CN114656244A - 一种调制SrCoO3-δ体系室温铁磁性的方法 - Google Patents

一种调制SrCoO3-δ体系室温铁磁性的方法 Download PDF

Info

Publication number
CN114656244A
CN114656244A CN202210326357.3A CN202210326357A CN114656244A CN 114656244 A CN114656244 A CN 114656244A CN 202210326357 A CN202210326357 A CN 202210326357A CN 114656244 A CN114656244 A CN 114656244A
Authority
CN
China
Prior art keywords
srcoo
phase
temperature
room
ordered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210326357.3A
Other languages
English (en)
Inventor
虞澜
宋宏远
张晓东
霍广鹏
惠玉玉
李毅
武浩荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210326357.3A priority Critical patent/CN114656244A/zh
Publication of CN114656244A publication Critical patent/CN114656244A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/615Specific applications or type of materials composite materials, multilayer laminates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开一种调制SrCoO3‑δ体系室温铁磁性的方法,属于室温铁磁性钴基氧化物相变领域。本发明所述方法通过绘制SrCoO3‑δ 体系的有序化相图,分析SrCoO3‑δ 体系A位、AB位掺杂的有序化相变过程,获得清晰的掺杂效应,从而调制SrCoO3‑δ体系的室温铁磁性;其中,SrCoO3‑δ 体系有序化相图绘制依据室温物相和合成相变,以及有序四方相转变来分析。本发明有助于分析SrCoO3‑δ 体系掺杂的有序化相变过程和调制SrCoO3‑δ 体系的室温铁磁性,对工业生产具有指导意义。

Description

一种调制SrCoO3-δ体系室温铁磁性的方法
技术领域
本发明涉及一种调制SrCoO3-δ体系室温铁磁性的方法,属于室温铁磁性钴基氧化物相变领域。
背景技术
SrCoO3-δ 体系钴基氧化物其独特的结构和物理性能引起了广泛关注,在固体氧化物燃料电池(SOFC),氧透过滤膜,半导体信息处理等方面有广泛的潜在应用价值。Sr位掺Y的Sr3YCo4O10.5+δ 具有特殊的四方层状有序结构和室温铁磁性,目前已知钙钛矿型钴氧化物中最高的铁磁-顺磁转变温度(T c =335 K),从而受到了人们的广泛关注。
SrCoO3-δ (0≤δ≤0.5)体系的氧空位与其晶体结构和物理性质密切相关。当δ=0时,SrCoO3为立方相,随着氧空位δ的增加,SrCoO2.85转变为四方结构,SrCoO2.75为立方相,而SrCoO2.5为正交钙铁石结构。正交钙铁石的SrCoO2.5在653℃转变为六方2H型,920℃转变为立方钙钛矿结构。降温至774℃,回到六方2H型,直至室温难以回到正交钙铁石结构。这主要是因为正交钙铁石结构是亚稳态的,只能通过在液氮中淬火得到。钴离子的价态和自旋态对SrCoO3-δ 体系的磁性,金属-绝缘体转变和自旋态转变具有重要影响,Co3+自旋态(Low-spin, LS, S=0),(Intermediate-spin, IS, S=1),和(High-spin, HS, S=2)。掺杂有利于改善SrCoO3-δ体系的结构稳定性和物理性能,一种新的三价钴氧化物Sr4-x R x Co4O12-δ (R=Y,La系元素)被发现在0.8≤x≤1.0具有特殊室温铁磁性,Tc~335K。Sr3YCo4O10.5+δ 是四方超结构,空间群 (I4/mmm),是由CoO4.25 +δ 四面体层和CoO6八面体层沿C轴交替堆叠,AB面内Sr2+:Y3+=3:1, C轴方向“-Sr-Y-Y-Sr-”排列。室温铁磁性与A位阳离子有序和氧空位有序有关,以及Co3 +的eg轨道有序有关。
在SrCoO3-δ 体系的相变领域,人们往往关注样品相变而容易忽略原料合成的相变和完成有序化及室温铁磁性的重要过程;因此,本发明采用较为便捷的方法对A位、AB位掺杂SrCoO3-δ体系进行有序化相图研究,可获得清晰的掺杂效应,调制SrCoO3-δ体系的室温铁磁性不仅为工业生产起到指导意义,还可以为SrCoO3-δ 体系钴基氧化物的应用提供更好的发展机遇。
发明内容
本发明的目的在于提供一种调制SrCoO3-δ体系室温铁磁性的方法,具体为:通过绘制SrCoO3-δ 体系的有序化相图,分析SrCoO3-δ 体系A位、AB位掺杂的有序化相变过程,获得清晰的掺杂效应,从而调制SrCoO3-δ体系的室温铁磁性;其中,SrCoO3-δ 体系有序化相图绘制依据室温物相和合成相变,以及有序四方相转变来分析。
优选的,绘制SrCoO3-δ 体系的有序化相图包括以下步骤:
(1)对SrCoO3-δ 体系进行A位或AB位梯度掺杂,得到组分梯度化学计量比的样品;
(2)将步骤(1)中所得样品利用X射线衍射快扫和特定角度慢扫,得到各组分室温下物相及有序结构的衍射信息;
(3)将步骤(1)中样品的原料进行热重差示扫描,分析得到各组分合成相变和有序化相变包括三个阶段;
(4)将步骤(1)原料进行质谱分析,得到样品升温时第一阶段原料的脱水和第二阶段SrCO3的相转变和分解;
(5)对相变前后温度烧结的样品利用X射线衍射扫描得到第三阶段SrCoO3-δ 体系样品的相结构演变及有序化演变过程;
(6)根据以上室温相物相和合成相变的结果绘制出SrCoO3-δ 体系有序化相图。
进一步地,步骤(1)A位、AB位掺杂原料的选取范围如下:A位掺杂是稀土元素(例如Y、Er、Ho、Dy、Yb),B位元素是过度金属元素(例如Cu、Mn、Fe、Ni、Cr、Zn)。
进一步地,步骤(1)烧结工艺采用二次烧结工艺,烧结条件为1100℃~1180℃烧结18~24h。
进一步地,步骤(2)X射线衍射电压电流采用30KV/30mA~40KV/40mA;快速扫描角度为10~100°,速度为5~12°/min;慢速扫描角度为33~33.8°、47~48.5°、58.5~60.0°,速度为0.1~0.4°/min。
进一步地,步骤(2)中的室温物相存在六方相、立方钙钛矿、四方超结构,以及(103)、(215)超结构峰。
进一步地,步骤(3)热分析测试原料为20~30mg,测试温度为室温~1200℃,升温速率5~10K/min。
进一步地,步骤(3)的TG-DSC数据分为三个阶段,即原料脱水、SrCO3相转变和分解、SrCoO3-δ 掺杂体系结晶和相转变,包括有序化相变。
进一步地,步骤(4)中的质谱分析测定了H2O和CO2两种挥发物。
进一步地,步骤(5)中样品烧结温度采用步骤(3)中第三阶段的相变前后的温度。
本发明所述SrCoO3-δ 掺杂体系的晶体结构比较复杂,根据掺杂组分的不同可以以六方相、立方钙钛矿结构、室温铁磁性的四方超结构存在,以及各相随温度的相变,通过有序化相图的绘制,进而分析SrCoO3-δ 掺杂体系的有序化相变过程,最终实现调制SrCoO3-δ体系的室温铁磁性。
本发明的有益效果是:
(1)本发明通过有序化相图的绘制,有助于分析该体系的有序化相变过程和清晰的掺杂效应,包括六方相、立方钙钛矿结构、有序四方相,及各相随温度的相变;特别是室温铁磁性的有序四方相的有序化温度,对工业生产有指导意义,也有助于对四方超结构物理机制进行刨析,此方法简要,有新意,重复性好。
(2)本发明对SrCoO3-δ 体系进行稀土掺杂,相图绘制特别采用了原料差热分析的同时进行质谱分析,高效分析相变过程;采用二次烧结工艺,以及表征有序化相变前后的样品,突出有序化转变过程。
(3)本发明相图能够很好的填补SrCoO3-δ 体系原料合成相变领域的空白,对样品的烧结工艺研究具有重要指导意义。
附图说明
图1为实施案例1步骤(2)得到的Sr4-x Y x Co4O12-δ 多晶的XRD图谱; (a) x= 0~1.2,(b) x=1.0, 慢扫分裂峰。
图2为实施案例1步骤(3)得到的Sr4-x Y x Co4O12-δ 合成过程的TG-DSC曲线;(a) x= 0,(b) x=0.4, (c) x=0.6, (d) x=1.0。
图3为实施案例1步骤(4)得到的质谱分析图。
图4为实施案例1步骤(5)得到的Sr4-x Y x Co4O12-δ 多晶在950℃和1180℃烧结的XRD图谱;(a) x= 0, (b) x=0.4, (c) x=0.6, (d) x=1.0。
图5为实施案例1步骤(6)得到的Sr4-x Y x Co4O12-δ (x=0~1.0) 的有序化相图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
本实施例所述一种调制SrCoO3-δ体系室温铁磁性的方法,具体包括以下步骤:
(1)将SrCO3、Co3O4和A位掺杂原料Y2O3,根据元素组分化学计量比(4-x):4:x烧结,烧结工艺为二次烧结,每次烧结的条件均为1180℃烧结24h。
(2)将步骤(1)中所得样品利用X射线衍射扫描和特定角度范围慢扫, X射线衍射电压电流采用30KV/30mA,快速扫描角度为10~100°,速度为12°/min,慢速扫描角度为33~33.8°、47~48.5°、58.5~60.0°,速度为0.4°/min,得到衍射图谱;包括六方相、立方钙钛矿、四方超结构,以及(103)、(215)超结构峰。
(3)将步骤(1)中设计的化学计量比原料30mg混合研磨后,取样进行热重差示扫描,测试TG-DSC曲线,测试温度为室温~1200℃(升温速率10K/min)。TG-DSC曲线分析,分为三个阶段。
(4)将步骤(1)中设计的化学计量比原料进行质谱分析,测试MS曲线,得到样品合成过程中第一阶段原料的脱水和第二阶段SrCO3相转变和分解。
(5)将步骤(3)中分析得到的有序化相变前后温度烧结的Sr4-x Y x Co4O12-δ (分别在950℃烧结24h 和1180℃烧结24h)采用XRD表征分析得到950℃和1180℃烧结温度的室温下物相及有序结构,Sr4-x Y x Co4O12-δ 结晶和相转变(包括四方相1042℃的有序化相变)。
(6)将以上步骤的结果依据室温物相和合成相变,以及四方相室温铁磁性有序化相变来分析出A位掺杂的Sr4-x Y x Co4O12-δ 有序化相图。
图1为本实施例步骤(2)得到的Sr4-x Y x Co4O12-δ 多晶的XRD图谱, (a) x= 0~1.2,(b) x=1.0, 慢扫分裂峰,由图可以看出未掺杂样品为六方单相, 随着Y掺杂量的增加x=0.2时开始出现立方钙钛矿结构,0.8~1.0为有序四方相,且在2θ为20.9°和39.5°左右可以看到(103)和(215)这两个明显的衍射峰,慢扫图谱中在2θ为33.4°、47.8°、59.3°左右出现的强衍射峰都存在分裂,对应四方相中的(204)(220)、(008)(400)、(228)(424)分裂峰,说明此时多晶已全部转化为Sr3YCo4O10.5+δ四方超结构单相(PDF#54-0234)。
图2为本实施例步骤(3)得到的Sr4-x Y x Co4O12-δ 合成过程的TG-DSC曲线,(a) x= 0,(b) x=0.4, (c) x=0.6, (d) x=1.0,由图可以看出原料合成分为三个阶段。阶段Ⅰ室温-670℃,质量损失在1%-3.1%,这主要是由于原料脱水。阶段Ⅱ670℃-930℃,质量损失在15.6%-18.25%,有两个明显的吸热峰分别出现~850℃、~930℃。吸热峰~850℃和~930℃分别对应于SrCO3的相转变和SrCO3的分解。阶段三在930℃-1200℃发生了Sr4-x Y x Co4O12-δ 的结晶和相转变。在x=0、0.4、0.6时先发生六方相的结晶,高温下转变为立方钙钛矿结构。当x=1.0时,没有形成六方和立方相,直接生成四方相,在1042℃的放热峰对应完成有序化形成有序四方相。
图3为本实施例步骤(4)得到的质谱分析图,由图可以看出H2O在102℃左右挥发(曲线Ⅰ)。CO2在680.8℃-969.4℃挥发(曲线Ⅱ),挥发的峰值温度为947.8℃。这验证了第一阶段的脱水和第二阶段SrCo3的分解。
图4为本实施例步骤(5)得到的Sr4-x Y x Co4O12-δ 多晶在950℃和1180℃烧结的XRD图谱;(a) x= 0, (b) x=0.4, (c) x=0.6, (d) x=1.0,由图可以看出各组分在有序化相变前后温度烧结样品的室温物相,进一步证实第三阶段 Sr4-x Y x Co4O12-δ 样品的结晶和相转变。对于x=1.0,在950℃烧结的样品为四方相,1180℃烧结的样品为具有室温铁磁性的有序四方相,这主要由于1042℃完成有序化相变。
图5为本实施例步骤(6)得到的Sr4-x Y x Co4O12-δ (x=0~1.0) 的有序化相图,由图可以清楚的看出在Y掺杂量为0.8~1.0的组分范围内样品直接结晶为四方单相,且在1042℃发生有序化相变,转变为具有室温铁磁性的有序四方相。得到SrCoO3-δ体系A位掺杂Y离子的室温铁磁性组分范围和室温铁磁性相变温度。即通过绘制SrCoO3-δ体系有序化相图,得到Sr4- x Y x Co4O12-δ (x=0~1.0)体系室温铁磁性的有序四方相变温度1042℃和掺杂组分范围0.8~1.0。

Claims (10)

1.一种调制SrCoO3-δ体系室温铁磁性的方法,其特征在于:通过绘制SrCoO3-δ 体系的有序化相图,分析SrCoO3-δ 体系A位、AB位掺杂的有序化相变过程,获得清晰的掺杂效应,从而调制SrCoO3-δ体系的室温铁磁性;其中,SrCoO3-δ 体系有序化相图绘制依据室温物相和合成相变,以及有序四方相转变来分析。
2.根据权利要求1所述调制SrCoO3-δ体系室温铁磁性的方法,其特征在于,绘制SrCoO3-δ 体系的有序化相图包括以下步骤:
(1)对SrCoO3-δ 体系进行A位或AB位梯度掺杂,得到组分梯度化学计量比的样品;
(2)将步骤(1)中所得样品利用X射线衍射快扫和特定角度慢扫,得到各组分室温下物相及有序结构的衍射信息;
(3)将步骤(1)中样品的原料进行热重差示扫描,分析得到各组分合成相变和有序化相变包括三个阶段;
(4)将步骤(1)原料进行质谱分析,得到样品升温时第一阶段原料的脱水和第二阶段SrCO3的相转变和分解;
(5)对相变前后温度烧结的样品利用X射线衍射扫描得到第三阶段SrCoO3-δ 体系样品的相结构演变及有序化演变过程;
(6)根据以上室温相物相和合成相变的结果绘制出SrCoO3-δ 体系有序化相图。
3.根据权利要求1所述调制SrCoO3-δ体系室温铁磁性的方法,其特征在于:步骤(1)A位、AB位掺杂原料的选取范围如下:A位掺杂稀土元素,B位掺杂过度金属元素。
4.根据权利要求1所述调制SrCoO3-δ体系室温铁磁性的方法,其特征在于:步骤(1)烧结工艺采用二次烧结工艺,烧结条件为1100℃~1180℃烧结18~24h。
5.根据权利要求1所述调制SrCoO3-δ体系室温铁磁性的方法,其特征在于:步骤(2)X射线衍射电压电流采用30KV/30mA~40KV/40mA;快速扫描角度为10~100°,速度为5~12°/min;慢速扫描角度为33~33.8°、47~48.5°、58.5~60.0°,速度为0.1~0.4°/min。
6.根据权利要求1所述调制SrCoO3-δ体系室温铁磁性的方法,其特征在于:步骤(2)中的室温物相存在六方相、立方钙钛矿、四方超结构,以及(103)、(215)超结构峰。
7.根据权利要求1所述调制SrCoO3-δ体系室温铁磁性的方法,其特征在于:步骤(3)热分析测试原料为20~30mg,测试温度为室温~1200℃,升温速率5~10K/min。
8.根据权利要求1所述调制SrCoO3-δ体系室温铁磁性的方法,其特征在于:步骤(3)的TG-DSC数据分为三个阶段,即原料脱水、SrCO3相转变和分解、SrCoO3-δ 掺杂体系结晶和相转变,包括有序化相变。
9.根据权利要求1所述调制SrCoO3-δ体系室温铁磁性的方法,其特征在于:步骤(4)中的质谱分析测定了H2O和CO2两种挥发物。
10.根据权利要求1所述调制SrCoO3-δ体系室温铁磁性的方法,其特征在于:步骤(5)中样品烧结温度采用步骤(3)中第三阶段的相变前后的温度。
CN202210326357.3A 2022-03-30 2022-03-30 一种调制SrCoO3-δ体系室温铁磁性的方法 Pending CN114656244A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210326357.3A CN114656244A (zh) 2022-03-30 2022-03-30 一种调制SrCoO3-δ体系室温铁磁性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210326357.3A CN114656244A (zh) 2022-03-30 2022-03-30 一种调制SrCoO3-δ体系室温铁磁性的方法

Publications (1)

Publication Number Publication Date
CN114656244A true CN114656244A (zh) 2022-06-24

Family

ID=82033908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210326357.3A Pending CN114656244A (zh) 2022-03-30 2022-03-30 一种调制SrCoO3-δ体系室温铁磁性的方法

Country Status (1)

Country Link
CN (1) CN114656244A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353151A (zh) * 2022-08-24 2022-11-18 华北电力大学 一种稀土钴基氧化物电子相变材料的合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103641465A (zh) * 2013-12-02 2014-03-19 昆明理工大学 一种多孔陶瓷的制备方法
CN105761870A (zh) * 2016-03-15 2016-07-13 昆明理工大学 一种室温铁磁磁性半导体材料及应用
CN107513685A (zh) * 2017-07-26 2017-12-26 昆明理工大学 一种立方相Co基氧化物薄膜的制备方法
US20190100850A1 (en) * 2017-10-03 2019-04-04 Xerion Advanced Battery Corporation Electroplating Transitional Metal Oxides
CN110010208A (zh) * 2019-04-22 2019-07-12 东北大学 V2O5-CaO-Cr2O3三元系相图的建立方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103641465A (zh) * 2013-12-02 2014-03-19 昆明理工大学 一种多孔陶瓷的制备方法
CN105761870A (zh) * 2016-03-15 2016-07-13 昆明理工大学 一种室温铁磁磁性半导体材料及应用
CN107513685A (zh) * 2017-07-26 2017-12-26 昆明理工大学 一种立方相Co基氧化物薄膜的制备方法
US20190100850A1 (en) * 2017-10-03 2019-04-04 Xerion Advanced Battery Corporation Electroplating Transitional Metal Oxides
CN110010208A (zh) * 2019-04-22 2019-07-12 东北大学 V2O5-CaO-Cr2O3三元系相图的建立方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张晓东等: "Cu掺杂对Sr3YCo4-xCuxO10.5+&多晶的结构与物理性能的影响", 《有色金属工程》, vol. 12, no. 1, 31 January 2022 (2022-01-31), pages 1 - 2 *
陈伟庆等: "《冶金工程实验技术》", 冶金工业出版社, pages: 220 - 221 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353151A (zh) * 2022-08-24 2022-11-18 华北电力大学 一种稀土钴基氧化物电子相变材料的合成方法

Similar Documents

Publication Publication Date Title
Choi et al. Reversal of the Lattice Structure in SrCoO x Epitaxial Thin Films Studied by Real-Time<? format?> Optical Spectroscopy and First-Principles Calculations
Li et al. Systematic investigation on structure stability and oxygen permeability of Sr-doped BaCo0. 7Fe0. 2Nb0. 1O3− δ ceramic membranes
Nguyen et al. Crystal structure and magnetic properties of LaFe1-xNixO3 nanomaterials prepared via a simple co-precipitation method
CN114656244A (zh) 一种调制SrCoO3-δ体系室温铁磁性的方法
Carretero-Genevrier et al. Single crystalline La0. 7Sr0. 3MnO3 molecular sieve nanowires with high temperature ferromagnetism
CN102367209A (zh) 氧化物掺杂的中低温混合导体透氧膜材料及其制备方法
CN101982418A (zh) 一种钙钛矿型LnCrO3和LnAlO3纳米材料的制备方法
He et al. Phase stability and oxygen permeability of Fe-based BaFe0. 9Mg0. 05X0. 05O3 (X= Zr, Ce, Ca) membranes for air separation
CN113185267B (zh) 一种钴掺杂钙钛矿陶瓷及其制备方法
Sonntag et al. Crystal and magnetic structure of substituted lanthanum cobalitites
Shukla et al. Structural and magnetic characterization of spin canted mixed ferrite-cobaltites: LnFe0. 5Co0. 5O3 (Ln= Eu and Dy)
Chen et al. Mild hydrothermal synthesis and magnetic properties of the manganates Pr1− xCaxMnO3
CN107779831A (zh) 磁控溅射制备a相二氧化钒薄膜的方法
CN107794497B (zh) 一种a相或b相二氧化钒薄膜的制备方法
CN104860667A (zh) 一种双金属掺杂的混合导体透氧膜及其制备方法和应用
CN104995153B (zh) 制备陶瓷材料的溶胶‑凝胶方法
Saptari et al. Effect of Ni-doping on Structure and Morphology of La0. 7Ba0. 3Mn1-xNixO3 Compounds by Sol-Gel Method
Huang et al. Preparation of tetragonal defect scheelite-type RE2 (MoO4) 3 (RE= La to Ho) by precipitation method
CN111205091A (zh) 一种锆掺杂锰酸钆多铁陶瓷及其制备方法
Sánchez et al. Neutron-diffraction study of the jahn–teller transition in prmno 3
Agrawal et al. Stabilization of cubic phase in Y-doped (BaSr)(Fe1-xYx) O3-δ perovskites: Sol-gel synthesis, Raman and photoluminescent characteristics
KR102613996B1 (ko) 층상 페릭 러스트(layered ferric rust, lfr) 결정 구조를 갖는 수산화철 나노입자 및 이의 제조 방법
CN114988875B (zh) 高氧通量的含铜双相混合导体透氧膜材料及其制备方法
Arillo et al. Structural, thermal and magnetic properties of LiMnTiO4 spinel in different atmospheres
Nishimine et al. Phase transition of Ln3IrO7 (Ln= Pr, Nd, Sm, Eu) and its low-temperature structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220624