CN107667462B - 降低功率转换器在待机模式中的功率 - Google Patents
降低功率转换器在待机模式中的功率 Download PDFInfo
- Publication number
- CN107667462B CN107667462B CN201680029626.2A CN201680029626A CN107667462B CN 107667462 B CN107667462 B CN 107667462B CN 201680029626 A CN201680029626 A CN 201680029626A CN 107667462 B CN107667462 B CN 107667462B
- Authority
- CN
- China
- Prior art keywords
- signal
- controller
- pulse width
- disable
- power converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33538—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
- H02M3/33546—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0006—Arrangements for supplying an adequate voltage to the control circuit of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
- H02M1/0035—Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33515—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
功率转换器通常具有独特电路用于从容启动且用以产生正确操作电压偏置。通常,此独特电路并入到初级侧“启动”控制器中。此启动控制器还可为所述功率转换器在启动之后的控制的初级构件。然而,通常需要次级侧控制器用于更准确输出电压调节,复制已存在于所述初级侧启动控制器中的电路。在轻负载或无负载条件期间,当所述次级侧控制器发送待机码禁止(停用)命令到所述启动控制器时,门驱动器的接通及断开切换被停止。当功率需要被发送到变压器的次级侧以给次级侧电容器充电时,所述次级侧控制器发送启用码命令到所述启动控制器,其中所述启用码命令经检测以允许所述启动控制器使用所述次级侧控制器以正常方式操作。
Description
相关专利申请案
本申请案主张2015年6月1日申请的共同拥有的第62/169,415号美国临时专利申请案的优先权;且涉及2015年11月19日申请的第14/945,729号美国专利申请案;及2015年8月21日申请的第62/208,123号美国临时专利申请案;所述所有专利申请案特此出于所有目的以引用的方式并入本文中。
技术领域
本发明涉及功率转换器,且特定来说,涉及在轻负载或无负载条件期间降低功率转换器在待机模式中使用的功率。
背景技术
功率转换器(特定来说,模式切换AC/DC功率转换器)通常具有独特电路以降低在轻负载及无负载条件期间使用的功率。具有低功率待机模式的功率转换器可用以在轻负载及无负载条件期间有效地操作功率转换器。在此低功率待机模式期间,次级侧控制器命令功率转换器变压器的初级侧上的启动控制器禁止耦合到变压器初级的功率开关的操作。然而,次级侧控制器必须使用存储于次级侧电容器上的能量来连续地发送控制信号到启动控制器用于禁止功率转换器开关在此低功率待机模式期间的操作。
发明内容
因此,需要降低功率转换器在低功率待机模式中使用的功率。
根据实施例,一种用于降低功率转换器中的待机功率的方法可包括下列步骤:提供初级侧启动控制器及次级侧控制器于功率转换器中;使用所述启动控制器来控制耦合到所述功率转换器中的变压器的功率开关直到来自所述变压器的次级侧电压达到所要值为止,接着通过将脉冲宽度调制(PWM)信号从所述次级侧控制器发送到所述启动控制器而控制所述功率开关;将停用信号从所述次级侧控制器发送到所述启动控制器以禁止所述功率开关的操作且进入待机模式;及将启用信号从所述次级侧控制器发送到所述启动控制器以启用所述功率开关的操作且返回到操作模式。
根据所述方法的另一实施例,发送所述启用及停用信号的所述步骤可包括通过第一隔离电路而发送所述启用及停用信号的步骤,且发送所述PWM信号的所述步骤可包括通过第二隔离电路而发送所述PWM信号的步骤。根据所述方法的另一实施例,发送所述启用信号、所述停用信号及所述PWM信号的所述步骤可包括通过单个隔离电路而发送所述启用信号、所述停用信号及所述PWM信号的步骤。
根据所述方法的另一实施例,所述停用信号可包括第一经编码信号且所述启用信号可包括第二经编码信号。根据所述方法的另一实施例,解码所述第一经编码信号及所述第二经编码信号的步骤可包括在所述初级侧启动控制器中解码所述第一经编码信号及所述第二经编码信号的步骤。根据所述方法的另一实施例,所述启用及停用信号可在比PWM信号频率高的频率处。根据所述方法的另一实施例,所述启用信号及所述停用信号可在所述PWM信号频率的至少十倍的频率处。根据所述方法的另一实施例,所述启用及停用信号可在约500kHz加或减约50kHz的频率处,且所述PWM信号在约20kHz到约65kHz的频率处。
根据所述方法的另一实施例,从所述PWM信号过滤所述较高频率启用及停用信号的步骤可包括使用高通滤波器的步骤。根据所述方法的另一实施例,所述高通滤波器可为数字高通滤波器。根据所述方法的另一实施例,所述高通滤波器可为模拟高通滤波器。
根据另一实施例,一种具有降低待机功率的功率转换器可包括:启动控制器,其耦合到第一DC电压;变压器,其具有初级绕组及次级绕组,其中所述变压器初级绕组可耦合到所述第一DC电压;电流测量电路,其用于测量通过所述变压器的所述初级绕组的电流且提供所述经测量初级绕组电流到所述启动控制器;功率开关,其耦合到所述变压器初级且由所述启动控制器控制;次级侧整流器,其耦合到所述变压器次级绕组用于提供第二DC电压;次级侧控制器,其耦合到所述启动控制器及所述次级侧整流器;其中当所述启动控制器接收所述第一DC电压时,所述启动控制器开始控制所述功率开关接通及断开,借此电流流动通过所述变压器初级,AC电压跨所述变压器次级绕组产生,来自所述次级侧整流器的所述第二DC电压给所述次级侧控制器通电,当所述第二DC电压达到所要电压电平时,通过将脉冲宽度调制(PWM)信号从所述次级侧控制器发送到所述启动控制器,所述次级侧控制器接管所述功率开关的控制,当所述功率开关进入待机模式中时,所述次级侧控制器发送停用信号到所述启动控制器以禁止所述功率开关的操作,及所述次级侧控制器发送启用信号到所述启动控制器以启用所述功率开关的操作且返回到操作模式。
根据另一实施例,可通过第一隔离电路发送所述启用及停用信号,且可通过第二隔离电路发送所述PWM信号。根据另一实施例,可通过单个隔离电路发送所述启用信号、所述停用信号及所述PWM信号。根据另一实施例,所述停用信号可包括第一经编码信号且所述启用信号可包括第二经编码信号,且所述启动控制器可进一步包括用于解码所述第一经编码信号及所述第二经编码信号的解码电路。根据另一实施例,所述启用及停用信号可在比PWM信号频率高的频率处。根据另一实施例,所述启用及停用信号可在所述PWM信号频率的至少十倍的频率处。根据另一实施例,所述启用及停用信号可在约500kHz加或减约50kHz的频率处,且所述PWM信号可在约20kHz到约65kHz的频率处。
根据另一实施例,高通滤波器可用以在可解码所述启用及停用信号之前滤除所述PWM信号。根据另一实施例,所述功率转换器可包括反激式功率转换器。根据另一实施例,所述功率转换器可选自由前向转换器、LLC转换器、半桥转换器、全桥转换器及移相全桥转换器组成的群组中的任一者。
根据另一实施例,所述功率开关可为功率金属氧化物半导体场效晶体管(MOSFET)。根据另一实施例,所述隔离电路可为光学耦合器。根据另一实施例,所述隔离电路可为脉冲变压器。根据另一实施例,所述启动控制器可包括开环电流调节器及功率开关驱动器。
根据另一实施例,所述启动控制器可包括:高压调节器,其具有耦合到所述第一DC电压的输入;过压闭锁电路及欠压闭锁电路,其耦合到所述高压调节器;停机电路,其耦合到所述过压闭锁电路及所述欠压闭锁电路;脉冲宽度调制(PWM)产生器;门驱动器,其用于驱动所述功率开关,其中所述门驱动器可耦合到所述停机电路;PWM信号选择电路,其耦合在所述PWM产生器、所述门驱动器及外部脉冲输入之间;电流保护电路,其耦合到所述PWM产生器;外部命令检测电路,其适于检测所述外部脉冲输入上的PWM信号且使所述门驱动器从所述PWM产生器切换到所述外部脉冲输入;及启用/停用信号检测电路,其耦合到外部启用/停用输入及所述停机电路。
根据另一实施例,所述启动控制器可包括:高压调节器,其具有耦合到所述第一DC电压的输入;过压闭锁电路及欠压闭锁电路,其耦合到所述高压调节器;停机电路,其耦合到所述过压闭锁电路及所述欠压闭锁电路;脉冲宽度调制(PWM)产生器;门驱动器,其用于驱动所述功率开关,其中所述门驱动器可耦合到所述停机电路;PWM信号选择电路,其耦合在所述PWM产生器、所述门驱动器及外部脉冲输入之间;电流保护电路,其耦合到所述PWM产生器;外部命令检测电路,其适于检测所述外部脉冲输入上的PWM信号且使所述门驱动器从所述PWM产生器切换到所述外部脉冲输入;及启用/停用信号检测电路,其耦合到所述外部脉冲输入及所述停机电路。根据另一实施例,所述启动控制器可由第一微控制器提供,且所述次级侧控制器可由第二微控制器提供。
附图说明
通过结合附图参考下列描述可获得本发明的更完全理解,其中:
图1说明根据本发明的教示的功率转换器的示意性框图,所述功率转换器其适于用于降低待机功率汲取;
图2说明根据本发明的特定实例实施例的功率转换器的示意性框图,所述功率转换器其适于用于降低待机功率汲取;
图3说明根据本发明的另一特定实例实施例的功率转换器的示意性框图,所述功率转换器其适于用于降低待机功率汲取。
虽然本发明易于以多种修改及替代形式呈现,但其特定实例实施例已在所述图式中展示且在本文中详细描述。然而,应了解,本文的特定实例实施例的描述并非希望将本发明限制在本文所描述的特别形式。
具体实施方式
电力供应器(特定来说,DC到DC功率转换器及AC到DC功率转换器)通常具有独特电路来使其启动。根据本发明的各种实施例,功率转换器可包括初级侧启动控制器及次级侧控制器,其中所述启动控制器用以当功率(电压)首先被施加到所述功率转换器的初级侧时发送功率到所述次级侧控制器。这提供了用于使用所述初级侧上的常规装置启动DC到DC功率转换器及AC到DC功率转换器的低成本集成电路(IC)解决方案,其不复制次级侧控制器的资源且使所述初级侧上的离散组件最小化。根据本发明的教示,功率转换器的实施方案及操作的更加详细描述提供于2015年11月19日由托马斯·奎格利(Thomas Quigley)申请的的标题为“用于功率转换器的启动控制器(Start-Up Controller for a PowerConverter)”的共同拥有的第14/945,729号美国专利申请案中且出于所有目的以引用的方式并入本文中。
“突发模式”可用以在轻负载及无负载条件期间(例如,当功率转换器在“待机模式”中时)有效地操作功率转换器。根据本文中所揭示的各种实施例,可在定位于功率转换器的初级侧上的启动控制器中提供电路,所述启动控制器经由经由隔离电路来自次级侧控制器的经数字编码命令而锁存功率开关驱动的启用及停用。因此,功率开关驱动停用命令无需从次级侧控制器连续地发送到初级侧启动控制器,借此节约由功率转换器在待机模式中使用的功率。
现在参考图式,示意地说明实例实施例的细节。在所述图式中的相似元件将由相似数字表示,且类似元件将由具有不同小写字体字母下标的相似数字表示。
现参考图1,根据本发明的教示描绘功率转换器的示意性框图,所述功率转换器适于用于降低待机功率汲取。功率转换器(一般由编号100表示)可包括启动控制器106、MOSFET开关110、电流传感器112(例如电阻器);变压器122、偏置电压整流器108、功率整流器124、滤波器电容器126、次级侧控制器118及隔离电路114及116。功率整流器124及滤波器电容器126可耦合到应用负载128。为解释目的而展示反激式功率转换器,但用于切换模式电力供应器中的功率转换器的任何配置是可预期的且在本发明的范围内,例如前向转换器、LLC(两个电感器及一个电容器的组合)转换器、半桥转换器、全桥转换器、移相全桥转换器及类似者可利用且受益于本文中所揭示及主张的内容。
启动控制器106可为使用固定断开(OFF)时间操作的脉冲宽度调制(PWM)源开环峰电流模式控制器且包括高压(HV)调节器150、内部PWM产生器152、过流保护154、外部命令检测156、PWM源选择开关158、过压及欠压闭锁160、停机电路162、MOSFET门驱动器164及电流感测电路166。
当AC线电源102施加到所述初级侧功率整流器及滤波器104时,DC电压V_Link产生。此DC电压V_Link耦合到变压器122的初级绕组及启动控制器106的VIN输入。当电压V_Link达到用于其适当操作的充分电压时,启动控制器106被激活。一旦被激活,启动控制器106即开始对MOSFET门驱动器164施加脉冲(其接通及断开MOSFET开关110),借此允许反激式功率转换器100的变压器122将能量转换到其次级侧及偏置电压绕组。启动控制器106并非是可经由变压器耦合而线性地调节反激式功率转换器100的输出的初级侧功率转换器控制器。其不复制次级侧控制器118的精确参考及电压错误放大器。
启动控制器106基本上具有两个操作模式:在第一模式中,在反激式功率转换器100的启动期间,其执行为开环电流调节器,其驱动MOSFET开关110,直到次级侧控制器118接管驱动MOSFET开关110的PWM信号的控制(命令)为止。在第二模式中,在次级侧控制器118完全操作之后,其即开始通过隔离电路116发送PWM信号命令到启动控制器106。在来自次级侧控制器118(经由隔离电路116)的外部PWM信号命令由启动控制器106接收之后,其内部门驱动器164即可耦合到所述外部PWM信号,借此次级侧控制器118现控制MOSFET开关110。
启动控制器106基于通过MOSFET开关110的峰电流的调节而以开环方式来控制MOSFET开关110的切换。跨与MOSFET开关110及变压器122的初级串联的电阻器112产生电压,其与通过其间的峰电流成比例。此电压耦合到启动控制器106的C/S(电流感测)输入,其感测所述电压且调整MOSFET开关110的接通时间以限制所述峰电流到某一设计值。启动控制器106中的内部高压线性调节器150(其输入是DC电压V_Link)调节可由启动控制器106的内部电路使用的电压VDD。VDD是在启动控制器106的门节点处的峰电压。最初,所述内部线性调节器供应VDD用于启动控制器106的操作,但在从变压器122的初级侧第三绕组通过功率二极管108而提供DC电压之后,此内部线性调节器150停止供应电流到启动控制器106的内部电路。这允许启动控制器106中的内部热消耗降低。
驱动MOSFET开关110接通及断开将致使变压器122通过整流器124而将电容器126充电到电压V_Out。功率转换器100的次级侧控制器118定位于所述次级侧上,且当在滤波器电容器126上存在充分电压V_Out时,次级侧控制器118被激活且通过隔离电路116接管控制门驱动器164(例如光学耦合器、脉冲变压器等)。外部命令检测156感测来自隔离电路116的PWM脉冲且将致使PWM选择开关158从内部PWM产生器152切换到来自次级侧控制器118的PWM脉冲。
变压器122还经由二极管108而提供偏置电压V_Bias。V_Bias可通过变压器耦合而经交叉调节到启动控制器106。变压器122的绕组匝数比是如此使得V_Bias高于启动控制器106的内部线性电压调节器150的输出电压设置点,借此有效地关闭此内部线性电压调节器150并降低其内部热消耗。
当功率转换器100进入低功率待机模式中时,来自次级侧控制器118的PWM脉冲停止。然而,当其发生时,启动控制器106认为其在启动模式中且将迫使开关158使内部PWM产生器152重新连接到门驱动器164。当进入低功率待机模式时这是不期望的。为防止启动控制器106再次被激活以驱动MOSFET开关110,次级侧控制器118可经由耦合到来自次级侧控制器118的数字输出的第二隔离电路114而断言PWMD(PWM停用)输入上的保持或待机信号到启动控制器106。次级侧控制器118保持所述PWM停用信号久到所述低功率待机模式起作用或直到所述滤波器电容器上的电压下降到低于某一值为止且次级侧控制器118需要使启动控制器106再次被激活足够久以重新给滤波器电容器126充电。
然而,通过需要次级侧控制器118积极地维持所述PWMD输入上的PWM停用信号到启动控制器106,功率被消耗且滤波器电容器126将比在低功率待机模式期间所必须放电更快。随着时间过去,次级侧控制器118将必须退出低功率睡眠模式且接着重新启用启动控制器106以刷新滤波器电容器126上的电压电荷,也只有在此之后才可使次级侧控制器118返回到低功率睡眠模式中。因此,需要一种方式来消除次级侧控制器必须维持PWM停用信号到启动控制器106,且借此在低功率睡眠模式中待较长段时间。
现参考图2,根据本发明的特定实例实施例描绘功率转换器的示意性框图,所述功率转换器适于用于降低待机功率汲取。功率转换器(一般由编号200表示)以与上文所描述的功率转换器100大体上相同的方式工作,除在启动控制器206中添加睡眠命令检测电路270及来自次级侧控制器218的不同停机及启用协议外。现在,当次级侧控制器218想要进入低功率睡眠模式中时,其门输出将经保持,使得没有PWM脉冲被发送到启动控制器206且简要经编码停机命令经由隔离电路114而发送到启动控制器206。接着,次级侧控制器218进入无源(无信号产生)低功率睡眠模式中,其从滤波器电容器126汲取最小电流。当次级侧控制器218被唤醒以给滤波器电容器126再次充电或开始再次供应负载电流到应用负载128时,其经由隔离电路114而断言简要经编码启用命令到启动控制器206,睡眠命令检测电路270解码所述启用命令,且接着启动控制器206使用经由隔离电路116来自所述次级侧控制器的PWM脉冲恢复正常操作。通过锁存启动控制器206到待机睡眠模式中,次级侧控制器218不再必须经由隔离电路114而连续地驱动启动控制器206的PWMD输入。因此,次级侧控制器218消耗来自滤波器电容器126的较少能量(低电流汲取)。
现参考图3,根据本发明的另一特定实例实施例描绘功率转换器的示意性框图。功率转换器(一般由编号300表示)以与上文所描述的功率转换器200大体上相同的方式工作,除已消除睡眠命令检测电路270及第二隔离电路114,且所需要集成电路封装引脚计数已从八(8)引脚减少到七(7)引脚,因此留出空余引脚用于其它目的外。
外部命令检测356现用以检测正常操作PWM脉冲及经由隔离电路116而来自次级侧控制器318的停用及启用命令。操作PWM脉冲及停用及启用命令在从次级侧控制器318的门输出到启动控制器306的脉冲输入的信号线上多路复用。为多路复用相同信号线上的所述操作PWM脉冲及所述停用及启用命令,使用不同脉冲频率。例如,可允许PWM脉冲流频率范围可从约20kHz到约65kHz。用于所述停用及启用命令的可允许频率范围可为约500kHz加或减约50kHz。由于所述操作PWM脉冲流或所述停用及启用命令互相排斥(不同时发生),所以外部命令检测356仅需要在其接收的脉冲的频率之间区分,例如,当检测所述启用/停用信号时忽略较低频率PWM脉冲且仅将对高频率停用及启用命令做出反应。针对所述差异,需要采用简单高通滤波器或频率选择性滤波器(模拟或数字(优选地,数字))。
简单模拟高通滤波器可描述为具有两个组件:电容器(从输入到输出)及电阻器(输出到接地)。所述电阻值及所述电容值确定“破坏频率”。所述破坏频率可描述为当输入信号振幅的一半存在于所述输出处时的频率。这也称为“3dB破坏点”。所以,在此申请案中,正常PWM频率比3dB破坏点低的多(滤波器的输出接近零振幅信号)且睡眠命令“突发频率”比3dB破坏点高的多(输出几乎为输入振幅的100%)。振幅中的差允许简单电路容易地区分所述两个信号类型。简单数字滤波器将为一组串联移位寄存器。高频率“突发”可在500kHz处且具有50%工作循环。500kHz具有2μs的周期。例如,500kHz信号的上升边缘将第一电阻器从0状态设置到1状态,且其还触发(例如)2.2μs持续时间的定时器。如果下一上升边缘在定时器的2.2μs持续时间结束之前出现,那么所述序列的第一电阻器及第二电阻器两者被设置为“1”。如存在5个串联移位电阻器。当全部5个在“1”处时,那么所述电路确定已发出有效睡眠命令。如果任何时候,2.2μs持续其整个持续时间而无下一上升边缘,那么所述信号经确定为不在“睡眠”命令且所述检测电路经复位。
现在,当次级侧控制器318想要进入低功率睡眠模式中时,其将经由单个隔离电路116而发出“高频率突发”停用命令到启动控制器306的脉冲输入。外部命令检测356将检测此高频率突发停用命令且将停机电路162保持于待机睡眠条件中,其禁止门驱动器164将MOSFET开关110脉冲化到接通及断开(维持MOSFET开关110断开)。接着,次级侧控制器318进入无源(无PWM驱动信号产生)低功率睡眠模式中,其汲取来自滤波器电容器126的最小电流。
“高频率突发”停用命令的检测在所述停用命令可由外部命令检测356识别之前经历有限数目个循环。因此,外部MOSFET开关110将在“高频率突发”频率处门控,其可致使功率转换器300进入操作的“连续传导模式(CCM)”。电流保护154将保护功率转换器300免受CCM状况,但不防止外部命令检测356花足够时间来识别“高频率突发”停用命令。
次级侧控制器318可“被唤醒”以刷新滤波器电容器126以接着返回到“睡眠”模式。其可经由单个隔离电路116而发送单个脉冲到启动控制器306的脉冲输入,其允许启动控制器306的启动功能起作用。或者,次级侧控制器318可经由单个隔离电路116而发送正常PWM信号到启动控制器306的脉冲输入且控制给自身再充电。无论如何,一旦所述电容器经刷新,次级侧控制器318可发出“高频率突发”以返回到睡眠。次级侧控制器318可“被唤醒”以开始再次供应负载电流到应用负载128。其通过经由单个隔离电路116而使正常PWM命令恢复到启动控制器306的脉冲输入而完成此。如果次级侧控制器318允许“睡眠”发生太长段时间,那么启动控制器306的VDD引脚上的电压将最终衰减低于由OVLP/UVLO电路160设置的UVLO电平,其启用启动控制器306来进入启动模式。次级侧控制器318监测V_Out上的电压的上升以确定启动控制器306已被唤醒且在启动模式中,且接着唤醒自身以重新获得控制(以重新进入睡眠模式或继续正常操作)。以此方式,总是存在策略来退出睡眠模式状态。
本文中所描述及主张的控制方法可与使用于切换模式功率供应器中的功率转换器(例如,反激式功率转换器、前向转换器、LLC转换器、半桥转换器、全桥转换器、移相全桥转换器及类似者)的其它配置一起使用是可预期的且在本发明的范围内。
Claims (25)
1.一种用于降低功率转换器中的待机功率的方法,所述方法包括下列步骤:
在功率转换器中提供初级侧启动控制器及次级侧控制器;
使用所述启动控制器来控制耦合到所述功率转换器中的变压器的功率开关直到来自所述变压器的次级侧电压达到所要值为止,接着通过将脉冲宽度调制PWM信号从所述次级侧控制器发送到所述启动控制器而控制所述功率开关;
将停用信号从所述次级侧控制器发送到所述启动控制器以禁止所述功率开关的接通且进入待机模式;以及
将启用信号从所述次级侧控制器发送到所述启动控制器以启用所述功率开关的操作且返回到操作模式;
其中,当来自所述变压器的所述次级侧电压达到所要值时,来自所述次级侧控制器的所述PWM信号通过开关馈送到所述功率开关以控制所述功率开关,且其中所述停用信号包括第一经编码信号而所述启用信号包括第二经编码信号,且其中使用所述初级侧启动控制器中的解码电路来解码所述第一经编码信号和所述第二经编码信号且其中启用和停用驱动所述功率开关被锁存在所述初级侧启动控制器中。
2.根据权利要求1所述的方法,其中发送所述启用信号及所述停用信号的所述步骤包括通过第一隔离电路而发送所述启用信号及所述停用信号的步骤,且发送所述脉冲宽度调制信号的所述步骤包括通过第二隔离电路而发送所述脉冲宽度调制信号的步骤。
3.根据权利要求1所述的方法,其中发送所述启用信号、所述停用信号及所述PWM信号的所述步骤包括通过单个隔离电路而发送所述启用信号、所述停用信号及所述脉冲宽度调制信号的步骤。
4.根据权利要求1所述的方法,其中所述启用信号及所述停用信号在比所述脉冲宽度调制信号频率高的频率处。
5.根据权利要求1所述的方法,其中所述启用信号及所述停用信号在所述脉冲宽度调制信号频率的至少十倍的频率处。
6.根据权利要求1所述的方法,其中所述启用信号及所述停用信号在约500kHz加或减约50kHz的频率处,且所述脉冲宽度调制信号在从约20kHz到约65kHz的频率处。
7.根据权利要求1所述的方法,其进一步包括使用高通滤波器而从所述脉冲宽度调制信号过滤高频率启用信号及较高频率停用信号的步骤。
8.根据权利要求7所述的方法,其中所述高通滤波器是数字高通滤波器。
9.根据权利要求7所述的方法,其中所述高通滤波器是模拟高通滤波器。
10.一种具有降低待机功率的功率转换器,其包括:
启动控制器,其耦合到第一DC电压;
变压器,其具有初级绕组及次级绕组,其中所述变压器初级绕组耦合到所述第一DC电压;
功率开关,其耦合到所述变压器初级绕组且由所述启动控制器控制,其中在启动期间,所述启动控制器经配置以控制所述功率开关直到来自所述变压器的次级侧电压达到所要值为止;
次级侧整流器,其耦合到所述变压器次级绕组用于提供第二DC电压;
次级侧控制器,其耦合到所述启动控制器及所述次级侧整流器,其中当所述次级侧电压处于所述所要值时,所述次级侧控制器经配置以通过向所述启动控制器发送脉冲宽度调制信号而控制所述功率开关,
其中
当来自所述变压器的所述次级侧电压达到所要值时,开关经控制以将来自所述次级侧控制器的所述脉冲宽度调制信号耦合至所述功率开关以控制所述功率开关;
当进入待机模式中时,所述次级侧控制器进一步经配置以发送停用信号到所述启动控制器以禁止所述功率开关的接通,及
所述次级侧控制器进一步经配置以发送启用信号到所述启动控制器以启用所述功率开关的操作且返回到操作模式,其中所述停用信号包括第一经编码信号而所述启用信号包括第二经编码信号,且其中使用所述初级侧启动控制器中的解码电路来解码所述第一经编码信号和所述第二经编码信号且其中所述初级侧启动控制器经配置以锁存启用和停用驱动所述功率开关。
11.根据权利要求10所述的功率转换器,其进一步包括电流测量电路,所述电流测量电路用于测量通过所述变压器的所述初级绕组的电流且提供经测量的所述初级绕组的电流到所述启动控制器。
12.根据权利要求10所述的功率转换器,其中通过第一隔离电路发送所述启用信号及所述停用信号,且通过第二隔离电路发送所述脉冲宽度调制信号。
13.根据权利要求12所述的功率转换器,其中所述启动控制器包括:
高压调节器,其具有耦合到所述第一DC电压的输入;
过压闭锁电路及欠压闭锁电路,所述过压闭锁电路及所述欠压闭锁电路耦合到所述高压调节器;
停机电路,其耦合到所述过压闭锁电路及所述欠压闭锁电路;
脉冲宽度调制产生器;
门驱动器,其用于驱动所述功率开关,其中所述门驱动器耦合到所述停机电路;
脉冲宽度调制信号选择电路,其耦合在所述脉冲宽度调制信号产生器、所述门驱动器及外部脉冲输入之间;
电流保护电路,其耦合到所述脉冲宽度调制信号产生器;
外部命令检测电路,其与所述第二隔离电路耦合,所述外部命令检测电路适于检测所述外部脉冲输入上的脉冲宽度调制信号且适于将所述门驱动器从所述脉冲宽度调制信号产生器切换到所述外部脉冲输入;及
启用/停用信号检测电路,其耦合到所述第一隔离电路及所述停机电路。
14.根据权利要求10-13中的任一者所述的功率转换器,其中通过单个隔离电路发送所述启用信号、所述停用信号及所述脉冲宽度调制信号。
15.根据权利要求14所述的功率转换器,其中所述启动控制器包括:
高压调节器,其具有耦合到所述第一DC电压的输入;
过压闭锁电路及欠压闭锁电路,所述过压闭锁电路及所述欠压闭锁电路耦合到所述高压调节器;
停机电路,其耦合到所述过压闭锁电路及所述欠压闭锁电路;
脉冲宽度调制产生器;
门驱动器,其用于驱动所述功率开关,其中所述门驱动器耦合到所述停机电路;
脉冲宽度调制信号选择电路,其耦合在所述脉冲宽度调制信号产生器、所述门驱动器及外部脉冲输入之间;
电流保护电路,其耦合到所述脉冲宽度调制信号产生器;
外部命令及启用/停用检测电路,其与所述单个隔离电路耦合且适于检测所述外部脉冲输入上的脉冲宽度调制信号且适于将所述门驱动器从所述脉冲宽度调制信号产生器切换到所述外部脉冲输入且适于检测所述启用信号和所述停用信号。
16.根据权利要求15所述的功率转换器,其中所述启用信号及所述停用信号在比脉冲宽度调制信号频率高的频率处。
17.根据权利要求10-13中的任一者所述的功率转换器,其中所述启用信号及所述停用信号在所述脉冲宽度调制信号频率的至少十倍的频率处。
18.根据权利要求10-13中的任一者所述的功率转换器,其中所述启用信号及所述停用信号在约500kHz加或减约50kHz的频率处,且所述脉冲宽度调制信号在从约20kHz到约65kHz的频率处。
19.根据权利要求10-13中的任一者所述的功率转换器,其进一步包括高通滤波器以在解码所述启用及停用信号之前滤除所述脉冲宽度调制信号。
20.根据权利要求10-13中的任一者所述的功率转换器,其中所述功率转换器包括反激式功率转换器。
21.根据权利要求10-13中的任一者所述的功率转换器,其中所述功率转换器选自由前向转换器、LLC转换器、半桥转换器、全桥转换器及移相全桥转换器组成的群组中的任一者。
22.根据权利要求10所述的功率转换器,其中所述功率开关是功率金属氧化物半导体场效晶体管MOSFET。
23.根据权利要求12和13中的任一者所述的功率转换器,其中所述第一隔离电路是光学耦合器或脉冲变压器。
24.根据权利要求12和13中的任一者所述的功率转换器,其中所述第二隔离电路是脉冲变压器或光学耦合器。
25.根据权利要求10-13中的任一者所述的功率转换器,其中所述启动控制器包括开环电流调节器及功率开关驱动器。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562169415P | 2015-06-01 | 2015-06-01 | |
US62/169,415 | 2015-06-01 | ||
US15/168,390 | 2016-05-31 | ||
US15/168,390 US9912243B2 (en) | 2015-06-01 | 2016-05-31 | Reducing power in a power converter when in a standby mode |
PCT/US2016/035139 WO2016196537A1 (en) | 2015-06-01 | 2016-06-01 | Reducing power in a power converter when in a standby mode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107667462A CN107667462A (zh) | 2018-02-06 |
CN107667462B true CN107667462B (zh) | 2020-09-29 |
Family
ID=57399237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680029626.2A Active CN107667462B (zh) | 2015-06-01 | 2016-06-01 | 降低功率转换器在待机模式中的功率 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9912243B2 (zh) |
EP (1) | EP3304720B1 (zh) |
JP (1) | JP2018516525A (zh) |
KR (1) | KR20180013897A (zh) |
CN (1) | CN107667462B (zh) |
TW (1) | TW201707364A (zh) |
WO (1) | WO2016196537A1 (zh) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9819274B2 (en) * | 2014-11-20 | 2017-11-14 | Microchip Technology Incorporated | Start-up controller for a power converter |
US10277130B2 (en) | 2015-06-01 | 2019-04-30 | Microchip Technolgoy Incorporated | Primary-side start-up method and circuit arrangement for a series-parallel resonant power converter |
US9912243B2 (en) | 2015-06-01 | 2018-03-06 | Microchip Technology Incorporated | Reducing power in a power converter when in a standby mode |
US9705408B2 (en) | 2015-08-21 | 2017-07-11 | Microchip Technology Incorporated | Power converter with sleep/wake mode |
US10886833B2 (en) * | 2016-05-24 | 2021-01-05 | Fairchild Semiconductor Corporation | Inductor current emulation for output current monitoring |
US10903746B2 (en) * | 2016-08-05 | 2021-01-26 | Texas Instruments Incorporated | Load dependent in-rush current control with fault detection across Iso-barrier |
US10090769B2 (en) | 2016-11-29 | 2018-10-02 | Texas Instruments Incorporated | Isolated high frequency DC/DC switching regulator |
US10153702B2 (en) * | 2017-02-07 | 2018-12-11 | Infineon Technologies Austria Ag | Switched-mode power supply controller using a single pin for both input voltage sensing and control of power supply charging |
US10761111B2 (en) | 2017-05-25 | 2020-09-01 | Texas Instruments Incorporated | System and method for control of automated test equipment contactor |
US10291137B2 (en) * | 2017-07-22 | 2019-05-14 | Richtek Technology Corporation | Flyback power converter circuit and high voltage start-up circuit thereof |
US10326371B2 (en) | 2017-08-23 | 2019-06-18 | Semiconductor Components Industries, Llc | Providing adaptive output power |
US10193457B1 (en) * | 2017-09-15 | 2019-01-29 | Abb Schweiz Ag | System and method for starting up a high density isolated DC-to-DC power converter |
US10320301B2 (en) | 2017-09-15 | 2019-06-11 | Semiconductor Components Industries, Llc | Power converter responsive to device connection status |
US10601332B2 (en) | 2017-09-19 | 2020-03-24 | Texas Instruments Incorporated | Isolated DC-DC converter |
US10432102B2 (en) | 2017-09-22 | 2019-10-01 | Texas Instruments Incorporated | Isolated phase shifted DC to DC converter with secondary side regulation and sense coil to reconstruct primary phase |
US11652315B2 (en) | 2018-04-17 | 2023-05-16 | Aptiv Technologies Limited | Electrical power supply device |
US10752189B2 (en) * | 2018-04-17 | 2020-08-25 | Aptiv Technologies Limited | Electrical power supply device and method of operating same |
US11397455B2 (en) * | 2018-09-10 | 2022-07-26 | Microsoft Technology Licensing, Llc | Managing DC power |
CN110943622B (zh) * | 2018-09-21 | 2021-02-26 | 立锜科技股份有限公司 | 电源控制电路与脉冲信号侦测电路及脉冲信号侦测方法 |
CN110601505A (zh) * | 2018-09-26 | 2019-12-20 | 北京迪赛奇正科技有限公司 | 一种不需要辅助电源的供电电路 |
KR20210084553A (ko) * | 2018-11-28 | 2021-07-07 | 실라나 아시아 피티이 리미티드 | 디지털 보상 전류 감지 보호 |
US10931203B2 (en) * | 2018-12-13 | 2021-02-23 | Power Integrations, Inc. | Synchronizing multiple controllers in a power converter |
US11281272B2 (en) | 2019-03-09 | 2022-03-22 | Diodes Incorporated | Reducing standby power in a switch mode power supply |
US11159088B2 (en) * | 2019-06-19 | 2021-10-26 | Appulse Power Inc. | Dual path and mode start-up circuit |
JP7251351B2 (ja) * | 2019-06-24 | 2023-04-04 | 富士電機株式会社 | ゲート駆動装置及び電力変換装置 |
US10951107B2 (en) * | 2019-06-27 | 2021-03-16 | Cypress Semiconductor Corporation | Communicating fault indications between primary and secondary controllers in a secondary-controlled flyback converter |
TWI721701B (zh) * | 2019-12-10 | 2021-03-11 | 產晶積體電路股份有限公司 | 動態多功能電源控制器 |
US11658571B2 (en) | 2020-04-01 | 2023-05-23 | Analog Devices International Unlimited Company | Low power regulator circuit |
DE102020110984A1 (de) * | 2020-04-22 | 2021-10-28 | Infineon Technologies Ag | Bus-transceiver |
US11588408B2 (en) * | 2020-05-06 | 2023-02-21 | Stmicroelectronics S.R.L. | Power supply circuit, corresponding device and method |
US11711023B2 (en) * | 2021-05-14 | 2023-07-25 | Queen's University At Kingston | Methods and circuits for sensing isolated power converter output voltage across the isolation barrier |
US11689108B2 (en) * | 2021-11-03 | 2023-06-27 | O2Micro Inc. | Controller for controlling a resonant converter |
TWI796201B (zh) * | 2021-12-08 | 2023-03-11 | 通嘉科技股份有限公司 | 電源轉換器轉換操作模式的方法 |
KR102535773B1 (ko) * | 2021-12-28 | 2023-05-26 | 주식회사 그린퍼즐 | 플라이백 컨버터와 이를 포함하는 전력 시스템 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104038066A (zh) * | 2013-03-08 | 2014-09-10 | 电力集成公司 | 用于使用多个控制器控制功率转换器的技术 |
CN104135144A (zh) * | 2013-04-30 | 2014-11-05 | 德克萨斯仪器股份有限公司 | 集成初级启动偏置和mosfet驱动器 |
Family Cites Families (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4967332A (en) | 1990-02-26 | 1990-10-30 | General Electric Company | HVIC primary side power supply controller including full-bridge/half-bridge driver |
WO1994022208A1 (en) | 1993-03-17 | 1994-09-29 | National Semiconductor Corporation | Frequency shift circuit for switching regulator |
US5453921A (en) | 1993-03-31 | 1995-09-26 | Thomson Consumer Electronics, Inc. | Feedback limited duty cycle switched mode power supply |
US5757627A (en) * | 1996-05-01 | 1998-05-26 | Compaq Computer Corporation | Isolated power conversion with master controller in secondary |
JP4355058B2 (ja) | 1999-07-27 | 2009-10-28 | 日本信号株式会社 | 電源装置 |
US6456511B1 (en) | 2000-02-17 | 2002-09-24 | Tyco Electronics Corporation | Start-up circuit for flyback converter having secondary pulse width modulation |
KR100438695B1 (ko) | 2001-03-09 | 2004-07-05 | 삼성전자주식회사 | 전원 공급 제어 장치 및 방법 |
US6504267B1 (en) | 2001-12-14 | 2003-01-07 | Koninklijke Philips Electronics N.V. | Flyback power converter with secondary-side control and primary-side soft switching |
CN100561838C (zh) | 2004-12-21 | 2009-11-18 | 罗姆股份有限公司 | 开关调节器 |
US7616459B2 (en) | 2005-12-07 | 2009-11-10 | Active-Semi, Inc. | System and method for a primary feedback switched mode power supply |
US7480159B2 (en) | 2007-04-19 | 2009-01-20 | Leadtrend Technology Corp. | Switching-mode power converter and pulse-width-modulation control circuit with primary-side feedback control |
US7800037B2 (en) | 2007-04-30 | 2010-09-21 | Carl Keith Sawtell | Power supply control circuit with optical feedback |
JP5167705B2 (ja) | 2007-07-02 | 2013-03-21 | 富士電機株式会社 | スイッチング電源装置 |
JP2011514098A (ja) | 2008-03-03 | 2011-04-28 | トムソン ライセンシング | 電源の出力電圧を初期化する切り替え可能な負荷 |
US8008960B2 (en) | 2008-04-22 | 2011-08-30 | Cisco Technology, Inc. | Synchronous rectifier post regulator |
US7995359B2 (en) | 2009-02-05 | 2011-08-09 | Power Integrations, Inc. | Method and apparatus for implementing an unregulated dormant mode with an event counter in a power converter |
US8385088B2 (en) | 2010-12-06 | 2013-02-26 | Power Integrations, Inc. | Method and apparatus for implementing an unregulated dormant mode with output reset in a power converter |
US7952895B2 (en) | 2008-05-29 | 2011-05-31 | Power Integrations, Inc. | Method and apparatus for implementing an unregulated dormant mode in a power converter |
US8089783B2 (en) | 2008-05-30 | 2012-01-03 | Active-Semi, Inc. | Constant current and voltage controller in a three-pin package with dual-use switch pin |
US9077248B2 (en) | 2009-06-17 | 2015-07-07 | Power Systems Technologies Ltd | Start-up circuit for a power adapter |
WO2011002600A1 (en) * | 2009-06-30 | 2011-01-06 | Microsemi Corporation | Integrated backlight control system |
CN201438266U (zh) | 2009-07-22 | 2010-04-14 | Bcd半导体制造有限公司 | 一种脉冲调制控制器 |
US8310847B2 (en) | 2009-08-04 | 2012-11-13 | Niko Semiconductor Co., Ltd. | Secondary side post regulator of flyback power converter with multiple outputs |
US8368361B2 (en) | 2009-09-30 | 2013-02-05 | Cirrus Logic, Inc. | Switching power converter controller with direct current transformer sensing |
US8416584B2 (en) * | 2009-10-30 | 2013-04-09 | Intersil Americas Inc. | Power supply with low power consumption hiccup standby operation |
US8018740B2 (en) | 2010-01-07 | 2011-09-13 | Texas Instruments Incorporated | LLC soft start by operation mode switching |
JP5170165B2 (ja) | 2010-06-11 | 2013-03-27 | 株式会社村田製作所 | 絶縁型スイッチング電源装置 |
US9948175B2 (en) | 2010-10-25 | 2018-04-17 | Analog Devices, Inc. | Soft-start control system and method for an isolated DC-DC converter with secondary controller |
US8659263B2 (en) | 2010-12-03 | 2014-02-25 | Motorola Solutions, Inc. | Power supply circuit having low idle power dissipation |
TWI440288B (zh) | 2011-03-11 | 2014-06-01 | Neoenergy Microelectronics Inc | 具有加速啓動功能之啓動控制電路及其操作方法 |
US8792257B2 (en) | 2011-03-25 | 2014-07-29 | Power Systems Technologies, Ltd. | Power converter with reduced power dissipation |
US20130016535A1 (en) | 2011-07-12 | 2013-01-17 | Power Systems Technologies, Ltd. | Controller for a Power Converter and Method of Operating the Same |
US20140254215A1 (en) | 2011-08-29 | 2014-09-11 | Power Systems Technologies Ltd. | Controller for a power converter and method of operating the same |
US9484832B2 (en) | 2011-12-14 | 2016-11-01 | Koninklijke Philips N.V. | Isolation of secondary transformer winding current during auxiliary power supply generation |
US8531229B2 (en) * | 2012-01-31 | 2013-09-10 | Macronix International Co., Ltd. | Level shifting circuit |
US9143043B2 (en) | 2012-03-01 | 2015-09-22 | Infineon Technologies Ag | Multi-mode operation and control of a resonant converter |
JP6008521B2 (ja) | 2012-03-09 | 2016-10-19 | キヤノン株式会社 | 電源装置及び画像形成装置 |
CN102655373B (zh) | 2012-05-08 | 2015-06-03 | 成都芯源系统有限公司 | 一种隔离式电压转换电路及其控制方法 |
US9520794B2 (en) | 2012-07-25 | 2016-12-13 | Philips Lighting Holding B.V | Acceleration of output energy provision for a load during start-up of a switching power converter |
TWI463780B (zh) | 2012-11-16 | 2014-12-01 | Noveltek Semiconductor Corp | 隔離式電源轉換器、反相式並聯穩壓器及其操作方法 |
US8854842B2 (en) | 2012-12-11 | 2014-10-07 | Dialog Semiconductor Inc. | Digital communication link between secondary side and primary side of switching power converter |
CN103066853B (zh) | 2012-12-24 | 2015-02-04 | 成都芯源系统有限公司 | 控制电路、开关电源及其控制方法 |
US9236806B2 (en) * | 2013-01-15 | 2016-01-12 | System General Corp. | Method and apparatus for controlling programmable power converter with low standby power loss |
US9318946B2 (en) | 2013-04-23 | 2016-04-19 | Virginia Tech Intellectual Properties, Inc. | Optimal trajectory control for LLC resonant converter for soft start-up |
JP6218446B2 (ja) | 2013-06-14 | 2017-10-25 | キヤノン株式会社 | 電源装置及び画像形成装置 |
JP6218467B2 (ja) | 2013-07-12 | 2017-10-25 | キヤノン株式会社 | 電源装置及び画像形成装置 |
US9350260B2 (en) | 2013-11-07 | 2016-05-24 | Futurewei Technologies, Inc. | Startup method and system for resonant converters |
US9543844B2 (en) | 2014-04-01 | 2017-01-10 | Infineon Technologies Austria Ag | System and method for a switched-mode power supply |
US9479067B2 (en) | 2014-04-01 | 2016-10-25 | Infineon Technologies Austria Ag | System and method for a switched-mode power supply |
TWI556563B (zh) | 2014-09-12 | 2016-11-01 | Alpha & Omega Semiconductor Cayman Ltd | Fixed on-time switching type switching device |
US9680386B2 (en) | 2014-09-23 | 2017-06-13 | Analog Devices Global | Minimum duty cycle control for active snubber |
US9712045B2 (en) | 2014-11-17 | 2017-07-18 | Infineon Technologies Austria Ag | System and method for a startup cell circuit |
US9819274B2 (en) | 2014-11-20 | 2017-11-14 | Microchip Technology Incorporated | Start-up controller for a power converter |
CN104578826B (zh) | 2014-12-31 | 2018-10-19 | 上海新进半导体制造有限公司 | 开关电源及在开关电源中提供恒压和恒流控制的方法 |
US9912243B2 (en) | 2015-06-01 | 2018-03-06 | Microchip Technology Incorporated | Reducing power in a power converter when in a standby mode |
US10277130B2 (en) | 2015-06-01 | 2019-04-30 | Microchip Technolgoy Incorporated | Primary-side start-up method and circuit arrangement for a series-parallel resonant power converter |
US9705408B2 (en) | 2015-08-21 | 2017-07-11 | Microchip Technology Incorporated | Power converter with sleep/wake mode |
-
2016
- 2016-05-31 US US15/168,390 patent/US9912243B2/en active Active
- 2016-06-01 TW TW105117242A patent/TW201707364A/zh unknown
- 2016-06-01 KR KR1020177033646A patent/KR20180013897A/ko unknown
- 2016-06-01 JP JP2017561654A patent/JP2018516525A/ja active Pending
- 2016-06-01 WO PCT/US2016/035139 patent/WO2016196537A1/en active Application Filing
- 2016-06-01 CN CN201680029626.2A patent/CN107667462B/zh active Active
- 2016-06-01 EP EP16729715.9A patent/EP3304720B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104038066A (zh) * | 2013-03-08 | 2014-09-10 | 电力集成公司 | 用于使用多个控制器控制功率转换器的技术 |
CN104135144A (zh) * | 2013-04-30 | 2014-11-05 | 德克萨斯仪器股份有限公司 | 集成初级启动偏置和mosfet驱动器 |
Also Published As
Publication number | Publication date |
---|---|
EP3304720B1 (en) | 2019-08-07 |
TW201707364A (zh) | 2017-02-16 |
JP2018516525A (ja) | 2018-06-21 |
CN107667462A (zh) | 2018-02-06 |
KR20180013897A (ko) | 2018-02-07 |
US9912243B2 (en) | 2018-03-06 |
WO2016196537A1 (en) | 2016-12-08 |
US20160352237A1 (en) | 2016-12-01 |
EP3304720A1 (en) | 2018-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107667462B (zh) | 降低功率转换器在待机模式中的功率 | |
US10277130B2 (en) | Primary-side start-up method and circuit arrangement for a series-parallel resonant power converter | |
CN107969162B (zh) | 具有休眠/唤醒模式的功率转换器 | |
US9960686B2 (en) | System and method for detecting a loss of AC power in a switched-mode power supply | |
CN109962631B (zh) | 具可调控降频曲线的返驰式转换器 | |
TWI331434B (zh) | ||
US7492619B2 (en) | System and method for providing control for switch-mode power supply | |
JP3607823B2 (ja) | スイッチング電源装置 | |
US20150280576A1 (en) | System and Method for a Switched Mode Power Supply | |
US20140254215A1 (en) | Controller for a power converter and method of operating the same | |
US8194427B2 (en) | Switching power supply device | |
EP2175550B1 (en) | Ultra-low-power power conversion controller and associated method | |
US20160043647A1 (en) | Power-supply circuit, related transmission circuit, integrated circuit, and method of transmitting a signal | |
CN103227568A (zh) | 反激转换器及用于操作所述反激转换器的方法 | |
US20090244931A1 (en) | Method and apparatus for providing an initial bias and enable signal for a power converter | |
CN103312176A (zh) | 具有用于轻负载操作的休眠模式的隔离式回扫转换器 | |
EP1364444B1 (en) | Method and apparatus for providing an initial bias and enable signal for a power converter | |
JP5020479B2 (ja) | 電源装置 | |
KR101035017B1 (ko) | Led용 엘엘씨 하프브릿지 파워 컨버터 | |
JP2011083110A (ja) | スイッチング電源装置およびそれを備えた電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |