CN107523845B - 一种碳布负载Ni-S-Se纳米片阵列的制备方法 - Google Patents

一种碳布负载Ni-S-Se纳米片阵列的制备方法 Download PDF

Info

Publication number
CN107523845B
CN107523845B CN201710681126.3A CN201710681126A CN107523845B CN 107523845 B CN107523845 B CN 107523845B CN 201710681126 A CN201710681126 A CN 201710681126A CN 107523845 B CN107523845 B CN 107523845B
Authority
CN
China
Prior art keywords
nano
carbon cloth
chip arrays
load
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710681126.3A
Other languages
English (en)
Other versions
CN107523845A (zh
Inventor
徐波
陈志明
张哲�
杨贺
李村成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201710681126.3A priority Critical patent/CN107523845B/zh
Publication of CN107523845A publication Critical patent/CN107523845A/zh
Application granted granted Critical
Publication of CN107523845B publication Critical patent/CN107523845B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及一种碳布负载Ni(S0.41Se0.59)2纳米片阵列及其制备方法,属于无机纳米材料制备技术领域。本发明以碳布负载的Ni(OH)2纳米片阵列为前驱体通过同时硫化‑硒化制备碳布负载Ni(S0.41Se0.59)2纳米片阵列。具体步骤如下:首先以硝酸镍、氟化铵和尿素为反应物通过水热法制得碳布负载的Ni(OH)2纳米片阵列为前驱体;进一步使用质量比1:3的硫粉和硒粉混合物对前驱体在氮气保护下进行同时的硫化和硒化制得碳布负载Ni(S0.41Se0.59)2纳米片阵列。

Description

一种碳布负载Ni-S-Se纳米片阵列的制备方法
技术领域
本发明涉及一种Ni-S-Se三组分纳米片阵列及其制备方法,属于无机纳米材料制备领域。
背景技术
随着全球能源危机及环境污染的加剧,可再生清洁能源受到了科学家越来越多的关注。其中氢能具有能量密度高、清洁无污染的优点,被认为是传统化石燃料的优异替代品。在催化剂存在下,利用太阳能或者电能分解水是制备氢气的重要方法。过渡金属硫属化合物(如:硫化钴、硒化镍、硫化钨、硫化钼等)具有优异的水分解催化性能,受到了广泛的关注。相关研究表明,此类催化剂的形貌、结构、组成等因素均对其催化活性具有重要的影响。比如纳米线等具有高比表面积的形貌结构有利于催化剂暴露更多的活性位点,从而提高其催化能力。利用化学手段调控催化剂的组分是另一种优化催化剂性能的重要方法。当前,金属离子掺杂被广泛应用于增强此类催化剂的催化性能。例如,X.P. Sun等人报道了Fe掺杂的NiSe纳米片,表现出优异的电催化分解水性能(Chem. Commun. 52 (2016) 4529-4532);B. Liu等人报道了Mo掺杂的NiS,具有优良的分解水产氢性能(Adv. Mater. 29 (2017)1606521)。但是,尽管当前阳离子掺杂被广泛的应用于调控催化剂性能,采用阴离子掺杂的方式优化催化剂性能的相关报道仍然较少。
众所周知,硫化镍和硒化镍在分解水方面都具有良好的催化性能。而且硫的电负性(χ = 2.58)和硒的电负性(χ = 2.55)非常接近,有利于二者同时和镍化合。我们认为,基于镍、硫、硒三元素之间的协同效应,三组分的Ni-S-Se化合物的催化性能将会得到进一步的改善。同时,以具有多孔结构的碳布作为载体,有助于提高催化剂的比表面积,增强其催化性能。
发明内容
本发明的目的在于提供一种具有高比表面积的碳布负载Ni(S0.41Se0.59)2纳米片阵列的制备方法。本发明提供的这种制备方法,工艺简单,成本较低,所得碳布负载Ni(S0.41Se0.59)2纳米片阵列具有优异的电解水产氢催化性能,是一种优良的电催化剂。
本发明的目的是通过以下技术方案实现的,一种碳布负载Ni(S0.41Se0.59)2纳米片阵列的制备方法,包括以下步骤:
1)按照一定摩尔比分别称取Ni(NO3)2.6H2O, NH4F 和尿素并溶于去离子水中;
2)将步骤1所得混合溶液转移至聚四氟乙烯反应釜中,同时加入预先裁剪好的条状碳 布;
3)将反应釜放置到烘箱中加热后得到碳布负载的Ni(OH)2纳米片阵列;
4)将步骤3所得负载Ni(OH)2的放到石英舟一端,并在另一端加入一定摩尔比的硫粉和硒粉混合物;
5)将石英舟放入氮气保护的高温管式炉中,注意将盛放硫粉硒粉混合物的一端置于上气流方位,加热后即得到碳布负载Ni(S0.41Se0.59)2纳米片阵列;所述纳米片的长度为3-5微米,厚度为80-100纳米。
本发明的有益效果:
(1)本发明提供了一种新型碳布负载Ni(S0.41Se0.59)2纳米片阵列的制备方法,即首先以 水热法制备碳布负载的Ni(OH)2纳米片阵列,再同时对其进行硫化和硒化反应制得产物。制备方法简单易操作,成本低,具有潜在的大规模应用价值;
(2)本发明制备的产物为碳布负载Ni(S0.41Se0.59)2纳米片阵列,产物形貌尺寸均匀;
(3)本发明制备的碳布负载Ni(S0.41Se0.59)2纳米片阵列对于电催化分解水制备氢气具 有优异的催化性能;
(4)本发明的制备仅需实验室常用的普通设备,不需专用设备,工艺过程简便易行。
附图说明
图1为本发明方法所制备的碳布负载Ni(S0.41Se0.59)2纳米片阵列用美国FEIQUANTA FEG250扫描电子显微镜观察后拍摄的低倍扫描电镜(SEM)照片;
图2为本发明方法所制备的碳布负载Ni(S0.41Se0.59)2纳米片阵列用美国FEIQUANTA FEG250扫描电子显微镜观察后拍摄的高倍扫描电镜(SEM)照片;
图3是本发明方法所制备的碳布负载Ni(S0.41Se0.59)2纳米片阵列的X射线衍射(XRD)图;
图4是本发明方法所制备的碳布负载Ni(S0.41Se0.59)2纳米片阵列的X射线光电子能谱 图;
图5是本发明方法所制备的碳布负载Ni(S0.41Se0.59)2纳米片阵列用辰华660D电化学工 作站测试所得的析氢电流密度-电势图。
具体实施方式
下面通过具体实施实例并结合附图对本发明的内容作进一步详细说明,但这些实施例 并不限制本发明的保护范围。
实施例1
首先将浓度为0.05摩尔每升的硝酸镍,0.1摩尔每升的氟化铵和0.25摩尔每升的尿素 水溶液混合,然后转移至聚四氟乙烯反应釜中并加入预先裁剪好的1*4 cm的条状碳布。将 上述反应物在120摄氏度烘箱中反应6小时,自然降至室温后即得到碳布负载的Ni(OH)2纳 米片阵列。将上述碳布负载的Ni(OH)2纳米片阵列放置在石英舟的一端,并在另一端放上 80mg摩尔比1:3的硫粉和硒粉混合物。将石英舟放入放入氮气保护的高温管式炉中,注意将 盛放硫粉硒粉混合物的一端置于上气流方位,以10摄氏度每分钟的升温速率将管式炉温度 升至450摄氏度并保温反应1.5小时后自然降温至室温后即得到碳布负载Ni(S0.41Se0.59)2纳 米片阵列。
实施例2
首先将浓度为0.05摩尔每升的硝酸镍,0.1摩尔每升的氟化铵和0.25摩尔每升的尿素水溶液混合,然后转移至聚四氟乙烯反应釜中并加入预先裁剪好的1*4 cm的条状碳布。将 上述反应物在110摄氏度烘箱中反应10小时,自然降至室温后即得到碳布负载的Ni(OH)2纳 米片阵列。将上述碳布负载的Ni(OH)2纳米片阵列放置在石英舟的一端,并在另一端放上 100mg摩尔比1:3的硫粉和硒粉混合物。将石英舟放入放入氮气保护的高温管式炉中,注意 将盛放硫粉和硒粉混合物的一端置于上气流方位,以10摄氏度每分钟的升温速率将管式炉 温度升至450摄氏度并保温反应2小时后自然降温至室温后即得到碳布负载Ni(S0.41Se0.59)2 纳米片阵列。
实施例3
使用辰华660D电化学工作站对碳布负载Ni(S0.41Se0.59)2纳米片阵列的电解水催化活性 进行测试。以铂丝为对电极,银/氯化银为参比电极,碳布负载Ni(S0.41Se0.59)2纳米片阵列为工作电极,1.0摩尔每升KOH水溶液为电解质溶液。在-0.6 至0.2 V电压范围内,以5毫安每秒的扫速进行线性伏安扫描,即可得到碳布负载Ni(S0.41Se0.59)2纳米片阵列催化电解水产氢的极化曲线。

Claims (2)

1.一种碳布负载Ni(S0.41Se0.59)2纳米片阵列,所述纳米片的长度为3-5微米,厚度为80-100纳米;
所述碳布负载Ni(S0.41Se0.59)2纳米片阵列的制备方法,步骤如下:
1)采用水热法,以硝酸镍、氟化铵和尿素为反应物制得碳布负载的Ni(OH)2纳米片阵列为前驱体;
2)将步骤1)所得碳布负载的Ni(OH)2纳米片阵列转移至石英舟中的一端,并在另一端放上摩尔比1:3的硫粉和硒粉混合物;将石英舟放入氮气保护的高温管式炉中,将盛放硫粉和硒粉混合物的一端置于上气流方位,以10摄氏度每分钟的升温速率将管式炉温度升至450摄氏度并保温反应后自然降温至室温即得到碳布负载Ni(S0.41Se0.59)2纳米片阵列。
2.一种碳布负载Ni(S0.41Se0.59)2纳米片阵列的制备方法,其特征在于制备方法的步骤如下:
1)采用水热法,以硝酸镍、氟化铵和尿素为反应物制得碳布负载的Ni(OH)2纳米片阵列为前驱体;
2)将步骤1)所得碳布负载的Ni(OH)2纳米片阵列转移至石英舟中的一端,并在另一端放上摩尔比1:3的硫粉和硒粉混合物;将石英舟放入氮气保护的高温管式炉中,将盛放硫粉和硒粉混合物的一端置于上气流方位,以10摄氏度每分钟的升温速率将管式炉温度升至450摄氏度并保温反应后自然降温至室温即得到碳布负载Ni(S0.41Se0.59)2纳米片阵列。
CN201710681126.3A 2017-08-10 2017-08-10 一种碳布负载Ni-S-Se纳米片阵列的制备方法 Expired - Fee Related CN107523845B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710681126.3A CN107523845B (zh) 2017-08-10 2017-08-10 一种碳布负载Ni-S-Se纳米片阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710681126.3A CN107523845B (zh) 2017-08-10 2017-08-10 一种碳布负载Ni-S-Se纳米片阵列的制备方法

Publications (2)

Publication Number Publication Date
CN107523845A CN107523845A (zh) 2017-12-29
CN107523845B true CN107523845B (zh) 2019-06-11

Family

ID=60681016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710681126.3A Expired - Fee Related CN107523845B (zh) 2017-08-10 2017-08-10 一种碳布负载Ni-S-Se纳米片阵列的制备方法

Country Status (1)

Country Link
CN (1) CN107523845B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493297B (zh) * 2018-03-23 2020-03-10 福州大学 一种三维中空硒硫化镍纳米框催化剂的制备方法
CN108439549B (zh) * 2018-04-03 2021-07-09 北京工业大学 一种阵列结构过渡金属硒化物电极的制备及其在电解水中的应用
CN109092332A (zh) * 2018-09-30 2018-12-28 河北工业大学 一种基于溶液法制备碳布负载硒化镍的方法
CN109647447A (zh) * 2019-01-14 2019-04-19 济南大学 一种Ni(OH)2-NiTe2复合电解水催化剂的制备方法
CN110021757B (zh) * 2019-03-14 2021-12-17 天津大学 一种生长于泡沫镍表面的硫硒化镍薄膜包裹的纳米棒材料的制备方法
CN109772386A (zh) * 2019-03-22 2019-05-21 哈尔滨工业大学 自支撑结构的NiPS3纳米片的制备方法及其应用
CN110180569A (zh) * 2019-05-23 2019-08-30 武汉科技大学 片状碳化二钼/过渡金属异质结电催化复合材料及其制法
CN111111706A (zh) * 2019-07-24 2020-05-08 天津大学 生长于泡沫镍表面的钨掺杂的硫硒化镍薄膜包裹的硫硒化镍纳米棒及其制备方法和应用
CN111604061A (zh) * 2020-05-11 2020-09-01 同济大学 一种毛虫状镍钴硫化物纳米阵列及其合成与应用
CN112429706B (zh) * 2020-11-16 2022-03-29 安阳师范学院 镍硫硒三元化合物纳米棒阵列电极材料及其制备方法
CN114411132A (zh) * 2022-01-25 2022-04-29 安徽理工大学 一种类玉米棒异质结构的钴镍合金颗粒亲水碳布复合材料的制备方法
CN116651402B (zh) * 2023-07-07 2024-04-05 中国矿业大学 一种整体式co2吸附剂及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105947995A (zh) * 2016-04-22 2016-09-21 国家纳米科学中心 表面富硒的NiSe2纳米片、其制备方法及用途
CN106298285A (zh) * 2016-09-26 2017-01-04 安徽师范大学 一种在碳布上生长的氢氧化镍@二氧化锰核壳异质结构纳米片阵列材料、制备方法及其应用
CN106865506A (zh) * 2017-01-20 2017-06-20 中国科学院合肥物质科学研究院 一种组成可控的镍钴化合物纳米线及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105947995A (zh) * 2016-04-22 2016-09-21 国家纳米科学中心 表面富硒的NiSe2纳米片、其制备方法及用途
CN106298285A (zh) * 2016-09-26 2017-01-04 安徽师范大学 一种在碳布上生长的氢氧化镍@二氧化锰核壳异质结构纳米片阵列材料、制备方法及其应用
CN106865506A (zh) * 2017-01-20 2017-06-20 中国科学院合肥物质科学研究院 一种组成可控的镍钴化合物纳米线及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"NiS2 nanosheets array grown on carbon cloth as an efficient 3D hydrogen evolution cathode";Chun Tang et al.;《electrochimica acta》;20141210;第153卷(第20期);第508-514页

Also Published As

Publication number Publication date
CN107523845A (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
CN107523845B (zh) 一种碳布负载Ni-S-Se纳米片阵列的制备方法
Jia et al. Ni 3 S 2/Cu–NiCo LDH heterostructure nanosheet arrays on Ni foam for electrocatalytic overall water splitting
Zhang et al. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting
Li et al. Rational design of cocatalyst system for improving the photocatalytic hydrogen evolution activity of graphite carbon nitride
CN107587161B (zh) 一种棒状NiFeSe/C电解水催化剂的制备方法
CN105780049B (zh) 一种痕量铂修饰硫化钼高效析氢催化剂及其制备方法
CN113235104B (zh) 一种基于zif-67的镧掺杂氧化钴催化剂及其制备方法与应用
CN104399494A (zh) 一种碳包覆硫化钴材料、制备方法及其在水裂解产氢方面的应用
CN108893756B (zh) 一种Ni3N NSs/NF纳米球的合成方法及其应用
CN110124673B (zh) 一种硼诱导非晶层状双氢氧化物电催化剂及其制备与应用
CN105948139B (zh) 一种二维CuCo2S4纳米片及其制备方法和作为电催化剂在氧还原和析氧反应中的应用
CN109967100A (zh) 一种金属掺杂的CoP3、其制备方法及应用
CN109647447A (zh) 一种Ni(OH)2-NiTe2复合电解水催化剂的制备方法
CN110026208A (zh) 异质结构的铁镍基层状双氢氧化物@二硫化三镍复合物阵列电催化剂及其制备方法和应用
CN109628951A (zh) 一种硫化镍析氢电催化剂及其制备方法与应用
Wang et al. A highly efficient electrochemical oxygen evolution reaction catalyst constructed from a S-treated two-dimensional Prussian blue analogue
Yu et al. Nickel foam derived nitrogen doped nickel sulfide nanowires as an efficient electrocatalyst for the hydrogen evolution reaction
CN108479791B (zh) 一种Co/Ni-MoO2复合电解水催化剂的制备方法
CN109585861A (zh) 一种双功能的一氧化钴与氮掺杂碳原位复合电极的制备方法
CN112899723A (zh) 金属有机框架衍生的铁镍金属硫化物催化剂及制备与应用
CN105177621A (zh) 一种钼氧簇修饰的二硫化三镍微米空心球催化剂及其应用
CN110219013A (zh) 一种自支撑氮修饰镍铁氢氧化物的电极材料
CN109585856A (zh) 一种双功能的硫化钴与硫、氮掺杂碳原位复合电极的制备方法
CN113463128A (zh) 水分解催化剂及其制备方法和应用
Xu et al. In situ synthesis of NiSe@ CoP core–shell nanowire arrays on nickel foam as a highly efficient and robust electrode for electrochemical hydrogen generation in both alkaline and acidic media

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190611

Termination date: 20200810