CN109559989A - 碳化硅结势垒肖特基二极管及其制作方法 - Google Patents

碳化硅结势垒肖特基二极管及其制作方法 Download PDF

Info

Publication number
CN109559989A
CN109559989A CN201811267283.0A CN201811267283A CN109559989A CN 109559989 A CN109559989 A CN 109559989A CN 201811267283 A CN201811267283 A CN 201811267283A CN 109559989 A CN109559989 A CN 109559989A
Authority
CN
China
Prior art keywords
silicon carbide
junction
conductivity type
conduction type
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811267283.0A
Other languages
English (en)
Inventor
高秀秀
陶永洪
蔡文必
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Integrated Circuit Co Ltd Is Pacified By Xiamen City Three
Xiamen Sanan Integrated Circuit Co Ltd
Original Assignee
Integrated Circuit Co Ltd Is Pacified By Xiamen City Three
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integrated Circuit Co Ltd Is Pacified By Xiamen City Three filed Critical Integrated Circuit Co Ltd Is Pacified By Xiamen City Three
Priority to CN201811267283.0A priority Critical patent/CN109559989A/zh
Publication of CN109559989A publication Critical patent/CN109559989A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes

Abstract

本发明提供了碳化硅结势垒肖特基二极管,包括层叠设置的第一导电类型碳化硅衬底,第一导电类型碳化硅外延层;所述第一导电类型碳化硅外延层的上表面由中心向外依次设置有有源区、保护环和终端区;所述有源区包括间隔设置的多个第二导电类型结势垒区;所述保护环分为浅结和深结;所述浅结的结深和浓度与第二导电类型终端场限环相同;所述深结的结深和浓度与第二导电类型结势垒区相同。上述的结势垒二极管,使得终端效率与终端面积同时达到最优,同时,也可以提高浪涌能力和雪崩耐量。

Description

碳化硅结势垒肖特基二极管及其制作方法
技术领域
本发明涉及碳化硅功率器件,尤其涉及二极管。
技术背景
中国专利201610021997.8,题为“一种渐变电场限制环高压快恢复二极管芯片及其生产工艺”中描述了从P+阳极到N+截至环,场限环的环宽由56um逐渐减少到10um,电场限制环的间距逐渐变大,从9um增大到18um;渐变电场限制环的深度与P+阳极的深度相同且均为40um。
中国专利200710153275.9,题为“SiC肖特基金属半导体器件”中描述了第二导电类型的结势垒d1/d2≥1;该专利中,整个保护环的深度<有源区结势垒深度。
美国专利9865750B2,题为“Schottkey Diode”中描述了有源区P区中均存在沟槽。
中国专利CN201710027731,题为“一种提高浪涌能力的碳化硅肖特基二极管结构及制备方法”中描述了保护环与环的浓度均低于有源区浓度。
以上专利描述中,有源P区与保护环P区的结深一致。其存在的缺点:
1、满足高浪涌能力和雪崩耐量的前提下,终端效率与终端面积无法同时达到最优;
2、工艺冗余;
发明内容
本发明所要解决的主要技术问题是提供碳化硅结势垒肖特基二极管的制作方法,使得满足高浪涌能力和雪崩耐量的前提下,终端效率与终端面积同时达到最优。
为了解决上述的技术问题,本发明提供了碳化硅结势垒肖特基二极管,包括层叠设置的第一导电类型碳化硅衬底,第一导电类型碳化硅外延层;所述第一导电类型碳化硅外延层的上表面由中心向外依次设置有有源区、保护环和终端区;所述有源区包括间隔设置的多个第二导电类型结势垒区;
所述保护环分为浅结和深结;所述浅结的结深和浓度与第二导电类型终端场限环相同;所述深结的结深和浓度与第二导电类型结势垒区相同。
在一较佳实施例中:所述浅结与深结在交叠处存在浅沟槽。
在一较佳实施例中:所述二极管中,肖特基金属和阳极金属的边缘均位于浅结之上。
在一较佳实施例中:所述终端区包括多个呈同心间隔设置在保护环外的第二导电类型终端场限环,并且从内向外,第二导电类型终端场限环的环间距逐渐增大,环宽逐渐减小。
在一较佳实施例中:所述第二导电类型终端场限环位于最内侧的那个终端场限环与保护环的间距为0.5-1.5um,环宽为2-4um;最外侧那个终端场限环与相邻的终端场限环的间距为1.5-8um,环宽为1.5-3.5um。
在一较佳实施例中:所述浅沟槽的宽度为0.5-50um,深度为0.02-0.5um;所述浅结的结深为0.3-1.2um,所述深结的结深为0.5-1.5um,且浅结的结深小于深结的结深;浅结的峰值浓度为2e17-8e17cm-3,深结的峰值浓度为1e18-5e20cm-3,且浅结的峰值浓度小于深结的峰值浓度。
本发明还提供了碳化硅结势垒肖特基二极管的制作方法,包括如下步骤:
1)准备第一导电类型碳化硅衬底,其电阻率为0.001-0.05Ω·cm,厚度200-380um;
2)在第一导电类型碳化硅衬底上,生长第一导电类型碳化硅外延层,其浓度为1e15-1e16cm-3
3)在第一导电类型碳化硅外延层的上表面,通过沉积S iO2、光刻,选择性离子注入形成第二导电类型结势垒区和深结;深结位于第二导电类型结势垒区外;所述深结和第二导电类型结势垒区的深度相同;
4)在第一导电类型碳化硅外延层的上表面,通过光刻,选择性离子注入形成深度相同的第二导电类型终端场限环和浅结;其中浅结位于深结外,并与与深结存在交叠;
所述第二导电类型终端场限环呈同心间隔设置在浅结外,并且从内向外,第二导电类型终端场限环的环间距逐渐增大,环宽逐渐减小;
5)在第一导电类型碳化硅外延层上表面,通过电子束蒸发或溅镀,淀积金属Ti,并退火形成肖特基金属;
6)在肖特基金属的上表面,通过电子束蒸发或溅镀,淀积金属Al,形成阳极金属;
7)在第一导电类型碳化硅外延层上表面及阳极金属上表面,通过PECVD,淀积形成SiO2/Si3N4层,经过过光刻,形成钝化层;
8)在钝化层上面,通过淀积、光刻,形成聚酰亚胺保护层;
9)通过物理研磨,将第一导电类型碳化硅衬底减薄至100-140um,然后在第一导电类型碳化硅衬底下表面,通过电子束蒸发或溅镀,淀积金属Ni,并采用激光退火形成欧姆接触;
10)在欧姆接触下面,通过电子束蒸发或溅镀,形成TiNiAg阴极金属。
相较于现有技术,本发明的技术方案具备以下有益效果:
1.提高了芯片面积利用率;
2.提高了器件耐压,减小了反向漏电流;
3.提高了器件的抗浪涌能力;
4.提高了器件的雪崩耐量;
5.器件特性得到了更好地折中和优化;
附图说明
图1为本发明优选实施例中二极管的版图示意图;
图2为本发明优选实施例中二极管的结构剖视图;
图3为本发明优选实施例中二极管的局部结构剖视图;
图4-13为本发明优选实施例中二极管的制备流程图。
具体实施方式
为了使本发明技术方案更加清楚,现将本发明结合实施例和附图做进一步详细说明:
参考图1-3,碳化硅结势垒肖特基二极管,包括层叠设置的第一导电类型碳化硅衬底10,第一导电类型碳化硅外延层11;所述第一导电类型碳化硅外延层11的上表面由中心向外依次设置有有源区31、保护环32和终端区33;所述有源区31包括间隔设置的多个第二导电类型结势垒区12;
所述保护环32分为浅结14和深结15;所述浅结14的结深和浓度与第二导电类型终端场限环13相同;所述深结15的结深和浓度与第二导电类型结势垒区12相同;浅结14与深结15在交叠处存在浅沟槽16;并且所述二极管中,肖特基金属17和阳极金属18的边缘均位于浅结14之上。
所述终端区33包括多个呈同心间隔设置在保护环32外的第二导电类型终端场限环13,并且从内向外,第二导电类型终端场限环13的环间距逐渐增大,环宽逐渐减小。
特别的,所述第二导电类型终端场限环13位于最内侧的那个终端场限环与保护环的间距为0.5-1.5um,环宽为2-4um;最外侧那个终端场限环与相邻的终端场限环的间距为1.5-8um,环宽为1.5-3.5um。
所述浅沟槽16的wt宽度为0.5-50um,深度dt为0.02-0.5um;所述浅结14的结深d1为0.3-1.2um,所述深结15的结深d2为0.5-1.5um,且浅结14的结深小于深结的结深;浅结14的峰值浓度为2e17-8e17cm-3,深结15的峰值浓度为1e18-5e20cm-3,且浅结14的峰值浓度小于深结15的峰值浓度。
这样的结构,主要是因为位于内侧终端场限环的间距较小,电场矢量合成使得电场强度降低,有利于提高终端效率;位于外侧终端场限环承受高压时的空间电荷区展宽变窄,因此环宽减小,有利于提高终端面积利用率;金属边缘下方的浅结14和终端场限环13弱掺杂,使得其空间电荷区展宽更多,并得到充分利用,有利于提高终端面积利用率;深结15和第二导电类型结势垒区12,会使得击穿首先发生在有源区内,增加了雪崩状态下的散热面积,从而提高了雪崩耐量,同时深结15的高掺杂,充分利用了保护环区面积,可以提高抗浪涌能力;深结15和第二导电类型结势垒区12通过1次光刻和离子注入同时形成,浅结14的结深和第二导电类型终端场限环13通过另1次光刻和离子注入同时形成,这2次光刻可以共用1次SiO2掩蔽膜,节省了第1次光刻中刻蚀S iO2、第二次光刻的预清洗和SiO2淀积,简化了工艺,降低了工艺成本。
参考图4-13,上述的结势垒二极管的制作方法,包括如下步骤:
1)准备第一导电类型碳化硅衬底10,其电阻率为0.001-0.05Ω·cm,厚度200-380um;
2)在第一导电类型碳化硅衬底10上,生长第一导电类型碳化硅外延层11,其浓度为1e15-1e16cm-3
3)在第一导电类型碳化硅外延层11的上表面,通过沉积Si O2、光刻,选择性离子注入形成第二导电类型结势垒区12和深结15;深结15位于第二导电类型结势垒区12外;所述深结15和第二导电类型结势垒区12的深度和浓度相同;
4)在第一导电类型碳化硅外延层11的上表面,通过光刻,选择性离子注入形成深度和浓度相同的第二导电类型终端场限环13和浅结14;其中浅结14位于深结15外,并与深结15存在交叠;
所述第二导电类型终端场限环13呈同心间隔设置在浅结14外,并且从内向外,第二导电类型终端场限环13的环间距逐渐增大,环宽逐渐减小;
5)在第一导电类型碳化硅外延层11上表面,通过电子束蒸发或溅镀,淀积金属Ti,并退火形成肖特基金属17;
6)在肖特基金属17的上表面,通过电子束蒸发或溅镀,淀积金属Al,形成阳极金属18;
7)在第一导电类型碳化硅外延层11上表面及阳极金属18上表面,通过PECVD,淀积形成SiO2/Si3N4层,经过过光刻,形成钝化层19;
8)在钝化层19上面,通过淀积、光刻,形成聚酰亚胺保护层20;
9)通过物理研磨,将第一导电类型碳化硅衬底10减薄至100-140um,然后在第一导电类型碳化硅衬底10下表面,通过电子束蒸发或溅镀,淀积金属Ni,并采用激光退火形成欧姆接触21;
10)在欧姆接触21下面,通过电子束蒸发或溅镀,形成TiNiAg阴极金属22。
作为上述制作方法的简单替换,在保持步骤1-4不变的情况下,还可以采用如下的制作方法:
5)在第一导电类型碳化硅衬底10下表面,通过电子束蒸发或溅镀,淀积金属Ni,采用高温热退火形成欧姆接触21;
6)在第一导电类型碳化硅外延层11上表面,通过电子束蒸发或溅镀,淀积金属Ti,并退火形成肖特基金属17;
7)在肖特基金属17上面,通过电子束蒸发或溅镀,淀积金属Al,形成阳极金属18;
8)在碳化硅外延层11上表面及阳极金属18上表面,通过PECVD,淀积形成SiO2/Si3N4层,经过过光刻,形成钝化层19;
9)在钝化层上面,通过淀积、光刻,形成聚酰亚胺保护层20;
10)在欧姆接触21下面,通过电子束蒸发或溅镀,形成TiNiAg阴极金属22。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (7)

1.碳化硅结势垒肖特基二极管,其特征在于包括层叠设置的第一导电类型碳化硅衬底,第一导电类型碳化硅外延层;所述第一导电类型碳化硅外延层的上表面由中心向外依次设置有有源区、保护环和终端区;所述有源区包括间隔设置的多个第二导电类型结势垒区;
所述保护环分为浅结和深结;所述浅结的结深和浓度与第二导电类型终端场限环相同;所述深结的结深和浓度与第二导电类型结势垒区相同。
2.根据权利要求1所述的碳化硅结势垒肖特基二极管,其特征在于:所述浅结与深结在交叠处存在浅沟槽。
3.根据权利要求1所述的碳化硅结势垒肖特基二极管,其特征在于:所述二极管中,肖特基金属和阳极金属的边缘均位于浅结之上。
4.根据权利要求1所述的碳化硅结势垒肖特基二极管,其特征在于:所述终端区包括多个呈同心间隔设置在保护环外的第二导电类型终端场限环,并且从内向外,第二导电类型终端场限环的环间距逐渐增大,环宽逐渐减小。
5.根据权利要求1所述的碳化硅结势垒肖特基二极管,其特征在于:所述第二导电类型终端场限环位于最内侧的那个终端场限环与保护环的间距为0.5-1.5um,环宽为2-4um;最外侧那个终端场限环与相邻的终端场限环的间距为1.5-8um,环宽为1.5-3.5um。
6.根据权利要求1所述的碳化硅结势垒肖特基二极管,其特征在于:所述浅沟槽的宽度为0.5-50um,深度为0.02-0.5um;所述浅结的结深为0.3-1.2um,所述深结的结深为0.5-1.5um,且浅结的结深小于深结的结深;浅结的峰值浓度为2e17-8e17cm-3,深结的峰值浓度为1e18-5e20cm-3,且浅结的峰值浓度小于深结的峰值浓度。
7.碳化硅结势垒肖特基二极管的制作方法,其特征在于包括如下步骤:
1)准备第一导电类型碳化硅衬底,其电阻率为0.001-0.05Ω·cm,厚度200-380um;
2)在第一导电类型碳化硅衬底上,生长第一导电类型碳化硅外延层,其浓度为1e15-2e16cm-3
3)在第一导电类型碳化硅外延层的上表面,通过沉积SiO2、光刻,选择性离子注入形成第二导电类型结势垒区和深结;深结位于第二导电类型结势垒区外;所述深结和第二导电类型结势垒区的深度相同;
4)在第一导电类型碳化硅外延层的上表面,通过光刻,选择性离子注入形成深度相同的第二导电类型终端场限环和浅结;其中浅结位于深结外,并与深结存在交叠;
所述第二导电类型终端场限环呈同心间隔设置在浅结外,并且从内向外,第二导电类型终端场限环的环间距逐渐增大,环宽逐渐减小;
5)在第一导电类型碳化硅外延层上表面,通过电子束蒸发或溅镀,淀积金属Ti,并退火形成肖特基金属;
6)在肖特基金属的上表面,通过电子束蒸发或溅镀,淀积金属Al,形成阳极金属;
7)在第一导电类型碳化硅外延层上表面及阳极金属上表面,通过PECVD,淀积形成SiO2/Si3N4层,经过光刻,形成钝化层;
8)在钝化层上面,通过淀积、光刻,形成聚酰亚胺保护层;
9)通过物理研磨,将第一导电类型碳化硅衬底减薄至100-140um,然后在第一导电类型碳化硅衬底下表面,通过电子束蒸发或溅镀,淀积金属Ni,并采用激光退火形成欧姆接触;
10)在欧姆接触下面,通过电子束蒸发或溅镀,形成TiNiAg阴极金属。
CN201811267283.0A 2018-10-29 2018-10-29 碳化硅结势垒肖特基二极管及其制作方法 Pending CN109559989A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811267283.0A CN109559989A (zh) 2018-10-29 2018-10-29 碳化硅结势垒肖特基二极管及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811267283.0A CN109559989A (zh) 2018-10-29 2018-10-29 碳化硅结势垒肖特基二极管及其制作方法

Publications (1)

Publication Number Publication Date
CN109559989A true CN109559989A (zh) 2019-04-02

Family

ID=65865220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811267283.0A Pending CN109559989A (zh) 2018-10-29 2018-10-29 碳化硅结势垒肖特基二极管及其制作方法

Country Status (1)

Country Link
CN (1) CN109559989A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883527A (zh) * 2020-07-10 2020-11-03 安徽安芯电子科技股份有限公司 一种用于大尺寸晶圆制造的沟槽型肖特基势垒芯片
CN113299631A (zh) * 2021-05-21 2021-08-24 深圳市联冀电子有限公司 一种高esd的sbd二极管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080277669A1 (en) * 2007-05-10 2008-11-13 Denso Corporation SiC semiconductor having junction barrier Schottky device
US20110037139A1 (en) * 2008-03-21 2011-02-17 Microsemi Corporation Schottky barrier diode (sbd) and its off-shoot merged pn/schottky diode or junction barrier schottky (jbs) diode
CN106024850A (zh) * 2015-03-24 2016-10-12 三垦电气株式会社 半导体装置
CN107623026A (zh) * 2016-07-14 2018-01-23 丰田自动车株式会社 半导体装置与其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080277669A1 (en) * 2007-05-10 2008-11-13 Denso Corporation SiC semiconductor having junction barrier Schottky device
US20110037139A1 (en) * 2008-03-21 2011-02-17 Microsemi Corporation Schottky barrier diode (sbd) and its off-shoot merged pn/schottky diode or junction barrier schottky (jbs) diode
CN106024850A (zh) * 2015-03-24 2016-10-12 三垦电气株式会社 半导体装置
CN107623026A (zh) * 2016-07-14 2018-01-23 丰田自动车株式会社 半导体装置与其制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883527A (zh) * 2020-07-10 2020-11-03 安徽安芯电子科技股份有限公司 一种用于大尺寸晶圆制造的沟槽型肖特基势垒芯片
CN113299631A (zh) * 2021-05-21 2021-08-24 深圳市联冀电子有限公司 一种高esd的sbd二极管及其制备方法
CN113299631B (zh) * 2021-05-21 2022-07-08 深圳市联冀电子有限公司 一种高esd的sbd二极管及其制备方法

Similar Documents

Publication Publication Date Title
CN107331616A (zh) 一种沟槽结势垒肖特基二极管及其制作方法
JP2004529506A (ja) トレンチショットキー整流器
EP2920816B1 (en) Method of manufacturing trench-based schottky diode with improved trench protection
CN103904135B (zh) 肖特基二极管及其制造方法
CN109560142B (zh) 新型碳化硅结势垒肖特基二极管及其制作方法
CN105810754B (zh) 一种具有积累层的金属氧化物半导体二极管
CN103928532A (zh) 一种碳化硅沟槽mos结势垒肖特基二极管及其制备方法
CN105720110A (zh) 一种SiC环状浮点型P+结构结势垒肖特基二极管及制备方法
CN108682695A (zh) 一种大电流低正向压降碳化硅肖特基二极管芯片及其制备方法
CN105405895A (zh) 一种低存储电荷快恢复二极管芯片
CN106611776A (zh) 一种n型碳化硅肖特基二极管结构
CN109545842A (zh) 碳化硅器件终端结构及其制作方法
CN106711190A (zh) 一种具有高性能的半导体器件及制造方法
US20220384662A1 (en) Semiconductor mps diode with reduced current-crowding effect and manufacturing method thereof
US11967651B2 (en) Silicon carbide power diode device and fabrication method thereof
CN109559989A (zh) 碳化硅结势垒肖特基二极管及其制作方法
CN102376779A (zh) SiC肖特基二极管及其制作方法
CN109390389A (zh) 具有双侧调整区的高压快速软恢复二极管及其制备方法
CN110379863A (zh) 一种碳化硅结势垒肖特基二极管
CN114864704B (zh) 具有终端保护装置的碳化硅jbs及其制备方法
CN106960871A (zh) 一种带沟槽阵列和空腔的碳化硅衬底结构
CN216528860U (zh) 用于增强可靠性的jbs碳化硅二极管器件结构
CN113555447B (zh) 一种基于金刚石终端结构的4H-SiC肖特基二极管及制作方法
CN114497181B (zh) 一种功率器件的体内复合终端结构及制备方法
CN210349845U (zh) 一种碳化硅结势垒肖特基二极管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190402

RJ01 Rejection of invention patent application after publication