CN107660324B - 用于串联并联谐振功率转换器的初级侧启动方法及电路布置 - Google Patents

用于串联并联谐振功率转换器的初级侧启动方法及电路布置 Download PDF

Info

Publication number
CN107660324B
CN107660324B CN201680030226.3A CN201680030226A CN107660324B CN 107660324 B CN107660324 B CN 107660324B CN 201680030226 A CN201680030226 A CN 201680030226A CN 107660324 B CN107660324 B CN 107660324B
Authority
CN
China
Prior art keywords
controller
voltage
transformer
secondary side
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680030226.3A
Other languages
English (en)
Other versions
CN107660324A (zh
Inventor
T·奎格利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microchip Technology Inc
Original Assignee
Microchip Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microchip Technology Inc filed Critical Microchip Technology Inc
Publication of CN107660324A publication Critical patent/CN107660324A/zh
Application granted granted Critical
Publication of CN107660324B publication Critical patent/CN107660324B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • H02M1/0035Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

串联并联谐振功率转换器包括初级侧启动控制器及次级侧控制器,其中当功率(电压)首先被施加到所述串联并联谐振功率转换器时,所述初级侧启动控制器发送功率到所述次级侧控制器。所述启动控制器使用开环启动技术来启动所述串联并联谐振功率转换器,其中当所述次级侧闭回路控制器变成通电及启动时,所述次级侧闭回路控制器即接管所述串联并联谐振功率转换器的控制。在轻负载或无负载条件期间,所述次级侧控制器发送断开谐振较高频率或待机编码禁止(停用)命令到所述启动控制器。当功率需要被发送到所述变压器的所述次级侧以给次级侧电容器充电时,所述次级侧控制器可发送启用编码命令到所述启动控制器,其中其经检测以允许所述启动控制器使用所述次级侧控制器以正常方式操作。

Description

用于串联并联谐振功率转换器的初级侧启动方法及电路布置
相关专利申请案
本申请案主张2015年6月1日申请的共同拥有的第62/169,382号美国临时专利申请案的优先权;且涉及2015年11月19日申请的第14/945,729号美国专利申请案;及2015年6月1日申请的第62/169,415号美国临时专利申请案;全部由托马斯·奎格利(ThomasQuigley)申请,其中所有所述专利申请案特此出于所有目的以引用的方式并入本文中。
技术领域
本发明涉及功率转换器,且特定来说,涉及用于DC到DC及AC到DC串联并联谐振功率转换器的启动控制器方法及设备。
背景技术
串联并联谐振功率转换器是其中负载可与谐振“槽”电路串联或与槽电路组件中的一者并联的转换器。包括两个电感器(其中电感器中的一者是变压器的磁化电感)及单个谐振电容器的串联并联功率转换器被称为“LLC谐振”功率转换器。负载与磁化电感并联。“LCC谐振”功率转换器添加与磁化电感及负载并联的额外电容。LLC功率转换器及LCC功率转换器的优点是当以正常输入电压高于谐振而操作时,在无负载到短接电路条件处操作、在宽输入电压范围内操作及在整体功率转换器操作范围内实现零电压切换(ZVS)及零电流切换(ZCS)的能力。功率转换器(例如,DC到DC及AC到DC)通常具有独特电路用于适当从容启动(软启动)且用以产生正确操作电压偏压。此独特电路可需要定制集成电路及/或专有设计,其可增加此类功率转换器的成本及运输调度。
发明内容
因此,需要低成本解决方案以使用常规低成本集成电路(IC)解决方案在初级侧上来启动脱机串联并联谐振功率转换器,所述常规低成本集成电路(IC)解决方案不复制次级侧控制器的资源且最小化初级侧电子器件所需的离散组件。
根据实施例,一种用于启动串联并联谐振功率转换器的方法可包括以下步骤:施加第一DC电压到初级侧启动控制器;使用所述启动控制器以高于串联并联谐振电路的谐振频率的频率而接通及断开至少一个功率开关,所述串联并联谐振电路包含可耦合到至少一个功率开关的变压器的初级绕组;降低所述至少一个功率开关的所述接通及断开频率朝向所述串联并联谐振电路的所述谐振频率,借此可在所述变压器的次级绕组上产生AC电压;使用第二整流器整流来自所述变压器的所述次级绕组的所述AC电压以提供第二DC电压用于给次级侧控制器及负载供电;及当所述第二DC电压可在所要电压值处时将所述至少一个功率开关的控制从所述初级侧启动控制器转移到所述次级侧控制器。
根据所述方法的另一实施例,使用所述启动控制器来接通及断开所述至少一个功率开关的所述步骤可在固定较高频率处。根据所述方法的另一实施例,使用所述启动控制器来接通及断开所述至少一个功率开关的所述步骤可在固定较低频率处。根据所述方法的另一实施例,使用所述启动控制器来接通及断开所述至少一个功率开关的所述步骤可以固定较高频率开始且可改变到较低频率。根据所述方法的另一实施例,使用所述启动控制器来接通及断开所述至少一个功率开关的所述步骤可以固定较低频率开始且可改变到较高频率。
根据所述方法的另一实施例,将所述至少一个功率开关的控制从所述初级侧启动控制器转移到所述次级侧控制器的所述步骤可包括以下步骤:当所述第二DC电压可在所述所要电压值处时,将来自所述次级侧控制器的信号发送到所述初级侧启动控制器;使用所述初级侧启动控制器检测来自所述次级侧控制器的所述信号;及使用来自所述次级侧控制器的所述所检测信号来控制所述至少一个功率开关。
根据所述方法的另一实施例,在所述初级侧启动控制器检测来自所述次级侧控制器的所述信号之后所述第二DC电压可由所述次级侧控制器调节。根据所述方法的另一实施例,将来自所述次级侧控制器的信号发送到所述初级侧启动控制器的所述步骤可进一步包括发送信号通过隔离电路的所述步骤。根据所述方法的另一实施例,所述隔离电路可包括光学耦合器。根据所述方法的另一实施例,所述隔离电路可包括脉冲变压器。根据所述方法的另一实施例,可包括施加AC功率到第一整流器用于提供所述第一DC电压的所述步骤。根据所述方法的另一实施例,可包括使用耦合到所述次级侧控制器的电流感测输入的变流器而测量所述变压器的所述初级绕组的电流的所述步骤。
根据所述方法的另一实施例,可包括使用所述初级侧启动控制器来限制最大可允许变压器初级绕组电流的步骤。根据所述方法的另一实施例,所述第二整流器可为同步整流器。根据所述方法的另一实施例,所述同步整流器可在零电压处切换。根据所述方法的另一实施例,所述同步整流器可在零电流处切换。根据所述方法的另一实施例,所述至少一个功率开关可为至少一个功率金属氧化物半导体场效晶体管(MOSFET)。根据所述方法的另一实施例,所述串联并联谐振电路可包括一个电感器、一个电容器及在LLC功率转换器配置中的所述变压器的所述初级绕组。根据所述方法的另一实施例,所述串联并联谐振电路可包括两个电容器、一个电感器及在LCC功率转换器配置中的所述变压器的所述初级绕组。
根据所述方法的另一实施例,可包括以下步骤:当所述串联并联谐振功率转换器可进入待机模式中时,将来自所述次级侧控制器的停用信号发送到所述初级侧启动控制器用于禁止所述功率开关的操作;及当所述串联并联谐振功率可返回到操作模式时,将来自所述次级侧控制器的启用信号发送到所述初级侧启动控制器用于启用所述功率开关的操作。根据所述方法的另一实施例,所述停用信号可包括第一经经编码信号且所述启用信号可包括第二经编码信号,其中所述初级侧启动控制器可包括解码逻辑用于解码所述第一经经编码信号及所述第二经经编码信号。根据所述方法的另一实施例,所述启用及停用信号可在高于来自所述次级侧控制器的所述脉冲控制频率的频率处。
根据所述方法的另一实施例,使用所述启动控制器来接通及断开所述至少一个功率开关的所述步骤可包括从所述变压器的偏压绕组产生偏置电压的所述步骤。根据所述方法的另一实施例,将所述至少一个功率开关的控制从所述初级侧启动控制器转移到所述次级侧控制器的所述步骤可包括所述启动控制器接受来自所述次级侧控制器的切换命令的步骤,使得所述次级侧控制器可使用所述启动控制器来控制所述至少一个功率开关以大体上实现线性电压调节。根据所述方法的另一实施例,使用所述启动控制器来接通及断开所述至少一个功率开关的所述步骤可包括当所述启动控制器可在开环模式中时接通及断开所述至少一个功率开关的所述步骤。根据所述方法的另一实施例,所述启动控制器可提供过压及欠压保护,及通过所述变压器初级绕组的最大电流限制。根据所述方法的另一实施例,来自所述变压器的三级绕组电压可耦合到所述启动控制器且如果所述次级侧控制器无法正确地操作那么可启用所述启动控制器来调节所述次级侧电压。
根据另一实施例,一种串联并联谐振功率转换器可包括:初级侧启动控制器,其耦合到第一DC电压;至少一个功率开关,其耦合到所述初级侧启动控制器;变压器,其具有初级绕组及次级绕组;串联并联谐振电路,其包含可耦合到所述至少一个功率开关的变压器的初级绕组;电流测量电路,其用于测量通过所述变压器的所述初级绕组的电流及提供所述经测量初级绕组电流到所述初级侧启动控制器;次级侧整流器,其耦合到所述变压器次级绕组用于提供第二DC电压;次级侧控制器,其耦合到所述初级侧启动控制器及所述次级侧整流器;其中当所述初级侧启动控制器可接收所述第一DC电压时,所述初级侧启动控制器可开始控制所述至少一个功率开关在高于所述串联并联谐振电路的谐振频率的频率处的接通及断开,所述串联并联谐振电路可包含变压器的所述初级绕组;借此电流可流动通过所述变压器初级绕组,AC电压可跨所述变压器次级绕组产生,来自所述次级侧整流器的第二DC电压可给所述次级侧控制器通电,及当所述第二DC电压可达到所要电压电平时,所述次级侧控制器可从所述初级侧启动控制器接管所述至少一个功率开关的控制。
根据另一实施例,所述至少一个功率开关可为至少一个功率金属氧化物半导体场效晶体管(MOSFET)。根据另一实施例,所述次级侧控制器可通过隔离电路耦合到所述初级侧启动控制器且可控制所述初级侧启动控制器。根据另一实施例,所述隔离电路可为光学耦合器。根据另一实施例,所述隔离电路可为脉冲变压器。
根据另一实施例,所述启动控制器可包括:电压调节器,其具有输入及输出;内部偏置电压电路,其可耦合到所述电压调节器输出;欠压封锁电路,其耦合到所述电压调节器输出;过压封锁电路,其可耦合到所述电压调节器输出;电压控制振荡器(VCO)及逻辑电路,其可产生可变频率控制信号;固定断开时间电路,其可耦合到所述VCO及逻辑电路;功率驱动器,其可耦合到所述VCO及逻辑电路且可提供所述可变频率控制信号到所述至少一个功率开关;外部门命令检测电路,其可经调适以接收外部控制信号,其中当所述外部控制信号可经检测时,所述外部门命令检测电路可致使所述至少一个功率开关的控制从所述逻辑电路改变到所述外部PWM控制信号;及电压比较器,其可具有耦合到所述VCO及逻辑电路的输出用于检测通过所述变压器初级绕组的过电流。
根据另一实施例,消隐电路可耦合在所述电流感测输入与所述电压比较器输入之间。根据另一实施例,启动频率可由电容器的电容值确定。根据另一实施例,所述启动频率的转换速率可由电阻器的电阻值确定。根据另一实施例,所述初级侧启动控制器可包括开环电压控制振荡器(VCO)及功率开关驱动器。根据另一实施例,所述次级侧控制器可包括微控制器。
附图说明
通过结合附图参考下列描述可获得本发明的更完全理解,其中:
图1说明根据本发明的特定实例实施例的用于串联并联谐振功率转换器的启动控制器的示意性框图;
图2说明根据本发明的特定实例实施例的使用图1中所展示的启动控制器的串联并联谐振功率转换器的示意性框图;及
图3说明根据本发明的特定实例实施例的串联并联谐振功率转换器的操作的示意性频率-阻抗图表。
虽然本发明易于以多种修改及替代形式呈现,但其特定实例实施例已在所述图式中展示且在本文中详细描述。然而,应了解,本文的特定实例实施例的描述并非希望将本发明限制在本文所描述的特别形式。
具体实施方式
根据本发明的各种实施例,串联并联谐振功率转换器可包括初级侧启动控制器及次级侧控制器,其中当功率(电压)首先被施加到所述串联并联谐振功率转换器的所述初级侧时,所述初级侧启动控制器用以发送电力到所述次级侧控制器。所述初级侧启动控制器可使用开环启动技术来启动所述串联并联谐振功率转换器,其中当所述次级侧闭回路控制器变成通电及启动时,所述次级侧闭回路控制器接管所述串联并联谐振功率转换器的线性闭回路控制。
这提供了低成本集成电路(IC)解决方案用于在初级侧上使用常规装置来启动DC到DC及AC到DC串联并联谐振功率转换器,所述解决方案不复制次级侧控制器的资源且最小化初级侧上的离散组件。根据本发明的教示,功率转换器的实施方案及操作的更详细描述提供于2015年11月19日由托马斯·奎格利申请的题为“用于功率转换器的启动控制器(Start-Up Controller for a Power Converter)”的共同拥有的第14/945,729号美国专利申请案中且特此出于所有目的以引用的方式并入本文中。
串联并联谐振功率转换器包括最近非常受欢迎的拓扑。这些串联并联谐振功率转换器拓扑使用与其搭配使用的功率切换金属氧化物半导体场效晶体管(MOSFET)的固有零电压切换(ZVS)及/或零电流切换(ZCS)提供中等功率(例如150瓦特到300瓦特功率转换器)的低成本转换。串联并联谐振功率转换器需要控制方法,其不同于使用于脉冲宽度调变(PWM)控制功率转换器(例如,上文所引用的第14/945,729号美国专利申请案)中的技术。用于串联并联谐振功率转换器的控制器产生具有停滞时间的几乎固定工作周期波形,所述停滞时间是短的且当切换周期改变时保持固定。此切换波形在频率上改变以调节串联并联谐振功率转换器的输出。
串联并联谐振功率转换器的“LLC”符号描述谐振“槽”电路配置,其是由谐振电感器(LR)、谐振电容器(CR)及输出变压器的磁化电感(LMAG)组成的串联电路。负载基本上与LMAG并联。当所述负载接近短路时,所述槽电路的谐振频率是LR及CR的函数。当所述负载接近开路时,所述槽电路的谐振频率是(LR+LMAG)及CR的函数。所述控制器驱动所述串联并联谐振功率转换器在大于所述槽的谐振频率的频率处。在所述范围的较低频率处,所述槽电路供应允许较大功率被递送到所述负载的较低阻抗。在所述范围的较高频率处,所述槽电路供应允许较少功率被递送到所述负载的较高阻抗。通过维持切换频率高于所述槽的谐振频率(及维持所述槽电路的充分“Q”),所述转换器自然地实现功率MOSFET开关的零电压切换。LCC功率转换器在操作上类似于LLC功率转换器,但使用与LMAG及负载并联的额外电容器。
一种用于串联并联谐振功率转换器的启动方法利用初级侧控制器(其施加在AC或DC线电压之后被激活),提供MOSFET门驱动波形(其以高于串联并联谐振功率转换器的谐振频率的选定切换频率开始,所述选定切换频率允许低功率到所述次级以建立次级侧偏压)。作为选项,所述启动方法可以开环方式缓慢地降低初始选定切换频率朝向其谐振频率。此允许到次级的初始低功率以软开始方式增加,直到次级侧控制器可被激活且取得MOSFET功率开关的控制。
现在参考图式,示意地说明实例实施例的细节。在所述图式中的相同元件将由相似数字表示,且类似元件将由具有不同小写字体字母下标的相似数字表示。
现参考图1,根据本发明的特定实例实施例,描绘用于串联并联谐振功率转换器的启动控制器的示意性框图。启动控制器106可包括高压(HV)电压调节器130、欠压及过压封锁(UVLO/OVLO)电路132、电压比较器134、固定消隐时间电路140、外部门命令检测逻辑142(具有任选启用/停用检测)、电压控制振荡器(VCO)及控制/待机逻辑电路144、三输入AND门146、OR门148、MOSFET门驱动器150及信号缓冲器154。
耦合在启动控制器106的PROG节点(引脚)与接地之间的电容器248(图2)可用以确定初始启动频率。耦合在启动控制器106的MODE节点(引脚)与接地之间的电阻器值208(图2)可确定初始启动频率下降速率(无电阻器,无频率下降)。变压器230的初级电流(图2)在启动控制器106的输入节点C/S(电流感测)处被监测(C/S监测跨电阻器214的电压下降)用于使用电压比较器134及固定电压参考VREF的峰电流保护。固定消隐时间电路140防止归因于在功率切换期间接通电流尖峰的错误过流跳脱。
现参考图2,根据本发明的特定实例实施例,描绘使用图1中所展示的启动控制器的串联并联谐振功率转换器的示意性框图。串联并联谐振功率转换器(一般由数字200表示)可包括初级侧桥整流器202(耦合到AC线电源(未展示))、滤波器电感器204及滤波器电容器210(具有滤波器阻尼电阻器206)、谐振电感器226及谐振电容器228、电容器218、236、246及248;电阻器208、214及244;变压器220及230(及变流器216)、MOSFET功率开关222、224、232及234;耦合到变压器230的T1绕组用于初级侧偏压的桥整流器250;初级侧启动控制器106、次级侧控制器238及分别耦合在初级侧启动控制器106与次级侧控制器238之间的第一隔离电路240及第二隔离电路242。串联并联谐振功率转换器200在启动之后提供经调节电压到应用负载(未展示,但跨V_OUT及RTN定位)。所述AC线电源可在从约47赫兹到约63赫兹的频率下处在从约85伏特交流(AC)到265伏特AC的通用范围中。本文中所揭示的实施例可适用于其它电压及频率,其是可预期的且在本发明的范畴内。可代替耦合到AC源的初级侧桥整流器202而使用DC源。
VCO及控制/待机逻辑电路144的逻辑确定当UVLO/OVLO电路132指示VDD是在适当操作电压范围内时,VCO及控制/待机逻辑电路144的VCO产生以由耦合到初级侧启动控制器106的PROG节点(引脚)的电容器248确定的频率开始的驱动波形,且如果电阻器208耦合到其MODE节点(引脚),那么缓慢地(速率由电阻器208的电阻值确定)降低驱动波形频率。当次级侧控制器238被激活时,其监测在其V/S节点(引脚)处的次级侧电压。当跨电容器236且在节点V/S处监测的输出电压电平达到所要值时,次级侧控制器238可通过经由隔离电路242(例如,光学耦合器、脉冲变压器等)而下拉PWMD节点(引脚)而命令启动控制器106停止切换。如果次级侧控制器238决定再次施加功率到变压器230的次级时,其在PWMD节点处释放逻辑低。此释放由VCO及控制/待机逻辑电路144检测且其VCO(144)驱动门驱动器150,再次从最高频率开始。这是滞后“突发模式”类型操作,仅提供足够功率到所述次级以保持次级侧控制器238激活(低待机功率操作状态)。当次级侧控制器238决定施加功率到负载时,其可通过经由初级侧控制器106的脉冲节点而提供驱动波形到门驱动器150而接管门驱动器150的控制。当外部驱动信号使用所述外部门命令检测电路在所述脉冲节点处检测时,门驱动器150接收来自耦合到所述脉冲节点的缓冲器154(代替从电路144的VCO)的脉冲命令,只要ULVO/OVLO电路132确定VDD在有效电压电平内即可。
VCO及控制/待机逻辑电路144还监测电流感测比较器134的状态。过流跳脱电平设置点是内部电压参考VREF的函数及电流感测电阻器214值的选择。如果检测到过流(无论门驱动器150是在内部被发命令还是在外部被发命令),逻辑电路144都将暂时中断到门驱动器150的命令。在中断时间间隔之后,门驱动器150将恢复在外部被发命令,或VCO及控制/待机电路144将接着开始提供以由编程电容器248确定的频率开始的驱动波形。
在脱机操作(无负载连接)期间,所述启动序列可如下:
1)施加AC线电压,从而产生跨电容器210的DC电压。
2)经由HV调节器130给电容器246充电。当在启动控制器106的VDD节点处的电压达到ULVO/OVLO电路132的UVLO阈值时,其被激活。
3)MOSFET门驱动器150基于来自VCO 144的命令而经由门驱动变压器220而驱动MOSFET功率开关222及224。所述驱动频率可基于耦合到PROG节点的频率编程电容器248的值及耦合到启动控制器106的MODE引脚的电阻器208的电阻。驱动波形在由电容器248选择的频率开始且缓慢地开始以基于电阻器208的电阻值的频率减小。
4)MOSFET功率开关222及224驱动包括电感器226、电容器228及输出变压器230(其含有LMAG)的谐振槽电路,从而给电容器236充电。跨电容器236不存在负载(除次级侧控制器238外)。
5)当电容器236上的电压达到充分电平时,次级侧控制器238被激活。次级侧控制器238可为完全模拟或完全数字或两者的组合。
6)次级侧控制器238使用滞后而调节跨电容器236、在其V/S节点处感测、在此低功率待机模式(无负载施加)中的电压。滞后控制通过接通及断开从耦合到隔离电路242的次级侧控制器238到启动控制器106的PWMD输入的DOUT输出而完成。当DOUT输出经接通时,其致使PWMD节点进入低电平,这禁止来自启动控制器106的VCO 144的信号到其门驱动器150。当DOUT经断开时,PWMD节点不再被下拉到低逻辑电平,借此门驱动器150恢复接受来自电路144的VCO的命令,其中电路144的VCO复位到由电容器248选择的频率且开始以由电阻器208的电阻确定的速率而转向较低频率。如果电阻器208不被利用(存在),那么频率保持固定且不转向较低。
7)当次级侧控制器238使负载耦合到功率转换器200的输出时,次级侧控制器238从VCO 144接管门驱动器150。这通过经由隔离电路240而将门驱动命令从次级侧控制器238的门一次输出提供到启动控制器106的脉冲输入节点而完成。
8)次级侧控制器238可具有下列特征:
a.所述VW/S输入节点可用以监测变压器230的次级绕组电压。此特征可经使用,使得次级侧控制器238可使以来自启动控制器106的门驱动器150的波形极性以正确的相位对同步驱动同步整流器232及234的驱动同步。
b.次级侧控制器238可经由隔离电路240驱动初级侧MOSFET 222及224两者以控制门驱动器150且提供两个门驱动器用于变压器230的次级侧上的同步整流器232及234。
c.次级侧控制器238可经由在其C/S节点处监测的变流器216而监测通过变压器230的一次电流(以及通过功率开关222及224的任何交叉传导)。
次级侧控制器238可含有内部VCO产生器(未展示)以产生经由隔离电路240而发送到启动控制器106的可变频率门信号。此信号维持具有可编程固定停滞时间周期的几乎50%工作周期。此信号在频率上改变(在有效频率范围内)以控制谐振槽电路的阻抗以当在负载下时调节输出电压(输出电压的线性控制)。MOSFET功率开关222、224、232及234(由次级侧控制器238的VCO发命令)可在谐振转换器拓扑固有的零电压切换(ZVS)及/或零电流切换(ZCS)处接通及断开。
当功率转换器200上的负载变成轻的且接近无负载条件时,次级侧控制器238将不再能够以线性方式调节在其V/S节点处的电压。接着,次级侧控制器238将必须诉诸于“突发模式”类型的控制。“突发模式”意味着PWM信号在无切换活动的时间之间的短暂时刻发生。如果“无切换活动的时间”太长,那么启动控制器106将认为次级侧控制器238已变得未被激活且其将切换到启动模式。因此,次级侧控制器238使用启动控制器106的PWMD节点(经由驱动隔离器242)以控制“无切换活动的时间”的持续时间。当次级侧控制器238释放PWMD端口时,其可决定PWM信号是否由次级侧控制器238产生(经由隔离器240递送)或由启动控制器106产生。
“睡眠”模式也是操作的“突发模式”类型。差异是在“睡眠”模式中,控制器进入内部较低功率状态中,其中存在不连续地驱动隔离器242来维持“睡眠”(出于长得多的无切换活动的时间周期的目的,从而导致从输入源汲取极低功率)的优点。另一差异是在“睡眠”模式中,次级侧控制器238不再尝试精确地调节次级侧控制器238的V/S节点上的电压,且代替仅宽松地调节其V/S节点上及启动控制器106的VDD节点上的电压,使得两个控制器106及238可维持其内部较低功率状态。次级侧控制器238内部地决定进入“睡眠”模式,或其外部地由较高电平系统控制器发命令。为次级侧控制器238命令启动控制器106“睡眠”,其经由隔离器242而发送经编码消息,其锁存启动控制器106到睡眠中且借此使其能够保持在“睡眠”中而不继续驱动隔离器242,从而降低功率消耗。存在三种方法来退出“睡眠”状态(唤醒功率转换器200)。第一种是使次级侧控制器238开始经由隔离器240而发送PWM命令到启动控制器106。第二种是使次级侧控制器238经由隔离器240而发送单个PWM脉冲到启动控制器106,其命令启动控制器106到启动模式中。第三种是通过启动控制器106的VDD节点上的电压衰减低于UVLO阈值从而致使启动控制器106进入启动模式而引起。“睡眠”模式完整描述于2016年5月31日由托马斯·奎格利申请的的题为“在待机模式中降低功率转换器的功率(Reducing Power in a Power Converter When in a Standby Mode)”的共同拥有且共同待决的美国专利申请案USSN 15/168,390中且特此出于所有目的以引用的方式并入本文中。
前述所提及的美国专利申请案USSN 15/168,390还描述可将来自次级侧控制器238的编码“睡眠”命令经由隔离器240而传输到启动控制器106。如果功率转换器200的特定设计允许将“睡眠命令”经由隔离器240嵌入于PWM信号路径中,那么这允许隔离器242及来自启动控制器106的PWMD节点的消除,从而导致功率转换器200设计的经降低成本及复杂性而无任何如先前所描述的“突发模式”控制特征的损失。
现参考图3,根据本发明的特定实例实施例,描绘串联并联谐振功率转换器的操作的示意性频率-阻抗图表。图3中的(a)展示在功率转换器200阻抗曲线的高阻抗点处的固定启动频率。图3中的(b)展示在功率转换器200阻抗曲线的高阻抗点处的启动频率,同时以开环方式在频率上漂移向下。这些图表是在谐振频率从“CR及LR”(重负载)的函数转变到“CR及LR+LMAG)”(轻负载)的函数时频率阻抗图表的集合的表示。阻抗在谐振频率f0处是最低的。LLC转换器及LCC转换器两者能够在高于f0的频率范围中操作。可期望在高于f0的频率范围中操作以实现零电压切换(ZVS)。在所述范围中较高频率最适用于启动,因为其提供低功率(较高阻抗)到输出。启动频率可由耦合到启动控制器106的“PROG”节点的电容器248的电容值确定。MODE允许启动的两种方法,一者是其中所述启动频率保持固定(如图3中的(a)中所展示),且另一者是其中启动频率开始高的(如由PROG上的电容器248确定)且接着以开环方式缓慢地降低切换频率,其增加在如图3中的(b)中所展示的启动期间递送到次级的功率(通过降低阻抗)。应注意,LLC转换器及LCC转换器两者可在低于谐振频率f0或高于f0的频率范围中工作。在高于f0的范围处工作的优点是ZVS。启动控制器106的PROG特征(其设置启动频率)可在所述转换器在高于f0或低于f0的频率范围中操作中使用。然而,如果期望MODE特征,那么启动控制器106的不同版本将需要用于转换器在低于f0的频率范围中操作。在此情况下,MODE特征将以开环方式缓慢地上升切换频率,其增加在启动期间递送到次级的功率(通过降低阻抗)。
返回参考图2,电感器226及电容器228组成谐振槽电路,其为图3中所描述的频率相依阻抗。此谐振槽电路提供功率转换器200的输入源与所述转换器的输出的负载之间的阻抗。此槽电路基本上与变压器230串联。因此,无论MOSFET 222或224(及其相应同步整流器MOSFET 232及234)何时接通,跨变压器200的初级绕组的电压是功率转换器200的输出电压的反映,如是跨变压器200的三级绕组(由端子T1-X及T1-Y指定)的电压。三级绕组上的电压由桥整流器250整流以在其VDD端口处提供偏压到启动控制器106。在图1中,展示在VDD端口处的电压由启动控制器106的UVLO/OVLO 132电路块监测。因此,启动控制器106可监测功率转换器200的输出电压用于过压及提供保护。这是重要特征。启动控制器106是启动串联并联转换器的开环方法且取决于次级侧控制器238在启动期间被激活且在输出过压发生之前获得功率转换器200的输出电压的线性控制。然而,如果次级侧控制器238无法正确地操作,那么启动控制器106可通过经由变压器230交叉耦合而监测输出电压而提供过压保护且使用UVLO/OVLO 132电路块而提供输出电压的滞后调节。此过压保护方法类似于更全面描述于先前以引用的方式并入本文中的共同待决的第14/945,729号美国专利申请案中的方法。

Claims (32)

1.一种用于启动串联并联谐振功率转换器的方法,所述方法包括下列步骤:
施加第一DC电压到初级侧启动控制器;
通过门驱动器接通及断开与串联并联谐振电路耦合的至少一个功率开关,所述串联并联谐振电路包含变压器的初级绕组,借此在变压器的次级绕组上产生AC电压;
使用第二整流器整流来自所述变压器的所述次级绕组的所述AC电压以提供第二DC电压给次级侧控制器及负载供电;及
当所述第二DC电压达到预定值时,将所述至少一个功率开关的控制从所述初级侧启动控制器转移到所述次级侧控制器;其中
使用所述启动控制器以高于所述串联并联谐振电路的谐振频率的频率执行所述至少一个功率开关的所述接通及断开;
在启动期间,使所述至少一个功率开关的所述接通及断开频率以朝向所述串联并联谐振电路的所述谐振频率降低;以及
其中转移控制包括提供驱动波形至门驱动器,所述门驱动器控制所述至少一个功率开关。
2.根据权利要求1所述的方法,其中当所述第二DC电压在所要电压值时所述次级侧控制器传输控制信号至所述初级侧启动控制器,借此所述启动控制器停止接通及断开至少一个功率开关。
3.根据权利要求1所述的方法,其中通过与所述初级侧启动控制器耦合的电阻器确定降低所述频率的速率。
4.根据权利要求2所述的方法,其中将所述至少一个功率开关的控制从所述初级侧启动控制器转移到所述次级侧控制器的所述步骤包括下列步骤:
当所述第二DC电压在所述所要电压值处时,将来自所述次级侧控制器的信号发送到所述初级侧启动控制器;
使用所述初级侧启动控制器检测来自所述次级侧控制器的所述信号;及
使用来自所述次级侧控制器的所检测的所述信号来控制所述至少一个功率开关。
5.根据权利要求4所述的方法,其中在所述初级侧启动控制器检测来自所述次级侧控制器的所述信号之后所述第二DC电压由所述次级侧控制器调节。
6.根据权利要求4所述的方法,其中将来自所述次级侧控制器的信号发送到所述初级侧启动控制器的所述步骤进一步包括通过隔离电路发送信号的步骤。
7.根据权利要求6所述的方法,其中所述隔离电路包括光学耦合器。
8.根据权利要求6所述的方法,其中所述隔离电路包括脉冲变压器。
9.根据权利要求1所述的方法,其进一步包括施加AC功率到第一整流器用于提供所述第一DC电压的步骤。
10.根据权利要求1所述的方法,其进一步包括使用耦合到所述次级侧控制器的电流感测输入的变流器而测量所述变压器的所述初级绕组的电流的步骤。
11.根据权利要求1所述的方法,其进一步包括使用所述初级侧启动控制器来限制最大可允许变压器初级绕组电流的步骤。
12.根据权利要求1所述的方法,其中所述第二整流器是同步整流器。
13.根据权利要求12所述的方法,其中所述同步整流器在零电压处切换。
14.根据权利要求12所述的方法,其中所述同步整流器在零电流处切换。
15.根据权利要求1所述的方法,其中所述至少一个功率开关是至少一个功率金属氧化物半导体场效晶体管。
16.根据权利要求1所述的方法,其中所述串联并联谐振电路包括在LLC功率转换器配置中的一个电感器、一个电容器及所述变压器的所述初级绕组。
17.根据权利要求1所述的方法,其中所述串联并联谐振电路包括在LCC功率转换器配置中的两个电容器、一个电感器及所述变压器的所述初级绕组。
18.根据权利要求2所述的方法,其中所述控制信号包括第一编码信号且来自所述次级侧控制器的启用信号包括第二编码信号,其中所述初级侧启动控制器包括解码逻辑用于解码所述第一编码信号及所述第二编码信号。
19.根据权利要求1所述的方法,其中使用所述启动控制器来接通及断开所述至少一个功率开关的所述步骤进一步包括从第二变压器的偏压绕组产生偏置电压的步骤。
20.根据权利要求1所述的方法,其中所述启动控制器提供过压及欠压保护、及通过所述变压器初级绕组的最大电流限制。
21.根据权利要求1所述的方法,其中来自所述变压器的三级绕组电压耦合到所述启动控制器且如果所述次级侧控制器无法正确地操作那么启用所述启动控制器来调节所述次级侧控制器的次级侧电压。
22.一种串联并联谐振功率转换器,其包括:
初级侧启动控制器,其耦合到第一DC电压,所述初级侧启动控制器包括门驱动器;
至少一个功率开关,其耦合到所述初级侧启动控制器的所述门驱动器;
变压器,其具有初级绕组及次级绕组;
串联并联谐振电路,其包含耦合到所述至少一个功率开关的变压器的初级绕组;
其中所述初级侧启动控制器经配置以接通及断开至少一个功率开关,借此在所述变压器的次级绕组上产生AC电压;
次级侧整流器,其耦合到所述变压器次级绕组用于提供第二DC电压,其中所述次级侧整流器经配置以整流来自所述变压器的所述次级绕组的所述AC电压以提供第二DC电压给负载和次级侧控制器供电,且所述次级侧控制器耦合到所述初级侧启动控制器及所述次级侧整流器;
其中所述次级侧控制器进一步经配置以当提供用于给所述次级侧控制器供电的所述第二DC电压时接管来自所述初级侧启动控制器的所述至少一个功率开关的控制;
其中
当接通时,在启动期间,所述初级侧启动控制器经配置以在高于所述串联并联谐振电路的谐振频率的频率下接通及断开所述至少一个功率开关;
在启动期间,所述初级侧启动控制器进一步经配置以使所述至少一个功率开关的所述接通及断开频率朝向所述串联并联谐振电路的所述谐振频率降低;及
其中当控制被转移至所述次级侧控制器时,所述次级侧控制器经配置以通过提供驱动波形至门驱动器以控制所述门驱动器,所述门驱动器控制所述至少一个功率开关。
23.根据权利要求22所述的功率转换器,其中所述至少一个功率开关是至少一个功率金属氧化物半导体场效晶体管。
24.根据权利要求22所述的功率转换器,其中所述次级侧控制器通过隔离电路耦合到所述初级侧启动控制器且控制所述初级侧启动控制器。
25.根据权利要求24所述的功率转换器,其中所述隔离电路是光学耦合器。
26.根据权利要求24所述的功率转换器,其中所述隔离电路是脉冲变压器。
27.根据权利要求22所述的功率转换器,其中所述启动控制器包括:
电压调节器,其具有输入及输出;
内部偏置电压电路,其耦合到所述电压调节器输出;
欠压封锁电路,其耦合到所述电压调节器输出;
过压封锁电路,其耦合到所述电压调节器输出;
电压控制振荡器及逻辑电路,其用于产生可变频率控制信号;
固定断开时间电路,其耦合到所述电压控制振荡器及逻辑电路;
其中所述门驱动器被耦合到所述电压控制振荡器及逻辑电路以用于提供所述可变频率控制信号到所述至少一个功率开关;
外部门命令检测电路,其经调适以接收外部控制信号,其中当所述外部控制信号经检测时,所述外部门命令检测电路致使所述至少一个功率开关的控制从所述逻辑电路改变到所述外部PWM控制信号;及
电压比较器,其具有耦合到所述电压控制振荡器及逻辑电路的输出用于检测通过所述变压器初级绕组的过电流。
28.根据权利要求22所述的功率转换器,其进一步包括耦合在所述次级侧控制器的电流感测输入与所述启动控制器的电压比较器输入之间的消隐电路。
29.根据权利要求22所述的功率转换器,其中启动频率由电容器的电容值确定。
30.根据权利要求29所述的功率转换器,其中所述启动频率的转向速率由电阻器的电阻值确定。
31.根据权利要求22所述的功率转换器,其中与初级侧启动控制器耦合的电阻器定义降低所述频率的速率。
32.根据权利要求22所述的功率转换器,其中所述次级侧控制器包括微控制器。
CN201680030226.3A 2015-06-01 2016-06-01 用于串联并联谐振功率转换器的初级侧启动方法及电路布置 Active CN107660324B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562169382P 2015-06-01 2015-06-01
US62/169,382 2015-06-01
US15/168,569 US10277130B2 (en) 2015-06-01 2016-05-31 Primary-side start-up method and circuit arrangement for a series-parallel resonant power converter
US15/168,569 2016-05-31
PCT/US2016/035149 WO2016196545A1 (en) 2015-06-01 2016-06-01 Primary-side start-up method and circuit arrangement for a series-parallel resonant power converter

Publications (2)

Publication Number Publication Date
CN107660324A CN107660324A (zh) 2018-02-02
CN107660324B true CN107660324B (zh) 2020-11-06

Family

ID=57399050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680030226.3A Active CN107660324B (zh) 2015-06-01 2016-06-01 用于串联并联谐振功率转换器的初级侧启动方法及电路布置

Country Status (7)

Country Link
US (1) US10277130B2 (zh)
EP (1) EP3304712B1 (zh)
JP (1) JP2018516530A (zh)
KR (1) KR20180013941A (zh)
CN (1) CN107660324B (zh)
TW (1) TW201707360A (zh)
WO (1) WO2016196545A1 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9712045B2 (en) * 2014-11-17 2017-07-18 Infineon Technologies Austria Ag System and method for a startup cell circuit
US9819274B2 (en) * 2014-11-20 2017-11-14 Microchip Technology Incorporated Start-up controller for a power converter
US10277130B2 (en) 2015-06-01 2019-04-30 Microchip Technolgoy Incorporated Primary-side start-up method and circuit arrangement for a series-parallel resonant power converter
US9912243B2 (en) 2015-06-01 2018-03-06 Microchip Technology Incorporated Reducing power in a power converter when in a standby mode
US9705408B2 (en) 2015-08-21 2017-07-11 Microchip Technology Incorporated Power converter with sleep/wake mode
US20170117813A1 (en) * 2015-10-21 2017-04-27 Quanta Computer Inc. Method and system for testing a power supply unit
US10333415B2 (en) * 2016-07-01 2019-06-25 Rohm Co., Ltd. Insulated synchronous rectification DC/DC converter including synchronous rectification controller controlling synchronous rectification transistor
US10763755B2 (en) * 2016-12-16 2020-09-01 Toyota Motor Engineering & Manufacturing North America, Inc. Symmetrical isolated DC-DC power conversion circuit
IT201700050638A1 (it) * 2017-05-10 2018-11-10 St Microelectronics Srl Procedimento di funzionamento di dispositivi alimentati a radiofrequenza, circuito e dispositivo corrispondenti
CN107317491B (zh) * 2017-07-10 2019-08-13 昂宝电子(上海)有限公司 开关电源芯片及包括其的开关电源电路
US10256744B2 (en) * 2017-09-12 2019-04-09 Infineon Technologies Austria Ag Controller device with adaptive synchronous rectification
US10193457B1 (en) * 2017-09-15 2019-01-29 Abb Schweiz Ag System and method for starting up a high density isolated DC-to-DC power converter
JP6844509B2 (ja) * 2017-11-16 2021-03-17 オムロン株式会社 電源装置及び制御装置
CN108365766B (zh) * 2018-02-02 2020-06-12 昂宝电子(上海)有限公司 Llc准谐振开关电源
US10622883B2 (en) * 2018-06-18 2020-04-14 Semiconductor Components Industries, Llc Method and system of a resonant power converter
US10601333B2 (en) 2018-08-22 2020-03-24 Infineon Technologies Austria Ag Feedforward enhanced feedback control in isolated switched-mode power converters with secondary-side rectified voltage sensing
US11502595B2 (en) * 2018-09-06 2022-11-15 Infineon Technologies Austria Ag Voltage and current protection in isolated switched-mode power converters with secondary-side rectified voltage sensing
US10615694B2 (en) * 2018-09-07 2020-04-07 Dialog Semiconductor (Uk) Limited Circuit and method for suppressing audio noise in DC-DC converters
US10666156B2 (en) * 2018-10-08 2020-05-26 Schweitzer Engineering Laboratories, Inc. Method to dynamically configure and control a power converter for wide input range operation
US10666147B1 (en) 2018-11-14 2020-05-26 Navitas Semiconductor, Inc. Resonant converter control based on zero current detection
US10770983B2 (en) 2018-12-06 2020-09-08 Infineon Technologies Austria Ag Circuits and methods for secondary-side rectified voltage sensing in isolated switched-mode power converters
KR20210117319A (ko) * 2019-01-24 2021-09-28 마그나 인터내셔널 인코포레이티드 스위치 제어 커패시터를 갖는 다상 llc 전력 컨버터를 균형화하기 위한 방법 및 시스템
US10951107B2 (en) * 2019-06-27 2021-03-16 Cypress Semiconductor Corporation Communicating fault indications between primary and secondary controllers in a secondary-controlled flyback converter
US11114945B2 (en) * 2019-08-22 2021-09-07 Cypress Semiconductor Corporation Secondary-controlled active clamp implementation for improved efficiency
US10938309B1 (en) * 2019-10-18 2021-03-02 Raytheon Company Controlling operation of a voltage converter based on inductor current
US10985664B1 (en) 2019-10-18 2021-04-20 Raytheon Company Controlling operation of a voltage converter based on transistor drain voltages
US10931204B1 (en) * 2019-11-12 2021-02-23 Monolithic Power Systems, Inc. Isolated resonant converter with fixed output ripple
US10944330B1 (en) * 2019-12-19 2021-03-09 Cypress Semiconductor Corporation Self-biased gate driver architecture
CN111555629B (zh) * 2020-05-14 2022-12-20 成都芯源系统有限公司 谐振变换器及其控制电路和控制方法
CN112134453B (zh) * 2020-09-08 2021-10-29 台达电子企业管理(上海)有限公司 启动控制方法及系统、尖峰电压检测电路及方法
CN112332650B (zh) * 2020-10-14 2022-08-19 广州金升阳科技有限公司 一种开环启动电路时钟信号控制方法及其控制电路
US11496037B2 (en) * 2021-03-19 2022-11-08 Acbel Polytech Inc. Power supply having bidirectional gate driving impulse transformer and control method thereof
CA3158873A1 (en) * 2021-05-14 2022-11-14 Queen's University At Kingston Methods and circuits for sensing isolated power converter output voltage across the isolation barrier
US20230032942A1 (en) * 2021-08-02 2023-02-02 Transient Plasma Systems, Inc. Power converter comprising series resonant converter(s) having a full-bridge series resonant topology and methods of operating same
KR20230050841A (ko) * 2021-10-08 2023-04-17 주식회사 파워엘에스아이 전원 공급 장치를 위한 동기 정류기 제어 방법 및 이를 위한 장치
WO2023102509A1 (en) * 2021-12-03 2023-06-08 Zoll Medical Corporation Electrotherapeutic waveform and pulse generator
TWI796201B (zh) * 2021-12-08 2023-03-11 通嘉科技股份有限公司 電源轉換器轉換操作模式的方法
CN115995986B (zh) * 2023-03-24 2023-06-09 安徽微伏特电源科技有限公司 一种三角结构的串并联反激升压电路拓扑

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967332A (en) * 1990-02-26 1990-10-30 General Electric Company HVIC primary side power supply controller including full-bridge/half-bridge driver
CN102783004A (zh) * 2010-01-07 2012-11-14 德州仪器公司 通过操作模式切换进行的llc软启动

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301095A (en) * 1991-10-01 1994-04-05 Origin Electric Company, Limited High power factor AC/DC converter
EP0689731A1 (en) 1993-03-17 1996-01-03 National Semiconductor Corporation Frequency shift circuit for switching regulator
US5453921A (en) 1993-03-31 1995-09-26 Thomson Consumer Electronics, Inc. Feedback limited duty cycle switched mode power supply
US5757627A (en) 1996-05-01 1998-05-26 Compaq Computer Corporation Isolated power conversion with master controller in secondary
US6188276B1 (en) 1998-09-21 2001-02-13 Anastasios V. Simopoulos Power amplifier
US6490177B1 (en) * 1998-10-05 2002-12-03 Salvador Figueroa Resonant power converter with primary-side tuning and zero-current switching
JP4355058B2 (ja) 1999-07-27 2009-10-28 日本信号株式会社 電源装置
US6456511B1 (en) 2000-02-17 2002-09-24 Tyco Electronics Corporation Start-up circuit for flyback converter having secondary pulse width modulation
JP2001275345A (ja) 2000-03-27 2001-10-05 Sony Corp 電源装置
KR100438695B1 (ko) 2001-03-09 2004-07-05 삼성전자주식회사 전원 공급 제어 장치 및 방법
US6504267B1 (en) 2001-12-14 2003-01-07 Koninklijke Philips Electronics N.V. Flyback power converter with secondary-side control and primary-side soft switching
JP4808635B2 (ja) 2004-12-21 2011-11-02 ローム株式会社 スイッチングレギュレータ
US7616459B2 (en) 2005-12-07 2009-11-10 Active-Semi, Inc. System and method for a primary feedback switched mode power supply
JP4857888B2 (ja) 2006-04-26 2012-01-18 ミツミ電機株式会社 多出力型dc/dcコンバータ
US7480159B2 (en) 2007-04-19 2009-01-20 Leadtrend Technology Corp. Switching-mode power converter and pulse-width-modulation control circuit with primary-side feedback control
US7800037B2 (en) 2007-04-30 2010-09-21 Carl Keith Sawtell Power supply control circuit with optical feedback
JP5167705B2 (ja) 2007-07-02 2013-03-21 富士電機株式会社 スイッチング電源装置
JP2011514098A (ja) 2008-03-03 2011-04-28 トムソン ライセンシング 電源の出力電圧を初期化する切り替え可能な負荷
US8008960B2 (en) 2008-04-22 2011-08-30 Cisco Technology, Inc. Synchronous rectifier post regulator
US8385088B2 (en) 2010-12-06 2013-02-26 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode with output reset in a power converter
US7952895B2 (en) 2008-05-29 2011-05-31 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode in a power converter
US7995359B2 (en) 2009-02-05 2011-08-09 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode with an event counter in a power converter
US8089783B2 (en) 2008-05-30 2012-01-03 Active-Semi, Inc. Constant current and voltage controller in a three-pin package with dual-use switch pin
US8199537B2 (en) 2009-02-19 2012-06-12 Iwatt Inc. Detecting light load conditions and improving light load efficiency in a switching power converter
US9077248B2 (en) 2009-06-17 2015-07-07 Power Systems Technologies Ltd Start-up circuit for a power adapter
WO2011002600A1 (en) 2009-06-30 2011-01-06 Microsemi Corporation Integrated backlight control system
CN201438266U (zh) 2009-07-22 2010-04-14 Bcd半导体制造有限公司 一种脉冲调制控制器
US8310847B2 (en) 2009-08-04 2012-11-13 Niko Semiconductor Co., Ltd. Secondary side post regulator of flyback power converter with multiple outputs
US8368361B2 (en) 2009-09-30 2013-02-05 Cirrus Logic, Inc. Switching power converter controller with direct current transformer sensing
US8416553B2 (en) 2009-10-30 2013-04-09 Intersil Americas Inc. Bias and discharge system for low power loss start up and input capacitance discharge
US20110211370A1 (en) * 2010-03-01 2011-09-01 Texas Instruments Incorporated Systems and Methods of Resonant DC/DC Conversion
JP5170165B2 (ja) 2010-06-11 2013-03-27 株式会社村田製作所 絶縁型スイッチング電源装置
US9948175B2 (en) 2010-10-25 2018-04-17 Analog Devices, Inc. Soft-start control system and method for an isolated DC-DC converter with secondary controller
US8659263B2 (en) 2010-12-03 2014-02-25 Motorola Solutions, Inc. Power supply circuit having low idle power dissipation
EP2670037B1 (en) * 2011-01-26 2022-11-16 Murata Manufacturing Co., Ltd. Switching power supply device
TWI440288B (zh) 2011-03-11 2014-06-01 Neoenergy Microelectronics Inc 具有加速啓動功能之啓動控制電路及其操作方法
US8792257B2 (en) 2011-03-25 2014-07-29 Power Systems Technologies, Ltd. Power converter with reduced power dissipation
US8842450B2 (en) * 2011-04-12 2014-09-23 Flextronics, Ap, Llc Power converter using multiple phase-shifting quasi-resonant converters
TWI424677B (zh) 2011-05-04 2014-01-21 Anpec Electronics Corp 啟動電路及馬達驅動晶片
US20130016535A1 (en) 2011-07-12 2013-01-17 Power Systems Technologies, Ltd. Controller for a Power Converter and Method of Operating the Same
US20140254215A1 (en) 2011-08-29 2014-09-11 Power Systems Technologies Ltd. Controller for a power converter and method of operating the same
US9071144B2 (en) 2011-12-14 2015-06-30 Cirrus Logic, Inc. Adaptive current control timing and responsive current control for interfacing with a dimmer
US8531229B2 (en) 2012-01-31 2013-09-10 Macronix International Co., Ltd. Level shifting circuit
CN102570837B (zh) 2012-02-28 2014-09-03 矽力杰半导体技术(杭州)有限公司 一种恒压恒流控制电路及其控制方法
US9143043B2 (en) 2012-03-01 2015-09-22 Infineon Technologies Ag Multi-mode operation and control of a resonant converter
US10090772B2 (en) * 2012-03-08 2018-10-02 Massachusetts Institute Of Technology Resonant power converters using impedance control networks and related techniques
JP6008521B2 (ja) 2012-03-09 2016-10-19 キヤノン株式会社 電源装置及び画像形成装置
CN102655373B (zh) 2012-05-08 2015-06-03 成都芯源系统有限公司 一种隔离式电压转换电路及其控制方法
US9520794B2 (en) 2012-07-25 2016-12-13 Philips Lighting Holding B.V Acceleration of output energy provision for a load during start-up of a switching power converter
TWI463780B (zh) 2012-11-16 2014-12-01 Noveltek Semiconductor Corp 隔離式電源轉換器、反相式並聯穩壓器及其操作方法
US8854842B2 (en) 2012-12-11 2014-10-07 Dialog Semiconductor Inc. Digital communication link between secondary side and primary side of switching power converter
CN103066853B (zh) 2012-12-24 2015-02-04 成都芯源系统有限公司 控制电路、开关电源及其控制方法
JP2014166024A (ja) 2013-02-25 2014-09-08 Rohm Co Ltd 電力供給装置およびその起動方法、acアダプタ、電子機器および電力供給システム
US9136765B2 (en) 2013-03-08 2015-09-15 Power Integrations, Inc. Techniques for controlling a power converter using multiple controllers
US8963622B2 (en) 2013-03-10 2015-02-24 Microchip Technology Incorporated Method and apparatus for generating regulated isolation supply voltage
US8988142B2 (en) 2013-03-10 2015-03-24 Microchip Technology Incorporated Integrated high voltage isolation using low value capacitors
US9318946B2 (en) 2013-04-23 2016-04-19 Virginia Tech Intellectual Properties, Inc. Optimal trajectory control for LLC resonant converter for soft start-up
US9178434B2 (en) 2013-04-30 2015-11-03 Texas Instruments Incorporated Integrated primary startup bias and MOSFET driver
JP6218446B2 (ja) 2013-06-14 2017-10-25 キヤノン株式会社 電源装置及び画像形成装置
JP6218467B2 (ja) 2013-07-12 2017-10-25 キヤノン株式会社 電源装置及び画像形成装置
US9093899B2 (en) 2013-09-30 2015-07-28 Micrel, Inc. Timer based PFM exit control method for a boost regulator
US9350260B2 (en) 2013-11-07 2016-05-24 Futurewei Technologies, Inc. Startup method and system for resonant converters
US9479067B2 (en) 2014-04-01 2016-10-25 Infineon Technologies Austria Ag System and method for a switched-mode power supply
US9543844B2 (en) 2014-04-01 2017-01-10 Infineon Technologies Austria Ag System and method for a switched-mode power supply
TWI556563B (zh) 2014-09-12 2016-11-01 Alpha & Omega Semiconductor Cayman Ltd Fixed on-time switching type switching device
US9680386B2 (en) 2014-09-23 2017-06-13 Analog Devices Global Minimum duty cycle control for active snubber
US9712045B2 (en) 2014-11-17 2017-07-18 Infineon Technologies Austria Ag System and method for a startup cell circuit
US9819274B2 (en) 2014-11-20 2017-11-14 Microchip Technology Incorporated Start-up controller for a power converter
CN104578826B (zh) 2014-12-31 2018-10-19 上海新进半导体制造有限公司 开关电源及在开关电源中提供恒压和恒流控制的方法
CN104660022B (zh) 2015-02-02 2017-06-13 昂宝电子(上海)有限公司 为电源变换器提供过流保护的系统和方法
US9912243B2 (en) 2015-06-01 2018-03-06 Microchip Technology Incorporated Reducing power in a power converter when in a standby mode
US10277130B2 (en) 2015-06-01 2019-04-30 Microchip Technolgoy Incorporated Primary-side start-up method and circuit arrangement for a series-parallel resonant power converter
US9705408B2 (en) 2015-08-21 2017-07-11 Microchip Technology Incorporated Power converter with sleep/wake mode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967332A (en) * 1990-02-26 1990-10-30 General Electric Company HVIC primary side power supply controller including full-bridge/half-bridge driver
CN102783004A (zh) * 2010-01-07 2012-11-14 德州仪器公司 通过操作模式切换进行的llc软启动

Also Published As

Publication number Publication date
EP3304712A1 (en) 2018-04-11
US10277130B2 (en) 2019-04-30
JP2018516530A (ja) 2018-06-21
US20160352231A1 (en) 2016-12-01
WO2016196545A1 (en) 2016-12-08
EP3304712B1 (en) 2021-08-11
CN107660324A (zh) 2018-02-02
TW201707360A (zh) 2017-02-16
KR20180013941A (ko) 2018-02-07

Similar Documents

Publication Publication Date Title
CN107660324B (zh) 用于串联并联谐振功率转换器的初级侧启动方法及电路布置
US20230336089A1 (en) Flyback converter with secondary side regulation
CN107667462B (zh) 降低功率转换器在待机模式中的功率
US10658934B2 (en) Quasi-resonant converter with efficient light-load operation and method therefor
EP3338352B1 (en) Power converter with sleep/wake mode
US20180109197A1 (en) Start-Up Controller For A Power Converter
EP2621069B1 (en) Flyback converter with primary side voltage sensing and overvoltage protection during low load operation
US8031494B2 (en) Method and apparatus for providing an initial bias and enable signal for a power converter
EP2757675A2 (en) Secondary controller for use in synchronous flyback converter
US20140254215A1 (en) Controller for a power converter and method of operating the same
CN106208706A (zh) 电源电路、相关发送电路、集成电路和发送信号的方法
EP1364444B1 (en) Method and apparatus for providing an initial bias and enable signal for a power converter
JP2004336874A (ja) スイッチングレギュレータを備えた装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant