CN111072683B (zh) 香豆素类二聚体化合物、药物组合物及其制备方法和用途
TWI466674B (zh) 臺灣梭羅木之生物活性組合物
CN113968774B (zh) 马齿苋中一种多芳基化合物及其提取分离方法
CN102618448B (zh) 补身烷型倍半萜环己烯酮衍生物、其制备方法及用途
CN109897079B (zh) 一种香豆素糖苷类化合物的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant