CN107623026A - 半导体装置与其制造方法 - Google Patents

半导体装置与其制造方法 Download PDF

Info

Publication number
CN107623026A
CN107623026A CN201710551971.9A CN201710551971A CN107623026A CN 107623026 A CN107623026 A CN 107623026A CN 201710551971 A CN201710551971 A CN 201710551971A CN 107623026 A CN107623026 A CN 107623026A
Authority
CN
China
Prior art keywords
circumferential side
region
protection ring
outer circumferential
concentration region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710551971.9A
Other languages
English (en)
Other versions
CN107623026B (zh
Inventor
安田佳史
永冈达司
浦上泰
青井佐智子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Publication of CN107623026A publication Critical patent/CN107623026A/zh
Application granted granted Critical
Publication of CN107623026B publication Critical patent/CN107623026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种能够缓和外周耐压区的电场的半导体装置与其制造方法。所述半导体装置的半导体基板具有元件区和外周耐压区。外周耐压区具有对元件区进行多重包围的p型的多个保护环。多个保护环具有内周侧保护环和外周侧保护环,所述外周侧保护环被配置在与内周侧保护环相比靠外周侧并且与内周侧保护环相比宽度较窄。内周侧保护环彼此之间的间隔与外周侧保护环彼此之间的间隔相比较窄。内周侧保护环各自具有第一高浓度区和第一低浓度区。外周侧保护环各自具有第二高浓度区和第二低浓度区。第一低浓度区在表面处的宽度与第二低浓度区在表面处的宽度相比较宽。

Description

半导体装置与其制造方法
技术领域
本说明书中公开的技术涉及一种半导体装置与其制造方法。
背景技术
专利文献1中公开了具备二极管的半导体装置。该半导体装置具有半导体基板、表面电极和背面电极。表面电极对半导体基板的表面的大致中央部进行覆盖。背面电极对半导体基板的背面的整个区域进行覆盖。在半导体基板的被表面电极与背面电极夹持的区域(以下称为元件区)内形成有二极管。当二极管导通时,电流会从表面电极朝向背面电极流通。半导体基板在元件区的周围(即,元件区与半导体基板的外周端面之间)具有外周耐压区。外周耐压区具有p型的多个保护环和n型的外周漂移区。多个保护环露出于半导体基板的表面,并对元件区进行多重包围。外周漂移区使多个保护环相互分离。当二极管断开时,在外周耐压区内,会在横向(从内周侧朝向外周侧的方向)上产生电位差。这样一来,耗尽层会从元件区延伸至外周漂移区内。当耗尽层到达最内周侧的保护环时,耗尽层从该保护环朝向外周侧延伸。当耗尽层从内周侧到达第二个保护环时,耗尽层从该保护环进一步朝向外周侧延伸。以此方式,耗尽层在经过多个保护环的同时朝向外周侧延伸。即,多个保护环促使耗尽层在外周耐压区内朝向外周侧延伸。因此,耗尽层在外周耐压区内广泛地延伸,而使外周耐压区内的电场得到缓和。另外,虽然在专利文献1中于元件区中设置有二极管,但即使是在元件区内设置有其他的半导体元件(例如,MOSFET、IGBT)的情况下,也能够通过保护环对外周耐压区的电场进行缓和。
在先技术文献
专利文献
专利文献1:日本特开2013-168549号公报
发明内容
发明所要解决的课题
虽然如上述那样能够通过多个保护环对外周耐压区的电场进行缓和,但根据半导体装置的使用环境,有时会需要对外周耐压区的电场进一步进行缓和。在具有多个保护环的半导体装置中,在内周侧(接近元件区的一侧)的保护环的附近,与外周侧(接近半导体基板的外周端面的一侧)的保护环的附近相比,容易产生较高的电场。对此,本申请发明人们设计出一种位于内周侧的多个保护环的宽度(即,从内周侧朝向外周侧的方向上的尺寸)与位于外周侧的多个保护环的宽度相比较宽的结构。根据该结构,能够使位于内周侧的保护环彼此之间的间隔与位于外周侧的保护环彼此之间的间隔相比较窄。通过缩窄内周侧的保护环彼此之间的间隔,从而能够对内周侧的保护环的附近的电场进行抑制。但是,即使采用该结构,也存在有在内周侧的保护环的附近,与外周侧的保护环的附近相比,容易较高的电场的情况。因此,在本说明书中,提供一种能够对外周耐压区的电场进一步进行缓和的技术。
用于解决课题的手段
本说明书公开的半导体装置具有:半导体基板;表面电极,其与所述半导体基板的表面相接;背面电极,其与所述半导体基板的背面相接。所述半导体基板具有:在沿着所述半导体基板的厚度方向俯视观察时重叠于所述表面电极与所述半导体基板的接触面的元件区;和所述元件区的周围的外周耐压区。所述元件区具有能够在所述表面电极与所述背面电极之间进行通电的半导体元件。所述外周耐压区具有多个保护环和外周漂移区。所述多个保护环为露出于所述表面并对所述元件区进行多重包围的p型的区域。所述外周漂移区为使所述多个保护环彼此分离的n型的区域。所述多个保护环具有多个内周侧保护环和多个外周侧保护环,所述外周侧保护环被配置在与所述内周侧保护环相比靠外周侧,并且与所述内周侧保护环相比宽度较窄。多个所述内周侧保护环彼此之间的间隔与多个所述外周侧保护环彼此之间的间隔相比较窄。所述内周侧保护环各自具有第一高浓度区和第一低浓度区,所述第一高浓度区具有与所述内周侧保护环自身的p型杂质浓度的峰值的10%相比较高的p型杂质浓度,所述第一低浓度区具有该峰值的10%以下的p型杂质浓度并且被配置在所述第一高浓度区与所述外周漂移区之间。所述外周侧保护环各自具有第二高浓度区和第二低浓度区,所述第二高浓度区具有与所述外周侧保护环自身的p型杂质浓度的峰值的10%相比较高的p型杂质浓度,所述第二低浓度区具有该峰值的10%以下的p型杂质浓度并且被配置在所述第二高浓度区与所述外周漂移区之间。所述第一低浓度区的相对于所述第一高浓度区在外周侧邻接的部分在所述表面处的宽度与所述第二低浓度区的相对于所述第二高浓度区在外周侧邻接的部分在所述表面处的宽度相比较宽。
另外,在本说明书中,保护环的宽度是指从内周侧(元件区侧)朝向外周侧(半导体基板的外周端面侧)的方向上的尺寸。此外,在本说明书中,低浓度区的宽度是指从内周侧朝向外周侧的方向上的尺寸。
该半导体装置具有宽度较宽的多个内周侧保护环和宽度较窄的多个外周侧保护环。此外,多个内周侧保护环彼此之间的间隔与多个外周侧保护环彼此之间的间隔相比较窄。根据该结构,内周侧保护环的附近的电场得到缓和。而且,在该半导体装置中,第一低浓度区的相对于第一高浓度区在外周侧邻接的部分(以下称为外周侧的部分)在所述表面处的宽度与第二低浓度区的外周侧的部分在所述表面处的宽度相比较宽。在外周漂移区被耗尽化时,各个低浓度区的外周侧的部分被耗尽化。通过扩大第一低浓度区的外周侧的部分的宽度,从而使在内周侧保护环的附近被耗尽化的区域变宽,进而使内周侧保护环的附近的电场进一步得到缓和。
此外,由于外周侧保护环的宽度较窄,因此如果在外周侧保护环中设置宽度较宽的低浓度区,那么外周侧保护环的高浓度区的宽度将变得极小。这样一来,外周侧保护环难以对耗尽层的扩展有所帮助,从而存在耗尽层的延伸在外周侧保护环的周边的外周漂移区中变得不充分的情况。在该情况下,在耗尽层的延伸不充分的区域中会产生极高的电场,从而使半导体装置的耐压极度降低。与此相对,在上述的半导体装置中,外周侧保护环的低浓度区(第二低浓度区)的外周侧的部分的宽度较小,因此能够充分地确保外周侧保护环的高浓度区(第二高浓度区)的宽度。因此,能够使耗尽层充分地向外周侧保护环的周边的外周漂移区延展。外周侧保护环的周边的电场得到缓和。
如上文所说明的那样,根据该半导体装置,在内周侧保护环的附近与外周侧保护环的附近的任意一处均能够抑制较高的电场的产生。因此,根据该半导体装置,能够实现较高的耐压。
附图说明
图1为实施方式的半导体装置的剖面图(图2的Ⅰ-Ⅰ线处的剖面图)。
图2为实施方式的半导体装置的俯视图。
图3为外周耐压区的放大剖面图。
图4为元件区的放大剖面图。
图5为表示比较例的半导体装置的外周耐压区的结构与电场分布的图。
图6为表示实施方式的半导体装置的外周耐压区的结构与电场分布的图。
图7为表示低浓度区的宽度与电场分布之间的关系的图。
图8为实施方式的半导体装置的制造工序的说明图。
图9为实施方式的半导体装置的制造工序的说明图。
具体实施方式
图1、2所示的实施方式的半导体装置10具有半导体基板12。半导体基板12由宽带隙半导体(例如,SiC)构成。如图1所示,在半导体基板12的上表面12a上形成有上部电极14和绝缘膜18。另外,在图2中省略了上部电极14和绝缘膜18的图示。图2中的虚线表示上部电极14与半导体基板12接触的接触面15的轮廓。上部电极14被形成在半导体基板12的上表面12a的中央部。上表面12a的未被上部电极14覆盖的区域(即,接触面15的外侧的区域)被绝缘膜18覆盖。如图1所示,在半导体基板12的下表面12b上形成有下部电极16。下部电极16对半导体基板12的下表面12b的整个区域进行覆盖。半导体基板12的被上部电极14与下部电极16夹持的区域20(即,在沿着半导体基板12的厚度方向进行观察时与接触面15重叠的区域20)为作为半导体元件(本实施方式中为肖特基势垒二极管)而工作的元件区。半导体基板12的元件区20的外侧的区域(元件区20与半导体基板12的外周端面12c之间的区域)为外周耐压区22。
如图1所示,半导体基板12具有阴极区30、漂移区32、主p型区34以及多个保护环36。
阴极区30为n型杂质浓度较高的n型区域。阴极区30从元件区20跨及外周耐压区22而分布。阴极区30在半导体基板12的下表面12b的整个区域露出。阴极区30与下部电极16欧姆接触。
漂移区32为与阴极区30相比n型杂质浓度较低的n型区域。漂移区32被配置在阴极区30上,且与阴极区30相接。漂移区32从元件区20跨及外周耐压区22而分布。以下,将元件区20内的漂移区32称为主漂移区32a,将外周耐压区22内的漂移区32称为外周漂移区32b。主漂移区32a与外周漂移区32b相接(相连)。
图2中被画影线的区域表示露出于半导体基板12的上表面12a的p型区域。露出于上表面12a的p型区域中的被配置在元件区20内的p型区域为主p型区34,被配置在外周耐压区22内的p型区域为保护环36。
如图1、2所示,主p型区34在元件区20内露出于半导体基板12的上表面12a。主p型区34具有呈环状延伸的环状区域34a和呈条纹状延伸的多个条纹区域34b。环状区域34a在半导体基板12的上表面12a上呈大致矩形形状延伸。环状区域34a具有呈条状延伸的四个边和被曲线化的拐角部。环状区域34a的宽度与各个条纹区域34b的宽度相比较宽。在环状区域34a上配置有接触面15的外周缘。各个条纹区域34b被配置在环状区域34a的内侧。各个条纹区域34b相互平行地延伸。各个条纹区域34b的两端与环状区域34a连接。主p型区34与上部电极14相接。主p型区34既可以与上部电极14欧姆接触,也可以与上部电极14肖特基接触。
在各个条纹区域34b之间的位置处,主漂移区32a露出于半导体基板12的上表面12a。主漂移区32a在这些位置处与上部电极14肖特基接触。
如图1、2所示,各个保护环36在外周耐压区22内露出于半导体基板12的上表面12a。如图2所示,在厚度方向上对半导体基板12进行俯视观察时各个保护环36呈环状延伸。多个保护环36对元件区20进行多重包围。多个保护环36具有多个第一保护环36a、多个第二保护环36b以及多个第三保护环36c。图3表示保护环36的放大剖面图。如图3所示,第一保护环36a的宽度Wa1与第二保护环36b的宽度Wa2相比较宽。第二保护环36b的宽度Wa2与第三保护环36c的宽度Wa3相比较宽。另外,各个保护环36的宽度为从内周侧朝向外周侧的方向上的尺寸。图4表示条纹区域34b的放大剖面图。如图3、4所示,第三保护环36c的宽度Wa3与各个条纹区域34b的宽度Wa4相比较宽。另外,条纹区域34b的宽度为在与条纹区域34b延伸的方向(长度方向)正交的方向上的尺寸。如图2所示,多个第一保护环36a被配置于外周耐压区22之中最靠近元件区20的位置处。多个第二保护环36b被配置在第一保护环36a的外周侧。多个第三保护环36c被配置在第二保护环36b的外周侧。如图3所示,第一保护环36a彼此之间的间隔Wb1与第二保护环36b彼此之间的间隔Wb2相比较窄。此外,第二保护环36b彼此之间的间隔Wb2与第三保护环36c彼此之间的间隔Wb3相比较窄。如图3所示,各个保护环36的深度互为大致相同。此外,如图3、4所示,各个保护环36的深度与各个主p型区34的深度大致相同。如图1所示,各个保护环36的上表面被绝缘膜18覆盖。
在各个保护环36之间的位置处,外周漂移区32b露出于半导体基板12的上表面12a。各个保护环36通过外周漂移区32b而被相互分离。此外,各个保护环36通过外周漂移区32b而与主p型区34分离。
在保护环36及主p型区34各自的内部,p型杂质浓度根据位置而变化。如图3、4中参照符号M所示,各个保护环36及各个条纹区域34b在宽度方向上的中心且在半导体基板12的上表面12a的附近的位置处,具有在各个保护环36及各个条纹区域34b自身之中p型杂质浓度最高的峰值点。在各个保护环36及各个条纹区域34b各自的内部,p型杂质浓度随着从峰值点M靠近漂移区32而降低。在本说明书中,将各个保护环36及各个条纹区域34b中具有与峰值点M处的p型杂质浓度的10%相比较高的p型杂质浓度的区域称为高浓度区40,并将具有峰值点M处的p型杂质浓度的10%以下的p型杂质浓度的区域称为低浓度区42。在各个保护环36及各个条纹区域34b中,高浓度区40分布在峰值点M的周围,且露出于半导体基板12的上表面12a。在各个保护环36及各个条纹区域34b中,低浓度区42分布在高浓度区40与漂移区32之间。
在本说明书中,将低浓度区42露出于上表面12a的部分的宽度称为低浓度区42的宽度Wc。由图3、4可知,低浓度区42在高浓度区40的两侧露出于上表面12a。在本实施方式中,在各个保护环36及各个条纹区域34b中,低浓度区42的相对于高浓度区40在外周侧邻接的部分的宽度与低浓度区42的相对于高浓度区40在内周侧邻接的部分的宽度大致相同。各个保护环36的低浓度区42的宽度为从内周侧朝向外周侧的方向上的尺寸。各个条纹区域34b的低浓度区的宽度为与主p型区34延伸的方向(长度方向)正交的方向上的尺寸。如图3所示,第一保护环36a的低浓度区42的宽度Wc1与第二保护环36b的低浓度区42的宽度Wc2相比较宽。此外,第二保护环36b的低浓度区42的宽度Wc2与第三保护环36c的低浓度区42的宽度Wc3相比较宽。此外,如图3、4所示,第三保护环36c的低浓度区42的宽度Wc3与主p型区34的低浓度区42的宽度Wc4相比较宽。
接下来,对半导体装置10的动作进行说明。在半导体装置10的元件区20中,通过上部电极14、主漂移区32a、阴极区30及下部电极16而形成了肖特基势垒二极管(以下称为SBD)。上部电极14作为阳极电极而发挥功能,下部电极16作为阴极电极而发挥功能。当向上部电极14与下部电极16之间施加正向电压(上部电极14与下部电极16相比成为高电位的电压)时,电流从上部电极14经过上部电极14与主漂移区32a之间的肖特基界面而向下部电极16流通。即,电流从上部电极14起经由主漂移区32a和阴极区30而向下部电极16流通。另外,在各个主p型区34与上部电极14欧姆接触的情况下,在穿过主p型区34与主漂移区32a的界面的路径中也有电流流通。在各个主p型区34与上部电极14肖特基接触的情况下,在穿过主p型区34与主漂移区32a的界面的路径中几乎没有电流流通。无论是哪种情况,均是至少在穿过肖特基界面的路径中有电流流通。即,SBD导通。
在将向上部电极14与下部电极16之间施加的电压从正向电压切换为反向电压(下部电极16与上部电极14相比成为高电位的电压)时,电流停止,从而SBD断开。这样一来,由于在上部电极14与主漂移区32a之间的肖特基界面上施加有反向电压,因此耗尽层从肖特基界面扩展至主漂移区32a内。而且,由于在主p型区34与主漂移区32a的界面的pn结上也施加有反向电压,因此耗尽层从主p型区34扩展至主漂移区32a内。被邻接的条纹区域34b夹持的范围内的主漂移区32a通过从主p型区34延伸的耗尽层而在短时间内被夹断。因此,SBD关断速度较快。之后,耗尽层扩展至主漂移区32a的大致整体。通过主漂移区32a耗尽化,从而在主漂移区32a内产生电位差。由于主漂移区32a通过上部电极14与下部电极16而在纵向上被夹持,因此在耗尽化了的主漂移区32a内于纵向上产生电位差。在耗尽化了的主漂移区32a内,于横向上几乎不产生电位差。
此外,当向上部电极14与下部电极16之间施加有反向电压时,耗尽层从环状区域34a扩展至外周漂移区32b内。当从环状区域34a延伸的耗尽层到达最内周侧的保护环36时,耗尽层将从该保护环36进一步向外周侧延伸。当从最内周侧的保护环36延伸的耗尽层从最内周侧到达第二个保护环36时,耗尽层将从该保护环36进一步向外周侧延伸。以此方式,在外周耐压区22中,耗尽层在经由多个保护环36的同时向外周侧延伸。即,各个保护环36促进耗尽层向外周侧延伸。耗尽层延伸至半导体基板12的外周端面12c的附近。
另外,当耗尽层向外周漂移区32b延伸时,电压被施加于构成各个保护环36的外周侧的端面的pn结。因此,低浓度区42在构成保护环36的外周侧的端面的pn结的附近被耗尽化。即,低浓度区42的相对于高浓度区40在外周侧邻接的部分被耗尽化。
通常情况下,在pn结的两侧的耗尽层(n型区域耗尽化所得到的耗尽层与p型区域耗尽化所得到的耗尽层)之间,固定电荷的量取得平衡。因此,构成pn结的p型区域的p型杂质浓度越高,耗尽层越容易从该pn结向n型区域侧延伸。此外,p型杂质浓度较高的区域的尺寸越大,耗尽层越容易向n型区域侧延伸。在此,由于在本实施方式中,各个保护环36的低浓度区42的p型杂质浓度较低,因此几乎无助于耗尽层向外周漂移区32b的延展。因此,各个保护环36的高浓度区40的尺寸会影响耗尽层向外周漂移区32b的延伸。如上所述,保护环36的宽度随着从内周侧趋向于外周侧而变窄(宽度Wa1>Wa2>Wa3)。相对于此,低浓度区42的宽度也随着从内周侧趋向于外周侧而变窄(宽度Wc1>Wc2>Wc3)。因此,即使在宽度较窄的外周侧的第三保护环36c中,高浓度区40的宽度也并没有那么窄。因此,通过宽度较窄的外周侧的第三保护环36c,也能够充分地促进耗尽层向外周漂移区32b的扩展。因此,在宽度较窄的第三保护环36c的周边,不会出现耗尽层的延伸不充分的情况。因此,能够防止在第三保护环36c的附近产生高电场的情况。
此外,如上所述,在外周耐压区22内,在施加有反向电压时,耗尽层向外周漂移区32b延展,并且低浓度区42的相对于高浓度区40在外周侧邻接的部分也耗尽化。当耗尽层扩展至外周耐压区22内时,在耗尽层内会产生电位差。在半导体基板12的上表面12a的附近,外周耐压区22的内周端成为与上部电极14大致相同的电位,外周耐压区22的外周端(即,半导体基板12的外周端面12c)成为与下部电极16大致相同的电位。因此,在外周耐压区22内,于横向(从内周侧朝向外周侧的方向)上产生电位差。另外,由于在未耗尽化的高浓度区40内未产生电位差,因此在各个保护环36的高浓度区40之间产生电位差。
在此,对图5所示的比较例的半导体装置的电位分布进行探讨。图5的上图表示比较例的半导体装置的保护环36的结构,图5的下图表示向比较例的半导体装置施加有反向电压时的上表面12a附近的电位分布。在图5的结构中,各个保护环36的宽度相同,各个低浓度区42的宽度相同,各个保护环36之间的间隔相同。如上所述,由于低浓度区42的相对于高浓度区40处于外周侧的部分与外周漂移区32b耗尽化,因此在这些耗尽化了的区域内产生电场。在产生电场的各个区域(耗尽化了的各个区域)中,电场在pn结(保护环36与外周漂移区32b的界面)处成为峰值,并且电场随着远离pn结而变小。电场以此方式分布是因为在pn结的两侧的耗尽化了的区域(耗尽化了的外周漂移区32b与耗尽化了的低浓度区42)中存在极性不同的固定电荷。此外,对图5的下图的曲线进行积分所得到的值(曲线描绘出的各个三角形的面积)表示在邻接的高浓度区40之间产生的电位差。如图5所示,在比较例的半导体装置中,在各个高浓度区40之间产生的电位差越靠近内周侧越大,越靠近外周侧则越小。此外,由于向各个高浓度区40之间的区域扩展的耗尽层的宽度大致相同,因此在各个高浓度区40之间的区域内产生的电场的大小与在该区域内产生的电位差大致成比例。因此,越靠近内周侧,产生的电场越大。因此,在该结构中,于内周侧的保护环36的附近容易产生雪崩击穿。此外,在内周侧的保护环36的上部的绝缘膜18的表面处电场变高,从而容易以该位置为起点而产生沿面放电(从上部电极14朝向下部电极16,并在绝缘膜18的表面与外周端面12c上传递产生的放电)。
与此相对,图6表示向本实施方式的半导体装置10施加有反向电压时的上表面12a附近的电位分布。如图6的下图所示,在本实施方式的半导体装置10中,在各个保护环36的高浓度区40之间产生的电位差(曲线描绘出的各个三角形的面积)在内周侧与外周侧几乎没有差异。其原因在于保护环36的宽度(Wa1、Wa2、Wa3(参照图3))越靠近内周侧变得越宽,并且保护环36之间的间隔(Wb1、Wb2、Wb3(参照图3))越靠近内周侧变得越窄。以此方式,由于与图5的情况相比,在图6所示的本实施方式的半导体装置中,电位差被均等化,因此能够在一定程度上抑制向内周侧的电场集中。但是,在仅对保护环36的宽度与保护环36彼此之间的间隔进行调节时,存在有在内周侧的保护环的附近产生高电场的情况。因此,在本实施方式的半导体装置10的保护环36中,低浓度区42的相对于高浓度区40在外周侧邻接的部分的宽度(Wc1、Wc2、Wc3)越靠近内周侧越变窄。如上所述,该部分的低浓度区42被耗尽化。因此,在内周侧的保护环36中,耗尽层的宽度扩宽与该部分的宽度扩宽的量相对应的量。其结果为,电场分布的范围变宽,从而电场的峰值变小。例如,图7表示两个保护环36之间的电场分布,曲线A表示低浓度区42的相对于高浓度区40在外周侧邻接的部分的宽度较宽的情况,曲线B表示该部分的宽度较窄的情况。在曲线A、B中,在邻接的保护环36之间产生的电位差(即,曲线A、B描绘出的三角形的面积)相同。由于在曲线A、B中产生的电位差相同,因此与低浓度区42(即,耗尽化了的区域)变宽的量相对应地,曲线A中的电场的峰值与曲线B中的电场的峰值相比变得较低。如此,低浓度区42的相对于高浓度区40在外周侧邻接的部分的宽度越宽,越不容易产生高电场。由于在本实施方式的半导体装置中,保护环36的低浓度区42的宽度(Wc1、Wc2、Wc3)越靠近内周侧变得越宽,因此在内周侧的保护环36的附近,电场的抑制效果较高。其结果为,如图6所示,在各个保护环36的附近产生的电场在内周侧与外周侧被均匀化。根据该本实施方式的结构,能够进一步提升耐压。
此外,如上所述,在本实施方式的半导体装置10中,元件区20内的主p型区34的低浓度区42的宽度Wc4较小。如上所述,在元件区20内于横向上几乎不产生电位差,因此即使低浓度区42的宽度Wc4较小,也不会产生高电场的问题。此外,通过缩小低浓度区42的宽度Wc4,从而能够扩大主漂移区32a与上部电极14之间的接触面积(肖特基界面的面积)。由此,能够提升SBD的特性。
接着,对半导体装置10的制造方法进行说明。另外,由于该制造方法的特征在于保护环36与主p型区34的形成工序,因此以下对保护环36与主p型区34的形成工序进行说明。首先,如图8所示,在半导体晶片的漂移区32的表面上形成掩膜70(例如,氧化硅膜),接着在掩膜70上形成开口部72a~72d。开口部72a~72d能够通过选择性蚀刻形成。开口部72a~72d既可以在同一个工序中形成,也可以在不同的工序中形成。在待形成第一保护环36a的区域的上部形成开口部72a,在待形成第二保护环36b的区域的上部形成开口部72b,在待形成第三保护环36c的区域的上部形成开口部72c,在待形成主p型区34的区域的上部形成开口部72d。此时,通过对蚀刻条件进行调节,从而对开口部72a~72d的侧面的倾斜角度进行调节。另外,侧面的倾斜角度是指侧面相对于半导体基板12的上表面12a的垂线的角度。此处,以开口部72a的侧面的倾斜角度θ1、开口部72b的侧面的倾斜角度θ2、开口部72c的侧面的倾斜角度θ3以及开口部72d的侧面的倾斜角度θ4满足θ1>θ2>θ3>θ4的关系的方式来对各个倾斜角度进行调节。此外,各个开口部的宽度以开口部72a最宽,开口部72b与开口部72c、72d相比较宽,且开口部72c与开口部72d相比较宽的方式进行调节。接着,如图9所示,隔着掩膜70而向半导体基板12注入p型杂质。在各个开口部内,p型杂质直接被注入到半导体基板12中。因此,在开口部内形成高浓度区40。此外,入射到开口部的倾斜的侧面上的p型杂质的一部分贯穿掩膜70而被注入到半导体基板12中。因此,在位于开口部的倾斜的侧面的背侧的区域内也以较低的浓度而注入有p型杂质。因此,在开口部的侧面的背侧形成有低浓度区42。开口部的侧面的倾斜角度越大低浓度区42的宽度越宽。因此,如图3、4所示,在第一保护环36a、第二保护环36b、第三保护环36c以及主p型区34之间,低浓度区42的宽度满足Wc1>Wc2>Wc3>Wc4的关系。根据该制造方法,能够容易地制造出半导体装置10。
另外,虽然在上述的实施方式中于元件区20中形成了SBD,但也可以在元件区20中设置其他的半导体元件。例如,可以在元件区中设置上部电极14作为阳极电极而发挥功能且下部电极16作为阴极电极而发挥功能的pn二极管。即使在形成有pn二极管的情况下,也与本实施方式相同地,能够在施加有反向电压时在外周耐压区中抑制电场。此外,也可以在元件区中设置上部电极14作为源电极而发挥功能且下部电极16作为漏电极而发挥功能,并且具备栅电极的MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属氧化物半导体场效应晶体管)。此外,还可以在元件区中设置上部电极14作为发射极而发挥功能且下部电极16作为集电极发挥功能,并且具备栅电极的IGBT(Insulated Gate BipolarTransistor:绝缘栅双极型晶体管)。在MOSFET或IGBT的情况下,当这些半导体元件断开时,能够在外周耐压区内抑制电场。
此外,在上述的实施方式中,在各个保护环36中,低浓度区42的相对于高浓度区40在外周侧邻接的部分的宽度与低浓度区42的相对于高浓度区40在内周侧邻接的部分的宽度相同。但是,只要低浓度区42的相对于高浓度区40在外周侧邻接的部分的宽度满足Wc1>Wc2>Wc3的关系,那么低浓度区42的相对于高浓度区40在内周侧邻接的部分的宽度可以为任意的值。
对上述的实施方式的各个结构要素与权利要求的各个结构要素之间的关系进行说明。实施方式的第一保护环36a为权利要求的内周侧保护环的一个示例。实施方式的第三保护环36c为权利要求的外周侧保护环的一个示例。虽然在与第一保护环36a的关系中,实施方式的第二保护环36b是外周侧保护环的一个示例,但在与第三保护环36c的关系中,实施方式的第二保护环36b是内周侧保护环的一个示例。实施方式的主p型区的呈条纹状延伸的各个部分为权利要求的接触p型区域的一个示例。
在下文中对本说明书公开的技术要素进行列述。另外,以下的各个技术要素为分别独立有用的技术要素。
在本说明书公开的一个示例的结构中,元件区具有多个接触p型区域、主漂移区、阴极区。多个接触p型区域为与表面电极相接,并且以彼此隔开间隔的方式呈条纹状延伸的p型的区域。主漂移区为在多个接触p型区域之间的位置处与表面电极肖特基接触,并且与外周漂移区相接的n型的区域。阴极区为与背面电极欧姆接触,并且与主漂移区相接的n型的区域。接触p型区域各自具有第三高浓度区和第三低浓度区,所述第三高浓度区具有与接触p型区域自身的p型杂质浓度的峰值的10%相比较高的p型杂质浓度,所述第三低浓度区具有该峰值的10%以下的p型杂质浓度并且被配置于第三高浓度区与主漂移区之间。第三低浓度区在半导体基板的表面处的宽度与第二低浓度区的相对于第二高浓度区在外周侧邻接的部分在所述表面处的宽度相比较窄。
在该结构中,由表面电极、主漂移区、阴极区及背面电极构成了肖特基势垒二极管。在向肖特基势垒二极管施加有反向电压的情况下,耗尽层从各个接触p型区域向主漂移区扩展。由此,元件区内的电场集中得到抑制。在元件区内,于半导体基板的厚度方向(纵向)上产生电位差,而在横向上几乎不产生电位差。因此,在元件区内,于横向上不产生电场集中。因此,即使缩窄各个接触p型区域的第三低浓度区的宽度,也不存在问题。此外,通过如上述那样缩窄各个主p型区的第三低浓度区的宽度,从而能够扩大肖特基界面(主漂移区与表面电极的接触面)的面积,进而能够提升肖特基势垒二极管的特性。
本说明书公开的半导体装置能够通过以下例示的制造方法来进行制造。该制造方法包括:在半导体晶片的表面上形成具有内周侧开口部与外周侧开口部的掩膜的工序;和通过向内周侧开口部内的半导体晶片的表面注入p型杂质而形成内周侧保护环并且通过向外周侧开口部内的半导体晶片的表面注入p型杂质而形成外周侧保护环的工序。内周侧开口部的侧面的倾斜角度与外周侧开口部的侧面的倾斜角度相比较大。
在p型杂质的注入中,在开口部的侧面倾斜的情况下,贯穿该侧面部分而向半导体基板注入p型杂质。在以此方式被注入p型杂质的区域内,形成有p型杂质浓度较低的低浓度区。在上述的制造方法中,在侧面的倾斜角度较大的外周侧开口部中,与在侧面的倾斜角度较小的内周侧开口部中相比,形成有宽度较宽的低浓度区。因此,根据该制造方法,能够将内周侧保护环的第一低浓度区的宽度设为与外周侧保护环的第二低浓度区的宽度相比较宽。
虽然以上对实施方式进行了详细说明,但这些只不过为示例,并不对权利要求书作出限定。权利要求书中所记载的技术中包括对上文例示的具体示例进行了各种改变、变更的内容。本说明书或附图中所说明的技术要素通过单独或各种组合来发挥技术上的有用性,并不限定于申请时权利要求所记载的组合。此外,本说明书或附图所例示的技术同时实现多个目的,并且实现其中一个目的本身便具有技术上的有用性。
符号说明
10:半导体装置;
12:半导体基板;
14:上部电极;
15:接触面;
16:下部电极;
18:绝缘膜;
20:元件区;
22:外周耐压区;
30:阴极区;
32:漂移区;
32a:主漂移区;
32b:外周漂移区;
34:主p型区;
34a:环状区域;
34b:条纹区域;
36:保护环;
40:高浓度区;
42:低浓度区。

Claims (3)

1.一种半导体装置,具有:
半导体基板;
表面电极,其与所述半导体基板的表面相接;和
背面电极,其与所述半导体基板的背面相接,
所述半导体基板具有:在沿着所述半导体基板的厚度方向俯视观察时重叠于所述表面电极与所述半导体基板的接触面的元件区;和所述元件区的周围的外周耐压区,
所述元件区具有能够在所述表面电极与所述背面电极之间进行通电的半导体元件,
所述外周耐压区具有:
多个保护环,其为p型,并露出于所述表面,且对所述元件区进行多重包围;和
外周漂移区,其为n型,并使多个所述保护环彼此分离,
多个所述保护环具有多个内周侧保护环和多个外周侧保护环,所述外周侧保护环被配置在与所述内周侧保护环相比靠外周侧,并且与所述内周侧保护环相比宽度较窄,
多个所述内周侧保护环彼此之间的间隔与多个所述外周侧保护环彼此之间的间隔相比较窄,
所述内周侧保护环各自具有第一高浓度区和第一低浓度区,所述第一高浓度区具有与所述内周侧保护环自身的p型杂质浓度的峰值的10%相比较高的p型杂质浓度,所述第一低浓度区具有该峰值的10%以下的p型杂质浓度并且被配置在所述第一高浓度区与所述外周漂移区之间,
所述外周侧保护环各自具有第二高浓度区和第二低浓度区,所述第二高浓度区具有与所述外周侧保护环自身的p型杂质浓度的峰值的10%相比较高的p型杂质浓度,所述第二低浓度区具有该峰值的10%以下的p型杂质浓度并且被配置在所述第二高浓度区与所述外周漂移区之间,
所述第一低浓度区的相对于所述第一高浓度区在外周侧邻接的部分在所述表面处的宽度与所述第二低浓度区的相对于所述第二高浓度区在外周侧邻接的部分在所述表面处的宽度相比较宽。
2.如权利要求1所述的半导体装置,其中,
所述元件区具有:
多个接触p型区域,其为p型,并与所述表面电极相接,且以彼此隔开间隔的方式呈条纹状延伸;
主漂移区,其为n型,并在多个所述接触p型区域之间的位置处与所述表面电极肖特基接触,且与所述外周漂移区相接;和
阴极区,其为n型,并与所述背面电极欧姆接触,且与所述主漂移区相接,
所述接触p型区域各自具有第三高浓度区和第三低浓度区,所述第三高浓度区具有与所述接触p型区域自身的p型杂质浓度的峰值的10%相比较高的p型杂质浓度,所述第三低浓度区具有该峰值的10%以下的p型杂质浓度并且被配置在所述第三高浓度区与所述主漂移区之间,
所述第三低浓度区在所述表面处的宽度与所述第二低浓度区的相对于所述第二高浓度区在外周侧邻接的部分在所述表面处的宽度相比较窄。
3.一种权利要求1或2所述的半导体装置的制造方法,包括:
在半导体晶片的表面上形成具有内周侧开口部和外周侧开口部的掩膜的工序;和
通过向所述内周侧开口部内的所述半导体晶片的所述表面注入p型杂质而形成所述内周侧保护环,并且通过向所述外周侧开口部内的所述半导体晶片的所述表面注入p型杂质而形成所述外周侧保护环的工序,
所述内周侧开口部的侧面的倾斜角度与所述外周侧开口部的侧面的倾斜角度相比较大。
CN201710551971.9A 2016-07-14 2017-07-07 半导体装置与其制造方法 Active CN107623026B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016139552A JP6649198B2 (ja) 2016-07-14 2016-07-14 半導体装置とその製造方法
JP2016-139552 2016-07-14

Publications (2)

Publication Number Publication Date
CN107623026A true CN107623026A (zh) 2018-01-23
CN107623026B CN107623026B (zh) 2020-10-20

Family

ID=60783056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710551971.9A Active CN107623026B (zh) 2016-07-14 2017-07-07 半导体装置与其制造方法

Country Status (4)

Country Link
US (1) US10204980B2 (zh)
JP (1) JP6649198B2 (zh)
CN (1) CN107623026B (zh)
DE (1) DE102017114184B4 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109559989A (zh) * 2018-10-29 2019-04-02 厦门市三安集成电路有限公司 碳化硅结势垒肖特基二极管及其制作方法
CN110707147A (zh) * 2019-08-30 2020-01-17 西安电子科技大学 一种具有可变角度的场限环终端结构及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3742476A1 (en) * 2019-05-20 2020-11-25 Infineon Technologies AG Method of implanting an implant species into a substrate at different depths
JP7227110B2 (ja) * 2019-09-18 2023-02-21 株式会社東芝 半導体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032730A1 (en) * 2008-08-05 2010-02-11 Denso Corporation Semiconductor device and method of making the same
CN104221152A (zh) * 2012-07-18 2014-12-17 富士电机株式会社 半导体装置以及半导体装置的制造方法
CN104756258A (zh) * 2012-10-11 2015-07-01 三菱电机株式会社 半导体器件及其制造方法
CN105023941A (zh) * 2014-04-30 2015-11-04 三菱电机株式会社 碳化硅半导体装置
WO2016071969A1 (ja) * 2014-11-05 2016-05-12 新電元工業株式会社 半導体素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0168771A1 (de) 1984-07-17 1986-01-22 Siemens Aktiengesellschaft Verfahren zur gezielten Erzeugung von lateralen Dotierungs-gradienten in scheibenförmigen Siliziumkristallen für Halbleiterbauelemente
KR0154702B1 (ko) * 1995-06-09 1998-10-15 김광호 항복전압을 향상시킨 다이오드 제조 방법
JPH1012861A (ja) * 1996-06-26 1998-01-16 Meidensha Corp 高耐電圧半導体素子
JP2003347547A (ja) * 2002-05-27 2003-12-05 Mitsubishi Electric Corp 電力用半導体装置及びその製造方法
JP2008010506A (ja) 2006-06-27 2008-01-17 Matsushita Electric Ind Co Ltd 半導体装置
US9640609B2 (en) * 2008-02-26 2017-05-02 Cree, Inc. Double guard ring edge termination for silicon carbide devices
CN103299425B (zh) * 2011-01-14 2016-02-24 三菱电机株式会社 半导体装置的制造方法
JP5669712B2 (ja) 2011-11-11 2015-02-12 三菱電機株式会社 半導体装置の製造方法
JP2013168549A (ja) 2012-02-16 2013-08-29 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2015126193A (ja) * 2013-12-27 2015-07-06 株式会社豊田中央研究所 縦型半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032730A1 (en) * 2008-08-05 2010-02-11 Denso Corporation Semiconductor device and method of making the same
CN104221152A (zh) * 2012-07-18 2014-12-17 富士电机株式会社 半导体装置以及半导体装置的制造方法
CN104756258A (zh) * 2012-10-11 2015-07-01 三菱电机株式会社 半导体器件及其制造方法
CN105023941A (zh) * 2014-04-30 2015-11-04 三菱电机株式会社 碳化硅半导体装置
WO2016071969A1 (ja) * 2014-11-05 2016-05-12 新電元工業株式会社 半導体素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109559989A (zh) * 2018-10-29 2019-04-02 厦门市三安集成电路有限公司 碳化硅结势垒肖特基二极管及其制作方法
CN110707147A (zh) * 2019-08-30 2020-01-17 西安电子科技大学 一种具有可变角度的场限环终端结构及其制备方法

Also Published As

Publication number Publication date
JP2018010988A (ja) 2018-01-18
JP6649198B2 (ja) 2020-02-19
CN107623026B (zh) 2020-10-20
DE102017114184A1 (de) 2018-01-18
DE102017114184B4 (de) 2022-08-04
US20180019301A1 (en) 2018-01-18
US10204980B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
CN107623026A (zh) 半导体装置与其制造方法
CN105280711B (zh) 电荷补偿结构及用于其的制造
JP2020096202A (ja) 炭化珪素半導体装置および電力変換装置
US8890169B2 (en) Semiconductor device
US9853139B2 (en) Semiconductor device and method for manufacturing the semiconductor device
JP7170781B2 (ja) 炭化珪素半導体装置および電力変換装置
JP2009021461A (ja) 半導体装置
WO2017038518A1 (ja) 炭化珪素半導体装置
US20160126314A1 (en) Semiconductor device
KR20170034899A (ko) 스위칭 소자
KR20140035594A (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
JP2018060984A (ja) 半導体装置
US20180006027A1 (en) Power semiconductor device having fully depleted channel regions
JP6160216B2 (ja) 半導体装置
WO2017002255A1 (ja) 半導体装置
KR101438620B1 (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
CN107819025A (zh) 半导体装置和半导体装置的制造方法
CN109844954B (zh) 半导体器件及其制造方法
JP6089733B2 (ja) 半導体装置
JP2001196604A (ja) 半導体装置
US20160104614A1 (en) Semiconductor Device and a Method of Manufacturing Same
JP6988261B2 (ja) 窒化物半導体装置
JP6550802B2 (ja) 半導体素子
JP2015185656A (ja) 半導体装置
US8264056B2 (en) Schottky diode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant