CN107513685B - 一种立方相Co基氧化物薄膜的制备方法 - Google Patents

一种立方相Co基氧化物薄膜的制备方法 Download PDF

Info

Publication number
CN107513685B
CN107513685B CN201710619744.5A CN201710619744A CN107513685B CN 107513685 B CN107513685 B CN 107513685B CN 201710619744 A CN201710619744 A CN 201710619744A CN 107513685 B CN107513685 B CN 107513685B
Authority
CN
China
Prior art keywords
yco
film
cubic phase
substrate
polycrystalline ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710619744.5A
Other languages
English (en)
Other versions
CN107513685A (zh
Inventor
虞澜
胡建力
宋世金
康冶
刘安安
黄杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201710619744.5A priority Critical patent/CN107513685B/zh
Publication of CN107513685A publication Critical patent/CN107513685A/zh
Application granted granted Critical
Publication of CN107513685B publication Critical patent/CN107513685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明涉及一种立方相Co基氧化物薄膜的制备方法,属于功能薄膜材料技术领域。本发明两步法制备立方相Sr3YCo4O10.5+δ薄膜,首先制备Sr3YCo4O10.5+δ多晶陶瓷靶材,然后利用脉冲激光在单晶衬底上沉积Sr3YCo4O10.5+δ薄膜,在氧压条件下进行原位退火得到立方相结构的Sr3YCo4O10.5+δ薄膜。本发明方法简单易行,制备出的立方相Sr3YCo4O10.5+δ薄膜,便于研究Sr3YCo4O10.5+δ薄膜的激光感生横向热电效应反映其各向异性的本征性能及磁性性能。

Description

一种立方相Co基氧化物薄膜的制备方法
技术领域
本发明涉及一种立方相Co基氧化物薄膜的制备方法,属于功能薄膜材料技术领域。
背景技术
复杂钙钛矿结构的Sr3YCo4O10.5+δ由于其展现的内部Co离子自旋态转变、室温铁磁性及热电性能,且在高温、氧化环境下物理性能稳定,制备成本低、无毒性等优点,受到广泛关注。其晶体结构是由CoO6八面体层和氧缺位CoO4+δ四面体层沿c轴交替排列,显现出A位有序即ab面与c轴方向Sr2+和Y3+按-Sr-Y-Y-Sr-有序排列以及氧空位有序排列,正由于CoO4+δ四面体氧缺位层的存在,Sr3YCo4O10.5+δ材料本身处于缺氧的状态,使Sr3YCo4O10.5+δ结构的调控成为了可能。
目前还未有立方相Co基氧化物薄膜(Sr3YCo4O10.5+δ薄膜)相结构的制备研究。
发明内容
本发明针对现有技术的不足,提供一种立方相Co基氧化物薄膜的制备方法,立方相Sr3YCo4O10.5+δ薄膜结构便于更深地研究激光感生热电效应即薄膜本身各向异性和磁性性能。
一种立方相Co基氧化物薄膜的制备方法,具体步骤为:
(1)制备Sr3YCo4O10.5+δ多晶陶瓷靶材:按照化学式Sr3YCo4O10.5+δ的化学计量比将SrCO3粉末、Y2O3粉末、Co3O4粉末混合均匀,研磨并压制成型,然后置于温度为950~1180℃的条件下进行一次烧结15~24h,冷却,研磨并压制成型,再置于温度为950~1180℃的条件下进行二次烧结15~24h,冷却得到Sr3YCo4O10.5+δ多晶陶瓷靶材;
(2)清洗衬底:依次用丙酮、无水乙醇清洗平衬底,重复2~3次即得清洗后的平衬底;
(3)将步骤(1)所得Sr3YCo4O10.5+δ多晶陶瓷靶材装入脉冲激光沉积的旋转靶位,将步骤(2)所得清洗后的平衬底置于可加热的硅板上,平衬底与Sr3YCo4O10.5+δ多晶陶瓷靶材相向放置且相距4~5cm,抽真空至真空度为1×10-4~1×10-3Pa,匀速升温至衬底温度为760~790℃,在激光波长为248 nm、激光频率为4~6Hz、激光能量100~200mJ、Sr3YCo4O10.5+δ多晶陶瓷靶材自转速度为20~30r/min、镀膜腔内通入氧气至氧压100~150Pa的条件下进行激光烧蚀Sr3YCo4O10.5+δ多晶陶瓷靶材10~20min得到Sr3YCo4O10.5+δ薄膜;
(4)在氧气压为1×103~1×104Pa、温度为760~790℃的条件下,将步骤(3)所得Sr3YCo4O10.5+δ薄膜进行原位退火处理10~20 min即得立方相Co基氧化物薄膜(Sr3YCo4O10.5+δ薄膜);
所述步骤(2)中平衬底为LaAlO3、SrTiO3或MgO的单晶衬底。
Sr3YCo4O10.5+δ材料本身处于缺氧的状态,当激光能量低、生长及退火温度低时,成膜较慢,生长及退火环境中的氧能够进入Sr3YCo4O10.5+δ薄膜结构中的CoO4+δ四面体缺氧层,使氧充满缺氧层, Sr3YCo4O10.5+δ薄膜结构为立方相。
本发明的有益效果:现有技术中Sr3YCo4O10.5+δ薄膜的结构仅有四方相,本发明可制备出立方相Sr3YCo4O10.5+δ薄膜,便于研究Sr3YCo4O10.5+δ薄膜的激光感生横向热电效应反映其各向异性的本征性能及磁性性能,且本发明方法简单易行。
附图说明
图1为实施例1制备的立方相Sr3YCo4O10.5+δ薄膜与立方相标准PDF#38-1148卡片XRD对比图;
图2为实施例2制备的立方相Sr3YCo4O10.5+δ薄膜与立方相标准PDF#38-1148卡片XRD对比图。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种立方相Co基氧化物薄膜的制备方法,具体步骤为:
(1)制备Sr3YCo4O10.5+δ多晶陶瓷靶材:按照化学式Sr3YCo4O10.5+δ的化学计量比将SrCO3粉末、Y2O3粉末、Co3O4粉末混合均匀,研磨2h并压制成圆片(圆片的直径为20mm、厚度为3mm),然后置于温度为1180℃的条件下进行一次烧结24h,冷却,研磨并压制成圆片(圆片的直径为20mm、厚度为3mm),再置于温度为1180℃的条件下进行二次烧结24h,冷却得到Sr3YCo4O10.5+δ多晶陶瓷靶材;
(2)清洗衬底:对LaAlO3(100)单晶平衬底按照丙酮超声清洗8min、用无水酒精超声清洗8min,两者时间一致的顺序各超声清洗1次为一个周期,重复3个周期,即得到清洗后的LaAlO3(100)单晶平衬底;
(3)将步骤(1)所得Sr3YCo4O10.5+δ多晶陶瓷靶材装入脉冲激光沉积的旋转靶位,将步骤(2)所得清洗后的LaAlO3(100)单晶平衬底置于可加热的硅板上,LaAlO3(100)单晶平衬底与Sr3YCo4O10.5+δ多晶陶瓷靶材相向放置且相距4cm,镀膜腔利用机械泵及分子泵抽真空至真空度为1×10-4Pa,以0.5℃/2min升温速率匀速升温至衬底温度为790℃作为生长温度,关闭分子泵;在激光波长为248 nm、激光频率为4Hz、激光能量200mJ、Sr3YCo4O10.5+δ多晶陶瓷靶材自转速度为20r/min、镀膜腔内通入氧气至氧压100Pa的条件下利用KrF准分子激光器进行激光烧蚀Sr3YCo4O10.5+δ多晶陶瓷靶材20min得到Sr3YCo4O10.5+δ薄膜;
(4)在氧气压为1×104Pa、温度为790℃的条件下,将步骤(3)所得Sr3YCo4O10.5+δ薄膜进行原位退火处理20min即得立方相Sr3YCo4O10.5+δ薄膜;
本实施例LaAlO3(100)单晶衬底上生长的立方相Sr3YCo4O10.5+δ薄膜与立方相标准PDF#38-1148卡片XRD对比图如图1所示,从图1可知,Sr3YCo4O10.5+δ薄膜在LaAlO3(100)衬底上均出现了与立方相PDF卡片对应的单峰并未有四方相的分裂峰出现,表明所得薄膜为立方相结构。
实施例2:一种立方相Co基氧化物薄膜的制备方法,具体步骤为:
(1)制备Sr3YCo4O10.5+δ多晶陶瓷靶材:按照化学式Sr3YCo4O10.5+δ的化学计量比将SrCO3粉末、Y2O3粉末、Co3O4粉末混合均匀,研磨2h并压制成圆片(圆片的直径为20mm、厚度为3mm),然后置于温度为1180℃的条件下进行一次烧结15h,冷却,研磨并压制成圆片(圆片的直径为20mm、厚度为3mm),再置于温度为1180℃的条件下进行二次烧结15h,冷却得到Sr3YCo4O10.5+δ多晶陶瓷靶材;
(2)清洗衬底:对LaAlO3(100)单晶平衬底按照丙酮超声清洗8min、用无水酒精超声清洗8min,两者时间一致的顺序各超声清洗1次为一个周期,重复3个周期,即得到清洗后的LaAlO3(100)单晶平衬底;
(3)将步骤(1)所得Sr3YCo4O10.5+δ多晶陶瓷靶材装入脉冲激光沉积的旋转靶位,将步骤(2)所得清洗后的LaAlO3(100)单晶平衬底置于可加热的硅板上,LaAlO3(100)单晶平衬底与Sr3YCo4O10.5+δ多晶陶瓷靶材相向放置且相距4cm,镀膜腔利用机械泵及分子泵抽真空至真空度为2×10-4Pa,以0.5℃/2min升温速率匀速升温至衬底温度为760℃作为生长温度,关闭分子泵;在激光波长为248 nm、激光频率为4Hz、激光能量200mJ、Sr3YCo4O10.5+δ多晶陶瓷靶材自转速度为20r/min、镀膜腔内通入氧气至氧压100Pa的条件下利用KrF准分子激光器进行激光烧蚀Sr3YCo4O10.5+δ多晶陶瓷靶材10min得到Sr3YCo4O10.5+δ薄膜;
(4)在氧气压为1×104Pa、温度为760℃的条件下,将步骤(3)所得Sr3YCo4O10.5+δ薄膜进行原位退火处理20min即得立方相Sr3YCo4O10.5+δ薄膜;
本实施例LaAlO3(100)单晶衬底上生长的立方相Sr3YCo4O10.5+δ薄膜与立方相标准PDF卡片XRD#38-1148对比图如图2所示,从图2可知,Sr3YCo4O10.5+δ薄膜在LaAlO3(100)衬底上均出现了与立方相PDF卡片对应的单峰并未有四方相的分裂峰出现,表明所得薄膜为立方相结构。
实施例3:一种立方相Co基氧化物薄膜的制备方法,具体步骤为:
(1)制备Sr3YCo4O10.5+δ多晶陶瓷靶材:按照化学式Sr3YCo4O10.5+δ的化学计量比将SrCO3粉末、Y2O3粉末、Co3O4粉末混合均匀,研磨2h并压制成圆片(圆片的直径为20mm、厚度为3mm),然后置于温度为950℃的条件下进行一次烧结24h,冷却,研磨并压制成圆片(圆片的直径为20mm、厚度为3mm),再置于温度为950℃的条件下进行二次烧结24h,冷却得到Sr3YCo4O10.5+δ多晶陶瓷靶材;
(2)清洗衬底:对MgO(111)单晶平衬底按照丙酮超声清洗5min、用无水酒精超声清洗5min,两者时间一致的顺序各超声清洗1次为一个周期,重复2个周期,即得到清洗后的MgO(111)单晶平衬底;
(3)将步骤(1)所得Sr3YCo4O10.5+δ多晶陶瓷靶材装入脉冲激光沉积的旋转靶位,将步骤(2)所得清洗后的MgO(111)单晶平衬底置于可加热的硅板上,MgO(111)单晶平衬底与Sr3YCo4O10.5+δ多晶陶瓷靶材相向放置且相距5cm,镀膜腔利用机械泵及分子泵抽真空至真空度为1×10-3Pa,以0.5℃/2min升温速率匀速升温至衬底温度为770℃作为生长温度,关闭分子泵;在激光波长为248nm、激光频率为5 Hz、激光能量100mJ、Sr3YCo4O10.5+δ多晶陶瓷靶材自转速度为30r/min、镀膜腔内通入氧气至氧压130Pa的条件下利用KrF准分子激光器进行激光烧蚀Sr3YCo4O10.5+δ多晶陶瓷靶材15min得到Sr3YCo4O10.5+δ薄膜;
(4)在氧气压为1×103Pa、温度为770℃的条件下,将步骤(3)所得Sr3YCo4O10.5+δ薄膜进行原位退火处理 15 min即得立方相Sr3YCo4O10.5+δ薄膜;
从本实施例MgO(111)单晶平衬底上生长的立方相Sr3YCo4O10.5+δ薄膜与立方相标准PDF#38-1148卡片XRD对比可知,Sr3YCo4O10.5+δ薄膜在MgO(111)衬底上均出现了与立方相PDF卡片对应的单峰并未有四方相的分裂峰出现,表明所得薄膜为立方相结构。
实施例4:一种立方相Co基氧化物薄膜的制备方法,具体步骤为:
(1)制备Sr3YCo4O10.5+δ多晶陶瓷靶材:按照化学式Sr3YCo4O10.5+δ的化学计量比将SrCO3粉末、Y2O3粉末、Co3O4粉末混合均匀,研磨2h并压制成圆片(圆片的直径为20mm、厚度为3mm),然后置于温度为1100℃的条件下进行一次烧结15h,冷却,研磨并压制成圆片(圆片的直径为20mm、厚度为3mm),再置于温度为1100℃的条件下进行二次烧结15h,冷却得到Sr3YCo4O10.5+δ多晶陶瓷靶材;
(2)清洗衬底:对SrTiO3(100)单晶平衬底按照丙酮超声清洗6min、用无水酒精超声清洗6min,两者时间一致的顺序各超声清洗1次为一个周期,重复2个周期,即得到清洗后的SrTiO3(100)单晶平衬底;
(3)将步骤(1)所得Sr3YCo4O10.5+δ多晶陶瓷靶材装入脉冲激光沉积的旋转靶位,将步骤(2)所得清洗后的SrTiO3(100)单晶平衬底置于可加热的硅板上,SrTiO3(100)单晶平衬底与Sr3YCo4O10.5+δ多晶陶瓷靶材相向放置且相距4.5cm,镀膜腔利用机械泵及分子泵抽真空至真空度为5×10-4Pa,以0.5℃/2min升温速率匀速升温至衬底温度为760℃作为生长温度,关闭分子泵;在激光波长为248nm、激光频率为4Hz、激光能量140mJ、Sr3YCo4O10.5+δ多晶陶瓷靶材自转速度为25r/min、镀膜腔内通入氧气至氧压140Pa的条件下利用KrF准分子激光器进行激光烧蚀Sr3YCo4O10.5+δ多晶陶瓷靶材12min得到Sr3YCo4O10.5+δ薄膜;
(4)在氧气压为5×103Pa、温度为760℃的条件下,将步骤(3)所得Sr3YCo4O10.5+δ薄膜进行原位退火处理12min即得立方相Sr3YCo4O10.5+δ薄膜;
从本实施例SrTiO3(100)单晶平衬底上生长的立方相Sr3YCo4O10.5+δ薄膜与立方相标准PDF#38-1148卡片XRD对比可知,Sr3YCo4O10.5+δ薄膜在SrTiO3(100)衬底上均出现了与立方相PDF卡片对应的单峰并未有四方相的分裂峰出现,表明所得薄膜为立方相结构。
实施例5:一种立方相Co基氧化物薄膜的制备方法,具体步骤为:
(1)制备Sr3YCo4O10.5+δ多晶陶瓷靶材:按照化学式Sr3YCo4O10.5+δ的化学计量比将SrCO3粉末、Y2O3粉末、Co3O4粉末混合均匀,研磨2h并压制成圆片(圆片的直径为20mm、厚度为3mm),然后置于温度为1100℃的条件下进行一次烧结20h,冷却,研磨并压制成圆片(圆片的直径为20mm、厚度为3mm),再置于温度为1100℃的条件下进行二次烧结20h,冷却得到Sr3YCo4O10.5+δ多晶陶瓷靶材;
(2)清洗衬底:对SrTiO3(100)单晶平衬底按照丙酮超声清洗10min、用无水酒精超声清洗10min,两者时间一致的顺序各超声清洗1次为一个周期,重复2个周期,即得到清洗后的SrTiO3(100)单晶平衬底;
(3)将步骤(1)所得Sr3YCo4O10.5+δ多晶陶瓷靶材装入脉冲激光沉积的旋转靶位,将步骤(2)所得清洗后的SrTiO3(100)单晶平衬底置于可加热的硅板上,SrTiO3(100)单晶平衬底与Sr3YCo4O10.5+δ多晶陶瓷靶材相向放置且相距4cm,镀膜腔利用机械泵及分子泵抽真空至真空度为8×10-4Pa,以0.5℃/2min升温速率匀速升温至衬底温度为780℃作为生长温度,关闭分子泵;在激光波长为248 nm、激光频率为6Hz、激光能量160mJ、Sr3YCo4O10.5+δ多晶陶瓷靶材自转速度为25r/min、镀膜腔内通入氧气至氧压150Pa的条件下利用KrF准分子激光器进行激光烧蚀Sr3YCo4O10.5+δ多晶陶瓷靶材10min得到Sr3YCo4O10.5+δ薄膜;
(4)在氧气压为5×103Pa、温度为780℃的条件下,将步骤(3)所得Sr3YCo4O10.5+δ薄膜进行原位退火处理10min即得立方相Sr3YCo4O10.5+δ薄膜;
从本实施例SrTiO3(100)单晶平衬底上生长的立方相Sr3YCo4O10.5+δ薄膜与立方相标准PDF#38-1148卡片XRD对比可知,Sr3YCo4O10.5+δ薄膜在SrTiO3(100)衬底上均出现了与立方相PDF卡片对应的单峰并未有四方相的分裂峰出现,表明所得薄膜为立方相结构。

Claims (2)

1.一种立方相Co基氧化物薄膜的制备方法,其特征在于,具体步骤为:
(1)制备Sr3YCo4O10.5+δ多晶陶瓷靶材:按照化学式Sr3YCo4O10.5+δ的化学计量比将SrCO3粉末、Y2O3粉末、Co3O4粉末混合均匀,研磨并压制成型,然后置于温度为950~1180℃的条件下进行一次烧结15~24h,冷却,研磨并压制成型,再置于温度为950~1180℃的条件下进行二次烧结15~24h,冷却得到Sr3YCo4O10.5+δ多晶陶瓷靶材;
(2)清洗衬底:依次用丙酮、无水乙醇清洗平衬底,重复2~3次即得清洗后的平衬底;
(3)将步骤(1)所得Sr3YCo4O10.5+δ多晶陶瓷靶材装入脉冲激光沉积的旋转靶位,将步骤(2)所得清洗后的平衬底置于可加热的硅板上,平衬底与Sr3YCo4O10.5+δ多晶陶瓷靶材相向放置且相距4~5cm,抽真空至真空度为1×10-4~1×10-3Pa,匀速升温至衬底温度为760~790℃,在激光波长为248nm、激光频率为4~6Hz、激光能量100~200mJ、Sr3YCo4O10.5+δ多晶陶瓷靶材自转速度为20~30r/min、镀膜腔内通入氧气至氧压100~150Pa的条件下进行激光烧蚀Sr3YCo4O10.5+δ多晶陶瓷靶材10~20min得到Sr3YCo4O10.5+δ薄膜;
(4)在氧气压为1×103~1×104Pa、温度为760~790℃的条件下,将步骤(3)所得Sr3YCo4O10.5+δ薄膜进行原位退火处理10~20 min即得立方相Co基氧化物薄膜。
2.根据权利要求1所述立方相Co基氧化物薄膜的制备方法,其特征在于:步骤(2)中平衬底为LaAlO3、SrTiO3或MgO的单晶衬底。
CN201710619744.5A 2017-07-26 2017-07-26 一种立方相Co基氧化物薄膜的制备方法 Active CN107513685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710619744.5A CN107513685B (zh) 2017-07-26 2017-07-26 一种立方相Co基氧化物薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710619744.5A CN107513685B (zh) 2017-07-26 2017-07-26 一种立方相Co基氧化物薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN107513685A CN107513685A (zh) 2017-12-26
CN107513685B true CN107513685B (zh) 2019-07-16

Family

ID=60722772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710619744.5A Active CN107513685B (zh) 2017-07-26 2017-07-26 一种立方相Co基氧化物薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN107513685B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103324A (zh) * 2018-06-26 2018-12-28 昆明理工大学 一种热感生电压材料及其应用
CN108914065B (zh) * 2018-08-01 2020-11-13 研创应用材料(赣州)股份有限公司 一种rpd用多元导电氧化物材料及其制备方法
CN114656244A (zh) * 2022-03-30 2022-06-24 昆明理工大学 一种调制SrCoO3-δ体系室温铁磁性的方法
CN115000228A (zh) * 2022-05-13 2022-09-02 厦门大学 一种高性能Ga2O3薄膜有源日盲紫外探测器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4949668B2 (ja) * 2004-12-09 2012-06-13 富士フイルム株式会社 セラミックス膜の製造方法及びセラミックス膜を含む構造物
CN103641465B (zh) * 2013-12-02 2016-09-21 昆明理工大学 一种多孔陶瓷的制备方法
CN106350773B (zh) * 2016-09-09 2018-08-10 昆明理工大学 一种增大层状钴基氧化物薄膜高温热电势的方法

Also Published As

Publication number Publication date
CN107513685A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
CN107513685B (zh) 一种立方相Co基氧化物薄膜的制备方法
Wang et al. High performance Aurivillius-type bismuth titanate niobate (Bi3TiNbO9) piezoelectric ceramics for high temperature applications
CN107244911B (zh) 一种ito管状靶材的制备方法
Jiang et al. High performance Aurivillius type Na 0.5 Bi 4.5 Ti 4 O 15 piezoelectric ceramics with neodymium and cerium modification
CN103668060B (zh) 多层同质生长铁酸铋薄膜材料及其制备方法
CN105624778B (zh) 一种快速连续制备大晶畴石墨烯薄膜的方法
Feng et al. Large electrocaloric effect of highly (100)-oriented 0.68 PbMg1/3Nb2/3O3–0.32 PbTiO3 thin films with a Pb (Zr0. 3Ti0. 7) O3/PbOx buffer layer
CN103833354B (zh) 一种固溶改性钛酸铋钠系无铅压电陶瓷及其制备方法
CN101367671A (zh) 用于高温压电器件的无铅双层铁电复合薄膜及其制备方法
Li et al. Enhanced piezoelectricity and excellent thermal stabilities in Nb–Mg co-doped CaBi4Ti4O15 Aurivillius high Curie temperature ceramics
CN101186493A (zh) 一种提高铋层结构压电铁电陶瓷材料致密度的方法
Li et al. Effect of neodymium substitution on crystalline orientation, microstructure and electric properties of sol-gel derived PZT thin films
CN101436597A (zh) 一种用于铁电存储器的铁电薄膜电容及其制备方法
CN104229867A (zh) 一种氧化锌/钌酸锶核壳纳米线及其制备方法
Li et al. Spark plasma sintering of grain-oriented Sr2Bi4Ti5O18 aurivillius phase ceramics
CN102916122A (zh) 一种低漏电流半导体薄膜异质结及制备方法
CN103820760A (zh) 一种钛酸锶钡薄膜及其制备方法和应用
Yu et al. Shift of morphotropic phase boundary in high-performance [111]-oriented epitaxial Pb (Zr, Ti) O3 thin films
CN107287564B (zh) 一种增大syco-314薄膜激光感生电压的方法
CN102719793A (zh) 一种具有高调谐率的钛酸锶铅铁电薄膜及其制备方法
CN104480433A (zh) 在硅衬底上调控铁磁钌酸锶外延薄膜居里温度的方法
Hosokura et al. Orientation-controlled BaTiO 3 thin films fabricated by chemical solution deposition
Tang et al. Ferroelectric and dielectric properties of 0.62 Pb (Mg1/3Nb2/3) O3–0.38 PbTiO3 thin films on La0. 6Sr0. 4CoO3 buffered Si substrates
CN104419895B (zh) 低温下制备具有高度(001)择优取向的钌酸锶薄膜的方法
CN109355625B (zh) 一种CoFe2O4磁性薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant