CN107492444A - 一种μ60复合磁粉芯的制备方法 - Google Patents

一种μ60复合磁粉芯的制备方法 Download PDF

Info

Publication number
CN107492444A
CN107492444A CN201710593949.0A CN201710593949A CN107492444A CN 107492444 A CN107492444 A CN 107492444A CN 201710593949 A CN201710593949 A CN 201710593949A CN 107492444 A CN107492444 A CN 107492444A
Authority
CN
China
Prior art keywords
powder
composite magnetic
alloy powder
magnetic powder
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710593949.0A
Other languages
English (en)
Inventor
潘晓强
柏海明
王璨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tiantong (lu'an) New Material Co Ltd
Original Assignee
Tiantong (lu'an) New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tiantong (lu'an) New Material Co Ltd filed Critical Tiantong (lu'an) New Material Co Ltd
Priority to CN201710593949.0A priority Critical patent/CN107492444A/zh
Publication of CN107492444A publication Critical patent/CN107492444A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • H01F1/1475Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种μ60复合磁粉芯的制备方法,技术方案为:选用机械破碎铁硅铝、气雾化铁硅铝、气雾化铁硅、气雾化铁镍、气雾化铁镍钼中的2种或2种以上的粉末充分混合后,进行磷酸钝化处理并烘干,然后向经钝化处理烘干后的合金粉末中依次添加氧化硅、氧化铝、氧化钙、氧化镁中的一种或几种、硅酸钠、去离子水进行绝缘包覆,后经模压成型、热处理、表面涂层后制得μ60复合磁粉芯。本发明采用的合金粉末工艺成熟,性能稳定,且成本相对较低,制得的磁粉芯具有很高的性价比和稳定性,采用氧化硅、氧化铝、氧化镁等氧化物以及硅酸钠的等无机材料做包覆粘结,所得复合磁粉芯稳定可靠、成本低、安全性强、便于生产。

Description

一种μ60复合磁粉芯的制备方法
技术领域
本发明涉及软磁材料及粉末冶金领域,特别是一种磁导率μ26复合磁粉芯的制备方法,这种软磁材料不仅适用于制作大电流功率电感、PFC电路电感、DC/DC转换器及光伏逆变器等。
背景技术
随着电力电子设备的高频化、小型化、高功率密度化,传统的硅钢片在逐渐失去优势,铁基磁粉芯是性价比相对比较合理的选择。其中,非晶磁粉芯是结合功耗优势和直流叠加特性的理想材料,但因在材料、粉心工艺、可靠性等多方面的原因,一直没有被大批量应用。
传统的磁粉芯由于无法平衡损耗和直流偏置特性、成本,但其工艺相对较为成熟,可靠性和稳定性也经过了时间的验证。因此,如果能在传统磁粉芯的基础上,对目前工艺较为成熟的传统磁粉芯进行研究,在保持较低成本、较高直流偏置能力的前提下,尽可能多的降低磁粉芯的高频损耗成了当前研究的热点和难点。
简单的机械复合,没有办法使得磁粉芯特性有较好的综合性能。通过对复合粉末材料特性的研究,适当的改变复合粉末中粉末的表面形貌,合理的包覆工艺,形成完整的包覆层,以及一定的热处理工艺,制备的复合磁粉芯,性能接近于非晶磁粉芯,同时成本低于非晶磁粉芯。
发明内容
本发明的目的是生产制备一种μ26复合磁粉芯,该合金磁心特别适合目前低压大电流、高功率密度、高频化的要求,可以替代部分铁粉心,铁硅铝粉磁芯,铁镍磁粉心、非晶磁粉芯等产品,使用本发明制备的的磁粉芯做成的电感器可以应用到逆变电源、电力有源功率因数补偿电路(PFC)、太阳光伏系统电源滤波;不间断电源(UPS),也可制作成高功率密度一体电感器,大量应用到负载点POL和VRM电源中。
本发明采取下述技术方案:
(a)合金粉末复合: 将机械破碎铁硅铝、气雾化铁硅铝、气雾化铁硅、气雾化铁镍、气雾化铁镍钼中的两种或两种以上合金粉末进行混合充分。
(b)钝化:针对不同合金粉末的复合,通过调整钝化工艺,在复合粉末中添加抗氧化材料,解决不同粉末钝化工艺要求不同的问题。磷化液加入的比例为0.1%~1%,并用5%~10%的去离子水稀释;
(c)绝缘包覆:向烘干的合金粉末中依次添加3.0%~8.0%的氧化硅、氧化铝、氧化钙、氧化镁中的一种或几种、0.5%~2%的硅酸钠,5%~10%去离子水。混合均匀并烘干,加入0.3%~0.8%的硬脂酸类作润滑剂;
(d)模压成型:磁粉芯的成型压力取1600~2100MPa,,成型后倒角;
(e)热处理:成型后的磁粉芯在600~800℃的氮气或氩气环境中保温30~90min;
(f)磁粉芯表面涂层。
进一步的,合金粉末中低成本粉末的比例≥50%。
进一步的,步骤(c)中的水玻璃(硅酸钠)的加入量根据包覆材料的剂量进行调整,保证包覆材料的成膜性和机械强度。
本发明的优点和积极效果:
(1)通过复合粉末选用机械破碎铁硅铝、气雾化铁硅铝、气雾化铁硅、气雾化铁镍、气雾化铁镍钼为制备原料,成本低廉、粉末光洁,球形度高,含氧量低,制得的磁粉芯具有很高的性价比和稳定性的适当处理;
(2)通过对复合粉末的抗氧化处理,合金颗粒表面易均匀包覆,所得磁粉芯具有较低的涡流损耗和良好的直流叠加特性。
(3)采用氧化硅、氧化铝、氧化镁等氧化物以及硅酸钠的等无机材料做包覆粘结,所得复合磁粉芯稳定、可靠、成本低、安全性强。
(4)本发明的磁导率μ60复合磁粉芯的物理性能和磁性能优良,100kHz,1V时,磁粉芯的磁导率μ=60;100kHz,25℃时,磁粉芯在100Oe下,初始磁导率的系数≥0.60;磁粉芯的功率损耗PCV(50kHz,1000Gs)≤400mW/cm3;较好的平衡了成本、功耗、直流偏置、稳定性、可靠性等经济及技术指标。
附图说明
图1为本发明一种μ60复合磁粉芯的制备工艺流程图。
具体实施方式
为了便于本领域技术人员理解本发明,现结合说明书附图对本发明做进一步的说明。
实施例一:
如图1中μ60复合磁粉芯的制备工艺流程图,按照机械铁硅铝:铁硅:气雾化铁硅铝=1:2:1的质量比进行粉料配比,加入相当于合金粉末质量0.5%的磷化液进行钝化处理,在合金粉末表面形成包覆膜,依次向合金粉末中添加0.5%的氧化硅粉末、0.5%氧化铝(或云母粉)、2%的硅酸钠,4%去离子水混合均匀并烘干过筛,加入0.5%的硬脂酸锌,用φ27.00×φ14.70×11.20(即外径为27.00mm、内径为14.70mm、厚度为11.20mm的环状磁芯)的模具中用1900MPa(19T/cm2)的压力压制成型,成型后的磁粉芯在720℃的氮气或氩气环境中保温60min进行去应力热处理,最后用环氧树脂粉末涂覆在磁粉芯的表面即可。所得磁粉芯的物理特性及磁性能:
1.100kHz,1V时,磁粉芯的磁导率μ=60.5;
2.直流叠加特性:100kHz, 25℃时,磁粉芯在100Oe磁场强度下,初始磁导率的系数=0.645
3.磁粉芯的功率损耗PCV(50kHz,1000Gs)=365mW/cm3
实施例二
如图1中μ60复合磁粉芯的制备工艺流程图,合金粉末比例按照机械铁硅铝:气雾化铁硅=4:6的质量比进行粉料配比,加入相当于合金粉末质量1.0%的磷化液进行钝化处理,在合金粉末表面形成包覆膜,依次向合金粉末中添加5%的氧化硅粉末、1%氧化铝(或云母粉)、2%的硅酸钠,4%去离子水混合均匀并烘干过筛,加入0.5%的硬脂酸锌,后续工艺步骤按照实施例一进行。所得磁粉芯的物理特性及磁性能:
1.100kHz时,磁粉芯的磁导率μ=58.1;
2.直流叠加特性:100kHz, 25℃时,磁粉芯在100Oe磁场强度下,初始磁导率的系数=0.63
3.磁粉芯的功率损耗PCV(50kHz,1000Gs)=391mW/cm3
实施例三:
如图1中μ60复合磁粉芯的制备工艺流程图,合金粉末比例按照气雾化铁硅铝:气雾化铁硅=6:4的质量比进行粉料配比,加入相当于合金粉末质量0.8%的磷化液进行钝化处理,在合金粉末表面形成包覆膜,依次向合金粉末中添加0.8%的氧化硅粉末、0.3%氧化铝(或云母粉)、1.5%的硅酸钠,4%去离子水混合均匀并烘干过筛,加入0.5%的硬脂酸锌,后续工艺步骤按照实施例一进行。所得磁粉芯的物理特性及磁性能:
1.100kHz,1V时,磁粉芯的磁导率μ=59.6;
2.直流叠加特性:100kHz, 25℃时,磁粉芯在100Oe磁场强度下,初始磁导率的系数=0.62
3.磁粉芯的功率损耗PCV(50kHz,1000Gs)=371mW/cm3。
本发明技术方案在上面结合附图对发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性改进,或未经改进将发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。

Claims (3)

1.一种μ60复合磁粉芯的的制备方法,其特征在于,包括以下步骤:
(a)合金粉末复合: 将机械破碎铁硅铝、气雾化铁硅铝、气雾化铁硅、气雾化铁镍、气雾化铁镍钼中的两种或两种以上合金粉末进行混合充分。
(b)钝化:针对不同合金粉末的复合,通过调整钝化工艺,在复合粉末中添加抗氧化材料,解决不同粉末钝化工艺要求不同的问题。磷化液加入的比例为0.1%~1%,并用5%~10%的去离子水稀释;
(c)绝缘包覆:向烘干的合金粉末中依次添加0.5%~1.0%的氧化硅、氧化铝、氧化钙、氧化镁中的一种或几种、0.5%~2%的硅酸钠,5%~10%去离子水,混合均匀并烘干后,加入0.3%~0.8%的硬脂酸类作润滑剂;
(d)模压成型:磁粉芯的成型压力取1600~2100MPa,成型后倒角;
(e) 热处理:成型后的磁粉芯在600~800℃的氮气或氩气环境中保温30~90min;
(f)磁粉芯表面涂层。
2.根据权利要求1所述一种μ26复合磁粉芯的制备方法,其特征在于,合金粉末中低成本粉末的比例≥50%。
3.根据权利要求1所述 一种μ60复合磁粉芯的制备方法,其特征在于,步骤(c)中的水玻璃(硅酸钠)的加入量根据包覆材料的剂量进行调整,保证包覆材料的成膜性和机械强度。
CN201710593949.0A 2017-07-20 2017-07-20 一种μ60复合磁粉芯的制备方法 Pending CN107492444A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710593949.0A CN107492444A (zh) 2017-07-20 2017-07-20 一种μ60复合磁粉芯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710593949.0A CN107492444A (zh) 2017-07-20 2017-07-20 一种μ60复合磁粉芯的制备方法

Publications (1)

Publication Number Publication Date
CN107492444A true CN107492444A (zh) 2017-12-19

Family

ID=60643413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710593949.0A Pending CN107492444A (zh) 2017-07-20 2017-07-20 一种μ60复合磁粉芯的制备方法

Country Status (1)

Country Link
CN (1) CN107492444A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029126A (zh) * 2019-12-12 2020-04-17 安徽工业大学 一种铁基金属软磁复合材料全无机耐高温绝缘粘结方法
CN113470915A (zh) * 2021-06-02 2021-10-01 昆山磁通新材料科技有限公司 软磁复合材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144512A (ja) * 1996-11-13 1998-05-29 Tokin Corp 圧粉磁心の製造方法
CN106229104A (zh) * 2016-08-31 2016-12-14 北京康普锡威科技有限公司 一种软磁复合粉末及其磁粉芯制备方法
CN106252013A (zh) * 2016-08-19 2016-12-21 横店集团东磁股份有限公司 一种μ=60铁镍软磁磁粉芯的制备方法
CN106409461A (zh) * 2016-08-31 2017-02-15 北京康普锡威科技有限公司 一种低损耗FeSi6.5软磁复合粉芯的制备方法
CN106448995A (zh) * 2016-08-31 2017-02-22 北京康普锡威科技有限公司 一种高直流偏磁特性FeSiAl磁粉芯的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144512A (ja) * 1996-11-13 1998-05-29 Tokin Corp 圧粉磁心の製造方法
CN106252013A (zh) * 2016-08-19 2016-12-21 横店集团东磁股份有限公司 一种μ=60铁镍软磁磁粉芯的制备方法
CN106229104A (zh) * 2016-08-31 2016-12-14 北京康普锡威科技有限公司 一种软磁复合粉末及其磁粉芯制备方法
CN106409461A (zh) * 2016-08-31 2017-02-15 北京康普锡威科技有限公司 一种低损耗FeSi6.5软磁复合粉芯的制备方法
CN106448995A (zh) * 2016-08-31 2017-02-22 北京康普锡威科技有限公司 一种高直流偏磁特性FeSiAl磁粉芯的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029126A (zh) * 2019-12-12 2020-04-17 安徽工业大学 一种铁基金属软磁复合材料全无机耐高温绝缘粘结方法
CN113470915A (zh) * 2021-06-02 2021-10-01 昆山磁通新材料科技有限公司 软磁复合材料及其制备方法和应用
CN113470915B (zh) * 2021-06-02 2024-04-05 昆山磁通新材料科技有限公司 软磁复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN108269670B (zh) 一种铁硅铝软磁合金粉末的绝缘及包裹处理方法
CN107369515A (zh) 一种μ26复合磁粉芯的制造方法
CN107369514A (zh) 一种μ90复合磁粉芯的制造方法
CN102623121B (zh) 一种铁硅材料及μ90铁硅磁粉芯的制造方法
CN105185560A (zh) 一种铁基金属软磁粉芯的制备方法
CN111739730B (zh) 一种使用有机包覆的高性能金属磁粉芯制备方法
CN109216006A (zh) 软磁合金粉芯及其制备方法
CN104505209A (zh) 一种金属软磁复合粉芯及其制备方法
CN104361968A (zh) 一种低损耗高磁导率铁硅铝磁粉芯的制备方法
CN107275032A (zh) 一种铁硅金属软磁粉芯的制备方法
CN105772701A (zh) 一种高叠加低损耗软磁合金材料的制备方法
CN104217835A (zh) 一种磁导率μe125铁硅铝磁粉芯制造方法
CN102294474A (zh) 一种铁硅材料及μ50铁硅磁粉芯的制造方法
CN104505208A (zh) 一种磁导率μ=26的低损耗高叠加铁硅铝材料的制备方法
CN102294476A (zh) 一种铁硅材料及μ75铁硅磁粉芯的制造方法
CN102294475B (zh) 一种铁硅材料及μ60铁硅磁粉芯的制造方法
CN112509777A (zh) 一种软磁合金材料及其制备方法和应用
CN106252013B (zh) 一种μ=60铁镍软磁磁粉芯的制备方法
CN107492444A (zh) 一种μ60复合磁粉芯的制备方法
CN111161934A (zh) 一种非晶纳米Fe-Ni磁粉芯及其制备方法与应用
CN104465003A (zh) 酸性烤蓝工艺制备高饱和磁通密度软磁复合材料的方法
CN107369516A (zh) 一种μ75复合磁粉芯的制造方法
CN106205938A (zh) 一种纳米磁芯材料
CN114078631B (zh) 一种软磁复合材料的制备方法及一种金属磁粉芯
CN114496544A (zh) 一种低功耗铁镍钼磁粉心的制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171219

WD01 Invention patent application deemed withdrawn after publication