CN107649110B - 形成具有铂原子的原子层的催化剂的方法 - Google Patents

形成具有铂原子的原子层的催化剂的方法 Download PDF

Info

Publication number
CN107649110B
CN107649110B CN201710991030.7A CN201710991030A CN107649110B CN 107649110 B CN107649110 B CN 107649110B CN 201710991030 A CN201710991030 A CN 201710991030A CN 107649110 B CN107649110 B CN 107649110B
Authority
CN
China
Prior art keywords
platinum
atoms
atomic layer
metal
coordination compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710991030.7A
Other languages
English (en)
Other versions
CN107649110A (zh
Inventor
M.邵
K.凯恩科
M.P.亨伯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Toyota Motor Corp
Original Assignee
Audi AG
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG, Toyota Motor Corp filed Critical Audi AG
Priority to CN201710991030.7A priority Critical patent/CN107649110B/zh
Publication of CN107649110A publication Critical patent/CN107649110A/zh
Application granted granted Critical
Publication of CN107649110B publication Critical patent/CN107649110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)

Abstract

形成催化剂材料的方法,其包括阻碍置换反应的反应速率和控制铂簇的形成,其中用铂原子置换金属原子的原子层,以产生包含铂原子的原子层的催化剂材料。

Description

形成具有铂原子的原子层的催化剂的方法
本申请是申请号为201180068250.3(PCT/US2011/025693)、申请日为2011年2月22日、发明名称为“形成具有铂原子的原子层的催化剂的方法”的中国专利申请的分案申请。
技术领域
本发明涉及产生具有更均匀的铂原子的原子层的催化剂材料的方法。
背景技术
在电化学反应(例如在燃料电池内产生电流的电化学反应)中,铂是已知的,并用作催化剂材料。可将铂沉积在承载在碳颗粒上的贵金属的金属核上。为了增大铂的物质活性(mass activity),以贵金属核上的薄层形式来提供铂。
用于制备此类催化材料的一种常规制造方法涉及首先将具有比铂低的还原电势的金属原子薄层沉积到贵金属核颗粒上。一些制造者使用欠电势(underpotential)沉积方法来沉积作为较低还原电势金属的铜原子。然后将核颗粒与含有铂盐的溶液混合。溶液中的铂原子自发地置换贵金属核上的铜原子,以产生在贵金属核上的铂原子薄层。
发明内容
公开的是形成催化剂材料的方法,其包括阻碍置换反应的反应速率,其中用铂原子置换金属原子的原子层,以产生包含铂原子的原子层的催化剂材料。
另一方面,形成催化剂材料的方法包括在表面活性剂的存在下,用铂原子置换金属原子的原子层,以产生包含铂原子的原子层的催化剂材料。
还公开的是形成催化剂材料的方法,其包括以下步骤:提供包含被金属原子的原子层覆盖的金属核的颗粒,提供包含表面活性剂和铂盐的溶液,和用所述溶液处理所述颗粒,以用来自该溶液的铂原子置换所述金属原子,并产生包含被铂原子的原子层覆盖的金属核的催化剂材料。
附图说明
从下列详述,对于本领域技术人员来说,所公开的实例的各种特征和优点将变得明显。可将该详述所随附的图简单描述如下。
图1图解了示例性催化剂材料。
图2图解了通过欠电势沉积来沉积金属的原子层的实例。
图3图解了使用表面活性剂来阻碍反应速率的置换反应的实例。
具体实施方式
图1示意性地图解了示例性催化剂材料20的所选部分,所述催化剂材料20具有高度活性,并可用于燃料电池或其它催化环境中。在该实例中,催化剂材料20包含碳载体(carbonsupport)22和附着于该碳载体的表面上的金属核24。金属核24被壳26覆盖。壳26是铂原子的原子层。金属核24可以是贵金属或金属(例如铂、金或其它贵金属)的混合物。
在实施方式中,壳26是原子单层(即,一个原子厚度)。然而,虽然壳26通常具有均匀厚度,但是应理解,壳26的一些部分可以是较薄的(亚单层(submonolayer))或较厚的(数个原子厚度)。
如将进一步详述的,用于在金属核24上形成壳26的方法产生了铂原子的原子层的更均匀厚度,从而增强了铂的物质活性。
用于形成壳26的方法涉及置换反应,其中铂原子置换金属核24上较低还原电势的金属原子。在一些实例中,较低还原电势的金属原子是铜。使用欠电势沉积方法(UPD)可将铜沉积在金属核24上。UPD是用于沉积原子层厚度的铜原子的临时性壳28的技术。然后用包含铂的溶液来处理金属核24和铜的临时性壳28。
在常规方法中,溶液中的铂原子自发地置换较低还原电势的铜原子,以产生铂原子的原子层。自发置换的反应速率快,导致铂原子壳的厚度的变化。换言之,铂原子并不基于一对一的方式(on a one-for-one basis)来置换铜原子。反而铂原子倾向于成簇(cluster)或留下金属核的一些部分(portions)未被覆盖。
本文公开的方法涉及阻碍置换反应的反应速率和控制或减少铂原子在现有的铂上的沉积,以提供铂原子壳26对金属核24更均匀的覆盖。在一个实例中,在表面活性剂的存在下进行本公开方法的置换反应,所述表面活性剂例如是柠檬酸和/或乙二胺四乙酸(EDTA),其阻碍或减慢反应速率以实现用铂原子受控制地置换铜原子。表面活性剂与铂盐形成配位化合物。换言之,铂盐更难以还原,从而减慢置换反应的反应速率。在减慢的反应速率下,铂原子较不倾向于成簇或在金属核24的表面上留下敞开的部分(open portions)。从而所得的壳26具有更均匀的厚度和相应的较高的物质活性。表面活性剂也可阻碍铂原子在现有的铂原子上的沉积。表面活性剂通过吸附在现有的铂原子上来与新还原的铂原子竞争,以致铂原子只能沉积在金属核24上。从而减少铂簇的形成。
图2示意性地描述了示例性的UPD方法。最初,在图的左侧,反应之前在碳载体(未示出)上提供一个或更多个金属核24。然后在UPD方法中处理金属核24,以将临时性的铜原子壳28沉积在金属核24上。所得的铜原子薄层可具有从亚原子厚度到数个原子厚度变化的原子厚度。在实施方式中,临时性壳28基本上是原子单层。
如图3中所图解的,然后在置换反应中将临时性壳28的铜原子置换,以在金属核24上产生铂原子壳26。在这个实例中,在表面活性剂的存在下进行置换反应,以减慢反应速率和控制或减少铂原子在现有的铂原子上的沉积,从而如上所述产生均匀的铂原子的原子层。
在实施方式中,在溶液中提供表面活性剂,金属核24混合在所述溶液中。例如,所述溶液可包含稀酸、表面活性剂、和铂盐以提供铂原子。所述稀酸可以是硫酸。所述表面活性剂可选自柠檬酸、乙二胺四乙酸(EDTA)、一氧化碳或其混合物。所述表面活性剂通过形成配位化合物来阻碍置换反应,或通过吸附在现有的铂原子上来减少铂簇的形成。以下是所公开的方法的另外实例。
实施例 1
铂单层催化剂的制备
将Pd/C粉末直接松散地置于石墨片或铸件(cast)上,并压在基材上。
任选地,通过以下方式来清洁Pd/C:(a) 将Pd/C粉末的溶液与稀硫酸混合,并建立该溶液的电势,其在氢气释放(evolution)区(例如,相对RHE -50mV),(b)对Pd/C粉末进行电势循环(potential cycling)(例如,用10mV/s的扫描速率以0.5-1.1V进行许多循环)或(c)用氢气吹扫Pd/C粉末30分钟。
将Pd/C粉末的电势保持在铜UPD电势,所述铜UPD电势是在Cu2+(0.2 M CuSO4)和稀酸(0.5 M H2SO4)的溶液中经一定时间(例如2小时)预先确定的。或者,将该溶液电势循环,以确定铜UPD电势。任选地,循环之后,将溶液保持在那个电势下大约30分钟。
制备铂盐(例如K2PtCl4)在稀酸(例如0.05 M H2SO4)中的溶液。铂盐的量大约是用来替换Pd/C粉末上的所有铜原子的计算量的1.1至3倍。然后以3.5 mM或更高的浓度将柠檬酸加入到溶液中。
然后将铂盐溶液与含有Pd/C粉末的溶液混合,以产生催化剂。所述混合可包括使用滴管或移液管将含有Pd/C粉末的溶液加入到铂盐溶液中。可超声振荡该溶液,以分散Pd/C粉末。
然后将催化剂从溶液中过滤出来并用热水洗。可通过用氢气吹扫或用稀酸清洗来进一步清洁该催化剂。
实施例1中生产的催化剂显示相对高的物质活性。由实施例1生产的催化剂显示0.6 A/mg的铂物质活性。相比之下,没有表面活性剂的条件下生产的催化剂显示0.36 A/mg的铂物质活性。
虽然在在图解的实例中显示了各特征的组合,但并不需要所有特征组合来实现本公开内容的各种实施方式的益处。换言之,根据本公开内容的实施方式设计的系统不必需包含任一附图中显示的所有特征或在附图中示意性地显示的所有部分。另外,一个示例性实施方式的选择特征可与其它示例性实施方式的选择特征组合。
前文的描述在性质上是示例性的而非限制性的。对公开的实例的变更和改变对于本领域技术人员可变得显然,而不必需背离本公开内容的本质。给予本公开内容的法律保护范围只能通过研究随附权利要求书来确定。

Claims (10)

1.形成催化剂材料的方法,所述方法包括:
阻碍置换反应的反应速率以控制铂簇的形成,其中用铂原子置换金属原子的原子层,以产生包含铂原子的原子层的催化剂材料,其中所述阻碍包括:
A)在铂配位性化合物的存在下进行置换反应;和
B)在置换反应期间用铂配位性化合物和i)铂盐;或ii)铂原子的原子层形成配位化合物,从而阻碍用铂原子置换金属原子,
其中所述金属原子包括铜,和
其中所述金属原子的原子层在贵金属核上。
2.根据权利要求1所述的方法,其中所述铂配位性化合物是柠檬酸。
3.根据权利要求1所述的方法,其中所述铂配位性化合物是乙二胺四乙酸(EDTA)。
4.形成催化剂材料的方法,所述方法包括:
在铂配位性化合物的存在下用铂原子置换金属原子的原子层,以产生包含铂原子的原子层的催化剂材料,所述方法进一步包括在金属原子的原子层的置换期间,用所述铂配位性化合物和i)铂盐;或ii)铂原子的原子层形成配位化合物,
其中所述金属原子包括铜,和
其中所述金属原子的原子层在贵金属核上。
5.根据权利要求4所述的方法,其中所述铂配位性化合物选自柠檬酸、EDTA及其混合物。
6.根据权利要求4所述的方法,其中所述铂配位性化合物与酸和所述铂盐在溶液中。
7.形成催化剂材料的方法,所述方法包括:
提供包含金属核的颗粒,所述金属核被金属原子的原子层覆盖;
提供包含铂配位性化合物和铂盐的溶液;和
用所述溶液处理所述颗粒,从而用铂原子置换所述金属原子,并产生包含被所述铂原子的原子层覆盖的金属核的催化剂材料;和
通过在金属原子的置换期间用所述铂配位性化合物和i)铂盐;或ii)铂原子的原子层形成配位化合物来阻碍用铂原子置换金属原子,
其中所述金属原子包括铜,和
其中所述金属核是贵金属核。
8.根据权利要求7所述的方法,其进一步包括使用欠电势沉积(UPD)将所述金属原子的原子层沉积到所述金属核上。
9.根据权利要求7所述的方法,其中所述铂配位性化合物选自柠檬酸、EDTA及其混合物。
10.根据权利要求7所述的方法,其中用所述溶液处理所述颗粒包括将所述颗粒与所述溶液混合。
CN201710991030.7A 2011-02-22 2011-02-22 形成具有铂原子的原子层的催化剂的方法 Active CN107649110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710991030.7A CN107649110B (zh) 2011-02-22 2011-02-22 形成具有铂原子的原子层的催化剂的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710991030.7A CN107649110B (zh) 2011-02-22 2011-02-22 形成具有铂原子的原子层的催化剂的方法
PCT/US2011/025693 WO2012115624A1 (en) 2011-02-22 2011-02-22 Method of forming a catalyst with an atomic layer of platinum atoms
CN2011800682503A CN103402631A (zh) 2011-02-22 2011-02-22 形成具有铂原子的原子层的催化剂的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2011800682503A Division CN103402631A (zh) 2011-02-22 2011-02-22 形成具有铂原子的原子层的催化剂的方法

Publications (2)

Publication Number Publication Date
CN107649110A CN107649110A (zh) 2018-02-02
CN107649110B true CN107649110B (zh) 2021-02-02

Family

ID=46721145

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2011800682503A Pending CN103402631A (zh) 2011-02-22 2011-02-22 形成具有铂原子的原子层的催化剂的方法
CN201710991030.7A Active CN107649110B (zh) 2011-02-22 2011-02-22 形成具有铂原子的原子层的催化剂的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2011800682503A Pending CN103402631A (zh) 2011-02-22 2011-02-22 形成具有铂原子的原子层的催化剂的方法

Country Status (6)

Country Link
US (1) US9610566B2 (zh)
EP (1) EP2678105B1 (zh)
JP (1) JP5776102B2 (zh)
KR (1) KR101568070B1 (zh)
CN (2) CN103402631A (zh)
WO (1) WO2012115624A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9610566B2 (en) 2011-02-22 2017-04-04 Toyota Jidosha Kabushiki Kaisha Method of forming a catalyst with an atomic layer of platinum atoms
WO2014073114A1 (en) * 2012-11-07 2014-05-15 Toyota Jidosha Kabushiki Kaisha Method for producing a catalyst for fuel cells
WO2014109729A1 (en) 2013-01-08 2014-07-17 United Technologies Corporation Fuel cell catalyst treatment
JP6056963B2 (ja) 2013-04-18 2017-01-11 トヨタ自動車株式会社 燃料電池用触媒及びその製造方法
WO2014184850A1 (ja) * 2013-05-13 2014-11-20 トヨタ自動車株式会社 触媒微粒子の製造方法、及び当該製造方法により製造される触媒微粒子を含む燃料電池
EP3022788B1 (en) 2013-07-19 2019-07-03 Audi AG Method and system for core-shell catalyst processing
JP2015077580A (ja) * 2013-10-18 2015-04-23 トヨタ自動車株式会社 カーボン担持触媒
JP6075305B2 (ja) * 2014-02-14 2017-02-08 トヨタ自動車株式会社 コアシェル触媒粒子の製造方法
JP6020508B2 (ja) * 2014-04-18 2016-11-02 トヨタ自動車株式会社 触媒微粒子及びカーボン担持触媒の各製造方法
JP6403046B2 (ja) * 2014-05-07 2018-10-10 学校法人同志社 燃料電池用触媒の製造方法、それを用いた触媒及び燃料電池
JP6168009B2 (ja) * 2014-07-31 2017-07-26 トヨタ自動車株式会社 コアシェル触媒の製造方法
JP6308090B2 (ja) * 2014-10-02 2018-04-11 トヨタ自動車株式会社 コアシェル触媒の製造方法
JP6270759B2 (ja) * 2015-03-09 2018-01-31 田中貴金属工業株式会社 コア/シェル構造の触媒粒子が担持された触媒の製造方法
CA2996870C (en) * 2015-08-27 2019-05-07 Nissan Motor Co., Ltd. Catalyst particles, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using catalyst particles
CN105406087B (zh) * 2015-11-11 2017-12-26 大连理工大学 一种低温燃料电池用核壳电催化剂的制备方法及应用
CN106816614B (zh) * 2015-11-27 2019-07-05 中国科学院大连化学物理研究所 燃料电池用致密铂单原子层催化的制备及电极和应用
JP6562849B2 (ja) * 2016-02-18 2019-08-21 国立大学法人東北大学 コアシェル触媒の製造方法
CN106935873B (zh) * 2017-04-13 2019-09-13 中国科学院长春应用化学研究所 一种铂包覆金纳米晶材料及其制备方法和应用
US10640874B2 (en) * 2017-08-14 2020-05-05 Lam Research Corporation Selective electroless electrochemical atomic layer deposition in an aqueous solution without external voltage bias
KR20200132598A (ko) * 2019-05-17 2020-11-25 고려대학교 세종산학협력단 백금 단원자 막 및 그의 제조방법
CN112331867B (zh) * 2021-01-11 2021-04-02 国家电投集团氢能科技发展有限公司 用于燃料电池的催化剂及其制造方法、燃料电池
CN115000427B (zh) * 2022-07-23 2023-06-23 北京亿华通科技股份有限公司 燃料电池电极制备方法及电极

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631523A (zh) * 2003-12-25 2005-06-29 中国科学院大连化学物理研究所 一种铂/碳催化剂及其应用
CN101111337A (zh) * 2004-12-22 2008-01-23 布鲁克哈文科学协会 钯和钯-合金颗粒上的氢吸附诱导的金属沉积
CN101332425A (zh) * 2008-08-04 2008-12-31 山东大学 纳米多孔金担载超薄铂系金属薄膜催化剂及其制备方法
CN101379639A (zh) * 2005-08-01 2009-03-04 布鲁克哈文科学协会 铂纳米颗粒核上具有金单层的电催化剂及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005331B2 (en) 2004-12-22 2015-04-14 Brookhaven Science Associates, Llc Platinum-coated non-noble metal-noble metal core-shell electrocatalysts
US7691780B2 (en) 2004-12-22 2010-04-06 Brookhaven Science Associates, Llc Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof
US8062552B2 (en) * 2005-05-19 2011-11-22 Brookhaven Science Associates, Llc Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates
US7601668B2 (en) * 2006-09-29 2009-10-13 Headwaters Technology Innovation, Llc Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure
WO2010005773A1 (en) * 2008-06-23 2010-01-14 Brookhaven Science Associates Underpotential deposition-mediated layer-by-layer growth of thin films
US8404613B2 (en) * 2008-10-21 2013-03-26 Brookhaven Science Associates, Llc Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures
US8921260B2 (en) 2010-02-12 2014-12-30 Ballard Power Systems Inc. Platinum monolayer on hollow, porous nanoparticles with high surface areas and method of making
JP2014512252A (ja) 2011-02-03 2014-05-22 ユーティーシー パワー コーポレイション パラジウム基コアナノ粒子上に白金の完全な単層を作成する方法
US9610566B2 (en) 2011-02-22 2017-04-04 Toyota Jidosha Kabushiki Kaisha Method of forming a catalyst with an atomic layer of platinum atoms
WO2012144974A1 (en) 2011-04-18 2012-10-26 Utc Power Corporation Shape controlled core-shell catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631523A (zh) * 2003-12-25 2005-06-29 中国科学院大连化学物理研究所 一种铂/碳催化剂及其应用
CN101111337A (zh) * 2004-12-22 2008-01-23 布鲁克哈文科学协会 钯和钯-合金颗粒上的氢吸附诱导的金属沉积
CN101379639A (zh) * 2005-08-01 2009-03-04 布鲁克哈文科学协会 铂纳米颗粒核上具有金单层的电催化剂及其应用
CN101332425A (zh) * 2008-08-04 2008-12-31 山东大学 纳米多孔金担载超薄铂系金属薄膜催化剂及其制备方法

Also Published As

Publication number Publication date
EP2678105A4 (en) 2014-08-13
EP2678105A1 (en) 2014-01-01
US9610566B2 (en) 2017-04-04
CN103402631A (zh) 2013-11-20
JP2014508038A (ja) 2014-04-03
US20130324394A1 (en) 2013-12-05
KR101568070B1 (ko) 2015-11-10
WO2012115624A1 (en) 2012-08-30
CN107649110A (zh) 2018-02-02
KR20140024847A (ko) 2014-03-03
EP2678105B1 (en) 2019-06-12
JP5776102B2 (ja) 2015-09-09

Similar Documents

Publication Publication Date Title
CN107649110B (zh) 形成具有铂原子的原子层的催化剂的方法
Leong et al. Shape‐directed platinum nanoparticle synthesis: nanoscale design of novel catalysts
CN103611932B (zh) 一种铜粉表面包覆磷镍合金层的超声化学制备方法
Beard et al. Preparation of highly dispersed PEM fuel cell catalysts using electroless deposition methods
Jing et al. Branched Pd and Pd-based trimetallic nanocrystals with highly open structures for methanol electrooxidation
CN101817079A (zh) 银碳化钨触头材料骨架包覆粉末的制备方法
US9023751B2 (en) Method for producing catalyst
CN102994991B (zh) 一种Ni-Cu-P-Ce合金镀层及制备工艺
JP2017508881A (ja) 化学ニッケルめっき液の処理方法
Janssen et al. Facile Synthesis of Palladium‐Based Nanocrystals with Different Crystal Phases and a Comparison of Their Catalytic Properties
Reddy et al. Steam reforming of methanol over copper loaded anodized aluminum oxide (AAO) prepared through electrodeposition
Wang Electroless deposition of Ni–Co–B alloy films and influence of heat treatment on the structure and the magnetic performances of the film
JP5065948B2 (ja) 溶融塩反応浴を利用した合金粉末製造法
JP3871653B2 (ja) 導電性微粒子の製造方法
EP2954578B1 (en) Fuel cell catalyst treatment
Hyun et al. Formation of different types nanoporous composite structure by dealloying of Ag and Ni containing Al-Cu-Ti base amorphous precursor alloys
Krutskikh et al. Studies of chemical–catalytic formation of Ni–Re (Mo, W)–B alloys
Kuznetsov et al. n Pd 0·(H x–2 n MoO 3) composites as catalysts of methanol and formic acid electrooxidation
Zhang et al. Synthesis of Ni, Cu plated nano-Al2O3 composite powders and autocatalytic mechanism
Liu et al. 1, 10-Phenanthroline as an accelerator for Ag nanoparticle-catalysed electroless copper deposition
Ono et al. Mechanism of direct copper plating on nonconducting substrates
Mizuhashi et al. Comparative study on physical and electrochemical characteristics of thin films deposited from electroless platinum plating baths
Chen et al. Magnetic field-controlled bubble templated CuNi foam films and their performance towards hydrogen evolution reaction in alkaline media
Yousaf et al. Cubic PdPtRu trimetallic nanocomposite: Electrocatalytic application as anode material for direct methanol fuel cell
Fabbri Electrodeposition and Characterization of Industrial and Technological Interesting Sufaces

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant